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Abstract: The active and reactive powers, P and Q, are crucial variables in the parallel operation
of single-phase inverters using the droop method, introducing proportional droops in the inverter
output frequency and voltage amplitude references. P and Q, or P-Q, are calculated as the product
of the inverter output voltage and its orthogonal version with the output current, respectively.
However, when sharing nonlinear loads these powers, Pav and Qav, should be averaged by low-pass
filters (LPFs) with a very low cut-off frequency to avoid the high distortion induced by these loads.
This forces the droop method to operate at a very low dynamic velocity and degrades the system
stability. Then, different solutions have been proposed in literature to increase the system velocity,
but only considering linear loads. Therefore, this work presents a method to calculate Pav and
Qav using second-order generalized integrators (SOGI) to face this problem with nonlinear loads.
A double SOGI (DSOGI) approach is applied to filter the nonlinear load current and provide its
fundamental component to the inverter, leading to a faster dynamic velocity of the droop-based load
sharing capability and improving the stability. The proposed method is shown to be faster than
others in the literature when considering nonlinear loads, while smoothly driving the system with
low distortion levels. Simulations, hardware-in-loop (HIL) and experimental results are provided to
validate this proposal.

Keywords: droop method; active and reactive power calculation; single-phase parallelized inverters;
nonlinear loads; HIL

1. Introduction

The parallelization of single-phase inverters without communications between them has usually
been performed using the droop method, which drives the sinusoidal references of the inverters for
sharing the common loads [1–3]. The method introduces proportional droops in the inverter frequency
ω* and voltage amplitude V* references, respectively, according to the P and Q load consumed
powers. These powers are usually obtained as the product of the measured output current io(t) with the
measured output voltage vo(t) and its quadrature version, vo⊥(t), respectively. The droop method works
well for the sharing of linear loads but not for nonlinear ones, due to the nonlinear currents drawn by
these loads, which highly distort P and Q, and the provided droop references. Therefore, LPFs in P
and in Q with a very low cut-off frequency are used to deal with this problem. The LPFs provide the
average powers consumed by the load Pav and Qav and removes the double frequency components
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resulting from the product of io(t) with vo(t) and vo⊥(t). However, these LPFs force the droop to run
slowly, with a low dynamic response to changes in the load, worsening the system stability [4–15].

The calculation of Pav and Qav is performed by the droop-based local control algorithm of the
single-phase inverters and needs of the io(t), vo(t) and vo⊥(t) inverter sensed signals. The quadrature
output voltage vo⊥(t) has been performed using different approaches applied to vo(t), such as a
transport delay (TD) [15,16], an extended three-phase dq-Synchronous Reference Frame (dq-SRF)
approach [17,18], and the SOGI filter [19]. Additionally, Pav and Qav have been obtained by different
approaches for improving the performance of the droop method. In [20], a method based on the
SOGI structure for the calculation of Pav and Qav was proposed. The method was similar to [9],
and cancelled the double frequency components resulting from the products in the same manner.
In this case, the dynamic response of the calculated powers was reduced by one order of magnitude.
However, this work only considered the use of linear loads, and used LPFs to obtain Pav and Qav
that constrained the dynamic response of the system. In [21], a method based on the discrete Fourier
transform (DFT) was presented for extracting Pav and Qav. This method had the drawback of
introducing a severe delay into the process, making it unsuitable for systems with abrupt load changes.
In [22], a Least Mean Squares (LMS) approach was presented for obtaining the averaged powers through
optimization of a cost function depending on P and Q. However, the validity of these approaches
was only partial when sharing nonlinear loads, except for the last one, in which nonlinear loads were
considered. In general, all of these proposals have in common the objective of trying to achieve a faster
and accurate calculation of the averaged powers for enhance the droop system stability.

This paper is a natural continuation of our previous work [23] in which a DSOGI approach
was introduced in the power calculation scheme proposed in [9] and [20]. The DSOGI achieves
the fundamental component of the inverter output current and removes the LPFs from the scheme,
which had until now been the main limitation on the performance of the droop controller. The DSOGI
has an inherent trade-off relationship between its filtering capability for extracting the fundamental
component and its transient response speed to changes in the input signal. This trade-off is regulated
by the adjustment of the DSOGI damping factor ξ. The DSOGI trade-off is better than that achieved by
the standard SOGI. Then, the DSOGI can reach a faster transient time response to changes in the load
for similar filtering capability than the SOGI structure. In this paper, comparisons with the calculation
methods of [6] and [17] when using symmetrical and non-symmetrical nonlinear loads are presented
using simulations, HILplatform and experimental platform results to prove the validity of this proposal
for calculating the average powers.

2. Materials and Methods

The scheme of a single-phase voltage source inverter (VSI) operated with the droop method when
sharing a nonlinear load ZNL with another inverter is depicted in Figure 1. From the scheme, the main
parts considered in this work can be seen: the power stage with inner controller, the pulse width
modulation block (PWM), the LC output filter, the vo and io sensing, the Pav and Qav calculation block,
and the droop generator producing the voltage reference νref [24,25]. In Figure 1, the scheme of the
second inverter is not depicted. Rather, it is only outlined with discontinuous lines and indicated as
#Inv. 2, due to the fact that this proposal is only concerned with the dynamic behavior and accuracy of
the P-Q calculation block. For this reason, the simulations and experimental results shown from now
on will only correspond to a single VSI.

In the simulations and experiments, a diode bridge rectifier (DBR) supplying a RC load is used as
a nonlinear load ZNL (see Figure 2). At steady state, ZNL draws a distorted and symmetrical nonlinear
current with peak levels reaching ±2.48A for the ZNL specified in Table 1, which induces a high
distortion in Pav and Qav, as well as in vre f . Likewise, a switch S1 is inserted in the ZNL scheme (see
Figure 2), allowing for step-perturbations for testing the dynamic behavior of Pav and Qav and for
assessment and comparison purposes.
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Simulations of the proposed system for the design and comparisons with [6] and [17] were 
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RonD1-D4  0.01 Ω 𝐿௅ 84 µH 
C1, C2 470 µF 𝑅஼ଵ, 𝑅஼ଶ 37 kΩ 𝑅௅ଵ, 𝑅௅ଶ 960 Ω 

All the power calculation schemes were tuned to achieve the same power-ripple in order to 
obtain a fair comparison between the methods and to accurately measure the settling time of their 
transient responses when ZNL changes suddenly. The simulation results were obtained using 
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Figure 2. Diode-bridge rectifier nonlinear load supplying a resistive-capacitive load.

Table 1. Main parameters of VSI and ZNL.

Parameter Value

LC Filter 1.8 mH; 25 µF
Switching frequency, fs 10 kHz

RonD1-D4 0.01 Ω
LL 84 µH

C1, C2 470 µF
RC1, RC2 37 kΩ
RL1, RL2 960 Ω

Simulations of the proposed system for the design and comparisons with [6,17] were performed
with Matlab/Simulink/Simscape Power Systems software. Table 1 shows the main parameters of the
inverter and ZNL.

All the power calculation schemes were tuned to achieve the same power-ripple in order
to obtain a fair comparison between the methods and to accurately measure the settling time of
their transient responses when ZNL changes suddenly. The simulation results were obtained using
Matlab/Simulink/Simscape Power Systems software, and were contrasted with HIL results at the
inverter-based intelligent Microgrid Laboratory (iML) of the department of Energy Technology at the
Aalborg University (iML-AAU) in Denmark (Figure 3).
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Figure 3. Experimental setup at the intelligent Microgrid Laboratory in Aalborg University (iML-AAU),
Denmark: (a) Complete experimental setup; (b) detail of the Danfoss© single-phase inverter.

A second similar test was performed with another diode bridge rectifier nonlinear load drawing
an asymmetrical nonlinear current in order to further test the calculation power block. This current
reached a peak of 4.2 A in the positive half-cycle of the VSI and a negative one of −2.2 A in the
VSI negative half-cycle after an abrupt load change. This asymmetry in the current introduced an
extra distortion to the calculated powers. Experimental results for this load with a VSI inverter
of the iML-AAU were also obtained. The inverter used in the iMG is a Danfoss© FC302, 2.2 kW
rated, interfaced to a real-time dSPACE 1006. The algorithms for operating the VSI are developed
in Matlab/Simulink software and compiled into the dSPACE. Figure 4 depicts the scheme of this
experimental setup.
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2.1. Droop Principle-Based Control Scheme

The power calculation block of Figure 1 provides the frequency and voltage amplitude references
ω∗ and V∗, respectively, as can be seen in the following equations:

ω∗ = ωn −m·Pav (1)

V∗ = Vn − n·Qav (2)
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where m and n are the droop coefficients and ωn and Vn are the nominal frequency and voltage
amplitude, respectively. These references are used to generate the sinusoidal voltage reference vre f for
the inverter inner control loops:

vre f = V∗·sin(ω∗·t) (3)

Assuming that the output voltage and current of the inverter are [15]

vo(t) = V·sin(ωo·t) (4)

io(t) = I·sin(ωo·t−ϕo) (5)

where V and I are the voltage and current amplitudes, ωo is the fundamental frequency and ϕo is the
phase angle between vo(t) and io(t), the quadrature voltage, with a −π/2 delay, is defined as

vo⊥(t) = V·sin
(
ωo·t−

π
2

)
(6)

Therefore, the instantaneous active and reactive powers can be formulated as

pi(t) = vo(t)·io(t) =
VI
2
·[cosϕo − cos(2ωo·t−ϕo)] = Pav + p̃ (7)

qi(t) = vo⊥(t)·io(t) =
VI
2
·[sinϕo − sin(2ωo·t−ϕo)] = Qav + q̃ (8)

where p̃ and q̃ are the oscillating components that pulsate at twice the fundamental frequency ωo.
These equations reveal that for a linear load that draws a sinusoidal current, the instantaneous powers
oscillate around the averaged powers Pav and Qav. However, if the load is nonlinear, the instantaneous
powers are going to be highly distorted by harmonics, for which the nonlinear current can be
expressed as:

io(t) = I0·sin(ωot−ϕo) +
N∑

h=2

Ih·sin(h·ωo·t−ϕh) (9)

leading to

pi(t) = Pav + p̃ + vo(t)·
N∑

h=2

Ih·sin(h·ωo·t−ϕh) (10)

qi(t) = Qav + q̃ + vo⊥(t)·
N∑

h=2

Ih·sin(h·ωo·t−ϕh) (11)

where the subscript h represents the harmonic order, N is the maximum considered value for h and Ih,
h·ωo and ϕh are the amplitude, the frequency and the phase-shift of the current harmonic components,
respectively. As can be seen in Equations (10) and (11), pi(t) and qi(t) contain higher harmonic order
components, in addition to the DC Pav and Qav and the double frequency components p̃ and q̃ that were
already present in the linear case. Then, for a nonlinear ZNL, Equations (1) and (2) can be expressed as
follows when they are calculated employing the instantaneous powers in Equations (10) and (11):

ω∗(t) = ωn −m·

Pav + p̃ + vo(t)·
N∑

h=2

Ih·sin(h·ωo·t−ϕh)

 (12)

V∗(t) = Vn − n·

Qav + q̃ + vo⊥(t)·
N∑

h=2

Ih·sin(h·ωo·t−ϕh)

 (13)

and the voltage reference is
vre f (t) = V∗(t)·sin(ω∗(t)·t) (14)
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2.2. Conventional P-Q Calculation Schemes

Figure 5 shows the conventional P-Q calculation scheme for obtaining Pav and Qav, in which
the instantaneous powers pi(t) and qi(t) are obtained as the products of io(t) with vo(t) and vo⊥(t),
respectively [6]. The quadrature voltage vo⊥(t) is obtained by delaying vo(t) by π/2, and Pav and Qav

by using LPFs with a low cut-off frequency value fc, to filter the multiple frequency components in the
instantaneous powers [18]. When sharing linear loads, the value of fc is usually set to one or two orders
of magnitude lower than the inverter fundamental operating frequency [22,23], which determines the
transient dynamic performance of the system. However, in the case of nonlinear loads, the value of
fc should be further reduced (usually to less than 1 Hz), to avoid strong distortions in the inverter
output current and in the instantaneous powers [24]. Conversely, the distortion in the current induces
excessive ripple in the averaged powers, which in turn is translated to the droop references ω∗(t) and
V∗(t), and then to vre f (t), causing bad operation of the system. Nevertheless, this bandwidth reduction
slows down the transient dynamic behavior of the system. The transfer functions of the averaged Pav

and Qav are shown in Appendix A.
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The outputs of the SOGI filter, vd(t) and vq(t), have the following band-pass filter (BPF) and LPF
transfer function relationships regarding to the input:

Hd(s) =
vd(s)
vin(s)

=
2ξiωi·s

s2 + 2ξiωi·s +ω2
i

Hd(s) =
vd(s)
vin(s)

=
2ξiωi·s

s2 + 2ξiωi·s +ω2
i

(15)

Hq(s) =
vq(s)

vin(s)
=

2ξiω
2
i

s2 + 2ξiωi·s +ω2
i

Hq(s) =
vq(s)

vin(s)
=

2ξiω
2
i

s2 + 2ξiωi·s +ω2
i

(16)

where ξi is the filter damping factor and ωi is the tuning center frequency. In addition, a DSOGI is a
four-order filter that consist in the cascade connection of two SOGI filters, as seen in Figure 7 [26]:
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The transfer functions of the DSOGI with respect to the input [26]:

H′d(s) =

 2ξiωi·s
s2 + 2ξiωi·s +ω2

i

2

(17)

H′q(s) =
4ξ2

i ω
3
i ·s(

s2 + 2ξiωi·s +ω2
i

)2 (18)

Whenωi is tuned to matchωo, and for harmonic components higher than the fundamental (h� 1),
the gain of the BPF characteristic in Equation (17) can be simplified to:

∣∣∣H′d(s)∣∣∣ =
 2ξih√

(1− h2)2 + (2ξih)
2


2

≈

(2ξi
h

)2∣∣∣H′d(s)∣∣∣ =
 2ξih√

(1− h2)2 + (2ξih)
2


2

≈

(2ξi
h

)2
(19)

On the other hand, the frequency and damping factor are the parameters that determine the
settling time ts (2% criterion) of the transient response of the BPF in Equation (15) for a step input:

ts ≈
4

ξi·ωi
(20)

The SOGI filter has an inherent trade-off relationship between bandwidth (rejection capability to
harmonics) and settling time response, Equation (20). This trade-off cannot be overcome, and relies
on the damping factor parameter ξi. However, in [26], it was shown that the DSOGI has a better
trade-off than the SOGI and can achieve a faster transient response when it is designed to have the
same bandwidth behavior. In this paper, this characteristic is used to achieve a faster response when
extracting the fundamental component of the nonlinear load current and thereby to improve the droop
transient response to load changes.

2.4. Advanced P-Q Calculation Scheme

Figure 8 shows a P-Q calculation method based on the proposed scheme in [17] for accelerating
the computation of Pav and Qav. In this figure, the SOGI1 and SOGI2 blocks are used for extracting
the double frequency pulsating power components p̃ and q̃, which are then removed from pi and qi.
These SOGIs are both tuned at ωi = 2ωo and ξ1 = ξ2 = 1. The LPFs are used for improved filtering
and for providing the averaged powers Pav and Qav, by attenuating the higher harmonics components
reported in Equations (10) and (11). This figure does not show the method for generating the π/2 delay,
since it is not mentioned in [17]. Therefore, another SOGI, SOGI0, tuned at ωo and ξ0 = ξv = 0.707, is
used for generating this delay, as shown in Figure 9, for avoiding the delay issues reported in [15,16].
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Figure 8. Scheme for the calculation of Pav and Qav proposed in [20].

Electronics 2019, 12, x FOR PEER REVIEW 8 of 19 

 

2 

pi(t) 

qi(t) 

+ 

ωo 

x 

x 
2ωo 

2ωo 

vi 
vd 

ωi 

vi 
vd 

ωi 

+ 

+ 
+ 

- 

- 

SOGI1 

SOGI2 

Pav 

Qav 

vo(t) 

LPF 

LPF 

p ~ 

q ~ 

-π/2 

vo⊥(t) 

io(t) 

pi (t) = Pav +  p ~ 

qi (t) = Qav +  q ~ 

 

Figure 8. Scheme for the calculation of Pav and Qav proposed in [20]. 

 

2 

pi(t) 

qi(t) 

vo(t) vi 
vd 

ωi 

ξ vq 

ωo 

ξv 

+ 

ωo 

x 

x 
2ωo 

2ωo 
vi 

vd 
ωi 

vi 
vd 

ωi 

+ 

+ 
+ 

- 

- 

SOGI0 SOGI1 

SOGI2 

Pav 

Qav 

vo ⊥ 

vo 

LPF 

LPF 

p ~ 

q ~ 

pi (t) = Pav +  p ~ 

qi (t) = Qav +  q ~ 

io(t) 

 
Figure 9. Addition to Figure 8 of a new SOGI for archiving the quadrature component of the output 

voltage vo⊥(t). 

The transfer functions for the calculated averaged active and reactive power are included in 
Appendix A, with the numbers (24) and (25). Please note that the current is not filtered. 

Figure 10 shows the simulation results using the P-Q algorithms of the schemes in Figures 5 and 
9 when sharing a linear load that produces a current perturbation from peak 2A to peak 4A at a time 
of 3 s.  

 
(a) 

 

2.9 2.95 3 3.05 3.1 3.15 3.2
Time (s)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Figure 9. Addition to Figure 8 of a new SOGI for archiving the quadrature component of the output
voltage vo⊥(t).

The transfer functions for the calculated averaged active and reactive power are included in
Appendix A, with the numbers (24) and (25). Please note that the current is not filtered.

Figure 10 shows the simulation results using the P-Q algorithms of the schemes in Figures 5 and 9
when sharing a linear load that produces a current perturbation from peak 2A to peak 4A at a time of
3 s.

For the sake of simplicity, Figure 10 only shows the dynamic behavior of Pav, obviating the
representation of Qav. The dynamics of Pav obtained with the advanced scheme in Figure 9 (hereinafter
called Padv) are compared with those obtained for Pav by the conventional droop method depicted
in Figure 5 (hereinafter called Pdroop). The cut-off frequency of the LPFs in Figure 9 was designed to
be fc = 3.7 Hz, whereas it was set to fc = 0.37Hz for the scheme in Figure 5. As shown in Figure 10,
the double frequency component p̃ was removed from Padv. Likewise, the higher cut-off frequency of its
LPFs results in much faster dynamics than those of Pdroop. Also, the ripple corresponding to the double
frequency component p̃, which is not completely filtered by the LPFs in Figure 5, can be observed in
Pdroop. These results are compatible with those reported in [21]. However, the good dynamic behavior
depicted in Figure 10 for Padv vanishes when a nonlinear load is used, as is shown in Figure 11. In this
case, the nonlinear load is a DBR that draws a peak current of ±2.48 A and suffers a perturbation that
pushes the peak to ±4.15 A. The simulation parameters are listed in Table 2.



Electronics 2019, 8, 1366 9 of 19

Electronics 2019, 12, x FOR PEER REVIEW 8 of 19 

2 

pi(t)

qi(t)

+ 

ωo 

x 

x 
2ωo

2ωo

vi 
vd 

ωi 

vi 
vd 

ωi 

+ 

+ 
+ 

- 

- 

SOGI1

SOGI2 

Pav

Qav

vo(t)
LPF 

LPF 

p ~ 

q ~ 

-π/2 

vo⊥(t)

io(t)

pi (t) = Pav + p ~ 

qi (t) = Qav + q ~ 

Figure 8. Scheme for the calculation of Pav and Qav proposed in [20].

2 

pi(t)

qi(t)

vo(t) vi
vd

ωi 

ξ vq

ωo 

ξv 

+ 

ωo 

x 

x 
2ωo

2ωo

vi
vd

ωi 

vi
vd

ωi 

+ 

+ 
+ 

- 

- 

SOGI0 SOGI1 

SOGI2 

Pav

Qav 

vo⊥

vo

LPF 

LPF 

p ~ 

q ~ 

pi (t) = Pav + p ~

qi (t) = Qav + q ~ 

io(t)

Figure 9. Addition to Figure 8 of a new SOGI for archiving the quadrature component of the output 

voltage vo⊥(t). 

The transfer functions for the calculated averaged active and reactive power are included in 
Appendix A, with the numbers (24) and (25). Please note that the current is not filtered.

Figure 10 shows the simulation results using the P-Q algorithms of the schemes in Figures 5 and 
9 when sharing a linear load that produces a current perturbation from peak 2A to peak 4A at a time 
of 3 s. 

(a) 

2.9 2.95 3 3.05 3.1 3.15 3.2

Time (s)

-5

-4

-3

-2

-1
0

1

2

3

4

5

Li
ne

ar
 C

ur
re

nt
  (

A
)

3 3.5 4 4.5 5 5.5 6

Time (s)

300

350

400

450

500

550

600

650

A
ct

iv
e 

Po
w

er
 P

  (
W

)

P
d r o o p

 (0.37Hz)

P
a d v  (3.7Hz)

(b) 

Figure 10. Simulation of the load current and Pav transient responses for a linear load current
perturbation from peak 2A to peak 4A at 3 s: (a) detail of the load current perturbation, (b) comparison
between Pav obtained with Figure 9 scheme (Padv) and Pav obtained with Figure 5 scheme (Pdroop).

Table 2. Simulation parameters for Figure 10.

Parameter Value

Vn 311 V
ωo 2π50 rad/s

DBR RESISTOR LOAD FOR T < 3S 950 Ω
DBR RESISTOR LOAD FOR T > 3S 471.8 Ω

THD io(t) 215%
ξ0 0.7

ξ1 = ξ2 1

As shown in Figure 11, the dynamics of the method proposed in [20] worsen using a nonlinear
load, similarly to [26]. Thus, in the presence of a nonlinear load, the method has excessive steady state
ripple that corrupts the calculated powers, opposite to what is stated in [20]. To reduce the ripple,
the filtering capabilities of the LPFs in Figure 9 can be improved by reducing fc. By decreasing fc from
3.7 Hz to 1.1 Hz, the ripple of Padv matches that of Pdroop, as can be seen in Figure 12. Although the
advanced method of Figure 9 calculates faster Pav than the conventional droop controller, it presents
less effectivity than initially argued. It can be clearly seen in Figures 11 and 12 that there is a trade-off

between the filtering capability of the Pav calculation scheme and the transient speed of its dynamical
response. Note also that there is a positive offset in the calculated Pav at steady state, since the mean
value of Padv is slightly higher than that of Pdroop (see Figure 11). Comparing the transfer functions
for the P-Q calculation by the conventional, Equations (22) and (23), or by the advanced method,
Equations (24) and (25), it can be seen the filtering capabilities of each algorithm. Please note that the
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magnitude of the ripple of Padv forces the system’s dynamic response to slow down by reducing more
the cut-off frequency.
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Figure 11. Simulation of the load current and Pav transient responses for a nonlinear Diode Bridge
Rectifier (DBR) load current perturbation from a peak at 2.48 A to a peak at 4.15 A at 3 s: (a) detail of
the distorted load current perturbation, (b) Padv and Pdroop, (c) detail of Padv and Pdroop ripples.
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Figure 12. Simulation of the Pav transient responses for a nonlinear DBR (diode bridge rectifier) load
current perturbation from a peak at 2.48 A to a peak at 4.15 A at 3 s: (a) Padv (with reduced fc = 1.1 Hz)
and Pdroop, (b) detail of Padv and Pdroop ripples.

2.5. Proposed P-Q Calculation Scheme

The scheme of the proposed P-Q calculation is shown in Figure 13. A DSOGI approach is
applied to io(t) in order to extract the fundamental component iOF, see Equation (28) in Appendix A.
There, the DSOGI composed of the SOGI3 and SOGI4 blocks filters the distorting high-order harmonics
of io(t) by means of its higher BPF capability and avoids coping with a highly distorted current signal.
Consequently, the instantaneous powers pi(t) and qi(t) are obtained as the product of the in-phase vo(t)
or the quadrature vo⊥(t) voltages with the fundamental output current iOF, respectively. This produces
a result with only double frequency components and without third or higher order harmonics.Electronics 2019, 12, x FOR PEER REVIEW 12 of 19 

 

io(t) 

pi 

qi 

vo(t) vi 
vd 

ωi 

ξ vq 

ωo 

ξv 

+ x 

x 
2ωo 

2ωo 
vi 

vd 
ωi 

vi 
vd 

ωi 

+ 

+ 
+ 

- 

- 

SOGI1 

SOGI2 

Pav 

Qav 

vo ⊥ 

p ~ 

q ~ 

SOGI4 
ii 

ωi 
ξ 

ωo 

ξc 

id 

vo ⊥ 

vo 

SOGI3 

iOF 

DSOGI iOF 

ωi 
ξ 

ii id 

SOGI0 

 
Figure 13. Scheme for the proposed P-Q calculation based on a DSOGI approach. 

In this case, because a DSOGI is used for filtering the current in Equation (28), and considering 
that the center frequencies provided by the droop method ω* vary in a small range around the 
nominal frequency ωn, the transient response speed is determined mainly by the DSOGI transient 
response, which is related to ௖; see [26]. The damping factors of the DSOGI are here tuned to 
produce a power ripple identical in amplitude to that of the conventional droop controller, which is 
achieved for ξc = ξ3= ξ4 = 0.129. 

Figure 14 shows the simulation results of the same nonlinear DBR load drawing a peak current 
of ±2.48 A and suffering a perturbation that pushes the peak to ±4.15 A. It can be observed that the 
proposed method is faster for calculating Pav than the previously considered methods. 

 
(a) 

 
(b) 

 
(c) 

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6
Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

5.96 5.965 5.97 5.975 5.98 5.985 5.99 5.995 6
Time (s)

192

193

194

195

196

197
Pdroop (0.37Hz) Padv (1.1Hz) PDSOGI ( = 0.129)

Figure 13. Scheme for the proposed P-Q calculation based on a DSOGI approach.



Electronics 2019, 8, 1366 12 of 19

Later, the SOGI1 and SOGI2 blocks were used as in Figure 9 for removing only the double
frequency components with the help of the subtracting blocks. Therefore, the LPFs can now be removed
from the scheme, since they are no longer necessary. The transfer function of the proposed scheme in
Figure 13 is shown in Appendix A as Equations (26) and (27). This overcomes the main limitation
of previous schemes and further accelerates the dynamic response of Pav and Qav. To distinguish Pav

and Qav obtained with this proposed scheme, in the following they will be referred to as PDSOGI and
QDSOGI.

In this case, because a DSOGI is used for filtering the current in Equation (28), and considering
that the center frequencies provided by the droop method ω* vary in a small range around the nominal
frequency ωn, the transient response speed is determined mainly by the DSOGI transient response,
which is related to ξc; see [26]. The damping factors of the DSOGI are here tuned to produce a power
ripple identical in amplitude to that of the conventional droop controller, which is achieved for ξc = ξ3=

ξ4 = 0.129.
Figure 14 shows the simulation results of the same nonlinear DBR load drawing a peak current

of ±2.48 A and suffering a perturbation that pushes the peak to ±4.15 A. It can be observed that the
proposed method is faster for calculating Pav than the previously considered methods.
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Figure 14. Simulation of iOF and Pav transient responses for a nonlinear DBR load current perturbation
from a peak of 2.48 A to 4.15 A at 3 s: (a) detail of the iOF perturbation, (b) PDSOGI, Padv and Pdroop,
(c) detail of PDSOGI, Padv and Pdroop ripples.
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Figure 15 depicts the simulation results using a ZNL drawing an asymmetrical current, reaching a
positive peak of 5.21 A and a negative peak of−3.07 A after the perturbation. In this case, the asymmetry
in the nonlinear current (see Figure 15a), introduces further distortion into the calculated Pav,
showing higher ripple at steady state (see Figure 15c).
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Figure 15. Simulation of the load current and Pav transient responses for an asymmetrical nonlinear
DBR load current with a positive peak of 5.21 A and a negative peak of −3.07 A after the perturbation
at 3 s: (a) detail of the asymmetrical load current perturbation, (b) PDSOGI, Padv and Pdroop, (c) detail of
PDSOGI, Padv and Pdroop ripples.

Please note that unlike Padv, PDSOGI does not exhibit a positive offset error in steady state.
This means that the proposed method is also more accurate than that in [20]. Table 3 contains the
measured settling time for the Pav transient responses depicted in Figure 15, which shows that the
PDSOGI calculated with the proposed method implies a 60.00% and a 79.69% reduction in the response
time regarding Padv and Pdroop, respectively.
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Table 3. Settling time simulation measurements from Figure 15.

Parameter Value

PDROOP 325 ms
PADV 165 ms

PDSOGI 66 ms

3. Experimental Results

Hardware in Loop, as well as experimental results with an VSI inverter of the iML-AAU,
were obtained. The HIL setup consisted of a dSpace 1006© digital Real-Time Interface platform that
carried out the processor-based simulations with parameters configured by the dSpace Configuration
Desk© tool. The setup supports models based on the physical modelling libraries of electrical plants
designed by Matlab/Simulink/SimPowerSystems©. These models are integrated into the dSpace tool
chain and are used for building the electrical system under test along with the Electronic Central Unit,
ECU, of the dSpace. The control algorithms described in this paper were loaded and executed in real
time in the ECU. In this case, the H-Bridge Inverter, the LCL filter and the Nonlinear Load depicted in
Figure 4 are the electrical system implemented in the ECU under the HIL test. The experimental setup
consisted of an inverter Danfoss© FC302, 2.2 kW rated, interfaced to the real-time dSPACE 1006 digital
platform. The algorithms for operating the VSI were developed in Matlab/Simulink software and
compiled in the dSPACE multiprocessor core, with its parameters configured and controlled through
the Configuration-Desk software. The sampling frequency for the system was 10 kHz, which was the
switching frequency for the VSI. A third-order method for discretizing the SOGI and DSOGI algorithms
was employed, whereby the integrator 1

s was approximated as:

Ts

12
·
5z−3

− 16z−2 + 23z−1

1− z−1
(21)

with Ts being the sample time of 100µs, which is consistent with the 10 kHz frequency. The experimental
setup parameters for the LCL filter and for the nonlinear load are listed in Table 4.

Table 4. Main parameters of VSI and ZNL.

Parameter Value

RL1 = RL2 = RL3 = RL4 1.8 mH; 0.01 Ω
RC branch 25 µF; 1 Ω

Switching frequency, fs 10 kHz
RonD1 and D4/ RonD2 and D3 0.01 Ω/ 1 Ω

LL 84 µH
C1 = C2/ Rc1 = Rc2 470 µF/37 kΩ

RL1, RL2 960 Ω

In this section, HIL results are shown first for a ZNL drawing a symmetrical current, and then the
results for a VSI with a ZNL drawing an asymmetrical current.

Figure 16 depicts the HIL Pav results for a ZNL drawing a symmetrical current with peak values
transitioning from ±2.48 A to ±4.15 A after a step perturbation at 1.28 s. The dynamics of Pav obtained
with the different considered methods are represented in green for Pdroop, in blue for Padv and in red for
PDSOGI.

Figure 17 shows a detail of the Pav ripple waveforms at steady state, evidencing the different
nonlinearities resulting from each power calculation method. There are some DC errors in the calculated
powers that can mainly be attributed to the discretization method in Equation (21) and to the sampling
frequency. This phenomenon was not evidenced in the simulations shown in Figure 15c, but is reflected
in the HIL results.
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Figure 17. Detail of HIL Pav ripples at steady-state from Figure 14 (Pdroop in green, Padv in blue, PDSOGI

in red).

Figure 18 shows the output voltage vo(t) waveform of the VSI (Figure 18a), the current waveform
drawn for the DBR load and used for obtaining the VSI results (Figure 18b) and the fundamental current
component iOF extracted by the DSOGI (Figure 18c). Note the current asymmetry, with positive peaks
that reach 4.2 A and negative ones that reach −2.8 A. Note how a fundamental current component t of
1.5 A amplitude has been achieved.

Finally, Figure 19 depicts the Pav experimental VSI results with the DBR load when a perturbation
is applied at 8.9 s. Note in this figure that the results are coherent with those obtained by HIL, as shown
in Figure 16, and by the simulations in Figure 15.

Table 5 presents the settling time of Pav obtained with all the considered P-Q calculation methods,
as measured in Figure 15 for Matlab/Simulink® simulations results, in Figure 16 for the HIL results,
and in Figure 19 for the experimental VSI results. In this table, the achieved percentage of settling time
reduction with respect to the conventional droop method is also indicated. Note how the proposed
method achieves a faster response. The transfer functions for the active and reactive averaged powers
of the droop, advanced and DSOGI methods are shown in Appendix A.
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Table 5. Experimental results for the VSI setup.

P-Q
Algorithm

Settling Time
Matlab (ms)/(%reduction)

Settling Time
HIL (ms)/(%reduction)

Settling Time
VSI (ms) /(%reduction)

Conventional, Pdroop 760 / (—) 780 / (—) 930 (—)
Advanced, Padv 310 / (59%) 330 / (58%) 360 (61%)

Proposed, PDSOGI 130 / (83%) 140 / (82%) 180 (80%)

4. Discussion

In this work, a P-Q calculation method was proposed for single-phase inverters with the purpose
of improving the speed and accuracy of the power calculation when they are sharing linear and
nonlinear loads. The dynamic response of the power calculation used in the conventional droop method
and in another advanced method was first analyzed to show their limitations in speed and accuracy
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when sharing a DBR-type nonlinear load. For this reason, a novel calculation method was proposed,
bearing in mind the dynamic transient response velocity of the system to sudden perturbations in the
shared load. The method was studied and compared with previous ones by obtaining results from
Matlab®-based simulations, the HIL platform, and a VSI experimental setup. These results show how
the proposed method achieves, under the same distorting conditions, a faster calculation settling time
with a measured time reduction over the conventional droop method that arrives around 80%, which is
higher than the achieved by the advanced method. This improvement supposes an enhancement in
the droop speed operation under linear and nonlinear load conditions that leads to a better dynamic
performance of the system when parallelizing inverters or microgrid operation in islanded mode.

The aim of this work was to identify what the main limitation of the power calculation methods
was for sharing linear and nonlinear loads, and to propose a new approach based on the DSOGI
scheme. This issue can be further investigated by using the SOGI approach and other ones for obtaining
the fundamental component of the distorted current signals with less effort, faster, and best quality.
This would help in the operation and stability of the inverters when sharing linear and nonlinear loads.
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Appendix A

The transfer functions of the active and reactive averaged powers regarding the instantaneous
powers of the methods described here are as follows:

Pdroop(s) =
(
ωc

s +ωc

)
pi(s) (A1)

Qdroop(s) =
(
ωc

s +ωc

)
qi(s) (A2)

Padv(s) =

 s2 + (2ωo)
2

s2 + 2(2ωo)·s + (2ωo)
2

( ωc

s +ωc

)
pi(s) (A3)

Qadv(s) =

 s2 + (2ωo)
2

s2 + 2(2ωo)·s + (2ωo)
2

( ωc

s +ωc

)
qi(s) (A4)

PDSOGI(s) =

 s2 + (2ωo)
2

s2 + 2(2ωo)·s + (2ωo)
2

pi(s) (A5)

QDSOGI(s) =

 s2 + (2ωo)
2

s2 + 2(2ωo)·s + (2ωo)
2

qi(s) (A6)

where ωc = 2π fc is the cut-off frequency in rad/s of the LPFs used in the droop- and advanced-based
methods. The instantaneous powers, pi(t) and qi(t), are derived from the product between io(t) and
vo(t) and vo⊥(t), respectively. The transfer functions for vo(t) and vo⊥(t) correspond to Equations (15)
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and (16) in all the methods, since a SOGI was used to achieve these signals. In addition, in the case of
the current, the fundamental component iOF in the DSOGI method has the following transfer function:

iOF(s) =
(

2ξcωo·s
s2 + 2ξcωo·s +ω2

c

)2

io(s) (A7)
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