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Abstract: Modern achievements accomplished in both cognitive neuroscience and human–machine
interaction technologies have enhanced the ability to control devices with the human brain by using
Brain–Computer Interface systems. Particularly, the development of brain-controlled mobile robots is
very important because systems of this kind can assist people, suffering from devastating neuromuscular
disorders, move and thus improve their quality of life. The research work presented in this paper, concerns
the development of a system which performs motion control in a mobile robot in accordance to the
eyes’ blinking of a human operator via a synchronous and endogenous Electroencephalography-based
Brain–Computer Interface, which uses alpha brain waveforms. The received signals are filtered in order
to extract suitable features. These features are fed as inputs to a neural network, which is properly trained
in order to properly guide the robotic vehicle. Experimental tests executed on 12 healthy subjects of
various gender and age, proved that the system developed is able to perform movements of the robotic
vehicle, under control, in forward, left, backward, and right direction according to the alpha brainwaves
of its operator, with an overall accuracy equal to 92.1%.

Keywords: brain–computer interface (BCI); human–robot interaction; assistive robotics; motion
control; electroencephalography (EEG); alpha brainwaves; neural network (NN)

1. Introduction

Communication within the body of mammals takes place via both electrical and chemical signals.
Electrophysiology is the branch of physiology that studies the electrical activities which are associated
with bodily parts. The recording of electrophysiological data is performed by placing electrodes at the
corresponding areas of interest. By this method, there are numerous systems developed which are able
to monitor the electrical activity and corresponding electrophysiological data in various organs such as
heart, brain, eyes, muscles, and stomach [1–3].

Electroencephalography (EEG) is an electrophysiological method which is used in order to monitor
the electrical activity of the brain by placing electrodes on the external surface of the scalp. EEG records
variations of voltage caused by the flow of ionic current in the interior of the brain’s neurons. Therefore,
EEG signals are waveforms, also known as brainwaves or brain waveforms, which signify the neural
oscillations produced by neurons which intercommunicate. Brainwaves are detected in the frequency
domain, having signal intensity measured in microvolts (µV) and signal frequency usually ranging
from 1 to 100 Hz. According to their frequency, there are specific bands classified as delta (δ) (1–4 Hz),
theta (θ) (4–7 Hz), alpha (α) (8–13 Hz), beta (β) (13–30 Hz), and gamma (γ) (>30 Hz) [4].
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A Brain–Computer Interface (BCI) is a system that enables communication between brain and
machines. A BCI, in order to perform its purposes, records brain signals, interprets them, and
produces corresponding commands to a connected machine [5]. BCI technology is used in various
applications, such as security and authentication, education, neuromarketing and advertisement, games
and entertainment, and several medical applications, such as cognitive neuroscience, brain-related
prevention and diagnosis of health problems, rehabilitation, and restoration [6–9].

This article presents the development of a BCI-based system that performs the motion control of
a robotic vehicle by using brainwaves of a human operator. After capturing the brainwaves via EEG,
a set of features is extracted and given as input to a neural network, which is trained to predict the
desired movement of the robotic vehicle. The rest of this paper is organized as follows: In Section 2, the
theoretical background of the research carried out is set up. In Section 3, the structure and operation of
the proposed system are explained. In Section 4, the performance of the system is evaluated through
the description of the experimental tests made, and the presentation of the corresponding results and
discussion on them. Finally, Section 5 concludes the article and proposes future research work.

2. Theoretical Background

2.1. BCI Types

A BCI provides an interconnection platform that supports the full duplex communication between
the brain and an external device. According to the way that BCIs use to set up the brain–device
interconnection, they are classified as non-invasive or invasive. Non-invasive BCIs use electrodes
placed on the scalp. They are easy and safe to use, low-cost, portable, and offer a relatively high
temporal resolution. Invasive BCIs use electrodes implanted in the interior of the scalp. Comparatively
to non-invasive BCIs offer higher values of amplitude, spatial resolution, and resistance to noise.
However, they require neurosurgery operations and they are both unsafe and expensive. Furthermore,
scar tissues decrease the quality of signals received. Practically, non-invasive BCIs are used more often.

There are various non-invasive methodologies used in BCI technology, such as Positron Emission
Tomography (PET), functional Magnetic Resonance Imaging (fMRI), and Near-Infrared Spectroscopy (NIRS),
which study changes made in the blood flow, magnetoencephalography (MEG), which monitors the
magnetic action of the brain, and EEG, which records the electric activity of the brain. Both NIRS and
fMRI BCIs offer high spatial resolution, but poor temporal resolution. Moreover, MEG and PET BCIs
offer high spatial and temporal resolution. However, PET BCIs require the inoculation of a radioactive
constituent into the bloodstream. Furthermore, both fMRI and MEG methods rely on the use of
equipment which is not only costly, but also huge. EEG BCIs are by far the most popular type, because,
despite their relatively poor spatial resolution, they have high temporal resolution, low-cost, and easy
installation. [6].

Moreover, BCIs are classified as either exogenous or endogenous, according to the nature of the
input signals. Exogenous BCIs analyze the brain activity created due to external stimuli. They are easy to
set up and offer high bit rates, but they need the continuous response of the user to outward incitements
which may be either tiring, or even unfeasible. Endogenous BCIs use self-regulation of brainwaves
without external stimuli. They provide lower data transfer rates but they can be operated via free
self-control even by users with sensory organs affected or suffering from motor neuron diseases [10].

Similarly, BCI systems are classified, according to the method used for input data processing,
as synchronous or asynchronous. Synchronous BCIs analyze the brain signals only after a specific
prompt and during predefined time intervals. Thus, the overall process is better organized and the
user is free to make any kind of movements, which would produce artifacts, when brain signals are
not observed. They also require minimal training and have stable performance and high accuracy.
Asynchronous BCIs inspect brain signals successively, thus letting the user act at free will. Therefore,
they offer more natural human–machine interaction. However, they are more complex in design and
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evaluation and require extensive training. Moreover, their performance may vary between users,
and their accuracy is not very high [10].

2.2. Brainwaves for EEG-BCIs

The most commonly used types of brain waveforms to develop EEG-based BCIs are P300, SSVEP,
ErrP, ERD/ERS, and alpha brainwaves [11].

P300 is an event-related positive potential deflection which is caused by the reaction to a desired
external stimulus of visual, auditory, or tactile modality. P300 waveforms are typically measured, with
a latency of roughly 250 to 500 ms between stimulus and response, by using electrodes located over
the parietal lobe of the scalp.

Steady state visually evoked potentials (SSVEP) are brain waveforms of exogenous type that are
generated as responses to visual stimulation at specific frequencies ranging from 3.5 Hz to 75 Hz.
Considering that SSVEP signals often have their highest values at medial occipital electrode sites, they
are supposed to originate mostly from the primary visual cortex.

Event-related desynchronization and event-related synchronization (ERD/ERS) waves are endogenous
brain signals, which are generated when performing mental tasks, such as motor imagery or mental
arithmetic. They can be measured at different cortical locations.

Error-related potential (ErrP) waveforms are brain signals which are activated every time that
a subject identifies the commitment of an error which has been made either by himself/herself or
by another individual during various choice tasks. Waves of this kind can be captured by applying
electrodes on various brain regions including the anterior cingulate cortex, anterior insula, inferior
parietal lobe, and intraparietal sulcus, as well as other regions of the cortex, subcortex, and cerebellum.

Alpha brainwaves are brain signals which have their amplitude increased whenever the eyes of
an individual are closed during wakeful relaxation. In contrast, the amplitude of alpha waveforms
is diminished for the duration of sleepiness and sleep and also when having eyes opened while
mental effort is performed. This phenomenon is usually referred to as alpha rhythm blocking. Alpha
brain waveforms can be monitored by applying a number of electrodes on both sides of the posterior
segments of the scalp where the occipital lobe, which is the center of visual processing activities in the
brain, is positioned.

2.3. BCI Operation

The operation of a typical BCI system is based on the sequential execution of a number of
procedures, which namely are signal acquisition, preprocessing, feature extraction, classification,
translation, and feedback to operator [10,11], as shown in Figure 1.
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Figure 1. Block diagram representing the processes performed in a typical Brain–Computer Interface.

In EEG-BCIs, signal acquisition is performed by using electrodes which are positioned along the
scalp of the user. Normally, the settlement of electrodes on the scalp is performed in compliance to the
International 10–20 system. According to this system, electrodes are located on the scalp at 10% and 20%
of a measured distance from reference spots including nasion, inion, left, and right preauricular [10].
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The pattern of this system is depicted in Figure 2, where odd numbers refer to the left side of
the head, even numbers refer to the right side, A1 and A2 refer to the earlobes and ‘Fp’, ‘F’, ‘T’, ‘C’,
‘P’, and ‘O’ stand for the prefrontal, frontal, temporal, central, parietal, and occipital areas of the
brain, correspondingly.
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Figure 2. Top view of the international 10–20 electrode placement system on a human scalp.

Preprocessing is the procedure which is carried out in order to reduce the noise from the signal and
apply some filtering and other methods in order to remove artifacts which are caused by endogenous
sources, such as motions of eyes, muscles, and heart, and exogenous sources, such as power-line
coupling and impedance mismatch [12]. Preprocessing is usually performed by using low-pass,
high-pass, band-pass, or notch filtering. However, the use of such filters may eliminate useful elements
of EEG signals having the same frequency band as artifacts [13].

In feature extraction, specific features of the signals in time domain or/and frequency domain that
can expressively differentiate specific classes are extracted and positioned into a feature vector in order
to enable the classification phase which follows. Autoregressive (AR), Hjorth, and EEG signal power
are commonly used feature extraction techniques [14].

During the classification phase, a properly built algorithm is used. This algorithm distinguishes
between classes which correspond to various brain activity patterns by deciding to which of these
classes every feature vector suits best. Neural networks (NNs) are widely used as classifiers in BCIs
because they provide the ability to approximate nonlinear decision boundaries [15,16]. Alternatively,
linear discriminant analysis (LDA), support vector machines (SVM), and statistical classifiers may be
used [17]. The advantage of LDA is that it is a simple-to-use probabilistic approach based on Bayes’
Rule. On the other hand, NNs have the advantage of being able to approximate nonlinear decision
boundaries. In cases where a small amount of training data is available, the use of SVM is a very good
choice. Finally, statistical classifiers have the ability to represent the uncertainty that is inherent in
brain signals.

During the translation phase the extracted signal features are converted into particular commands
to the device(s) under control, through the use of dedicated translation algorithms. Specifically, these
algorithms have the ability not only to adapt to the continuing variations of the signal features, but also
to ensure that the complete device control range is covered by the specific signal features from the user.

Finally, in the feedback to operator phase, the final outcome of the overall operation of the BCI system
is transferred back to the system operator, so that the performance of the system can be evaluated.
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2.4. BCI-Based Robot Control

An EEG-based brain-controlled robot is a robot that uses an EEG-based BCI to receive control
commands from its human operator. EEG-based brain-controlled mobile robots can support the
movement of both elderly people and people who are severely disabled with destructive neuromuscular
disorders, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), or strokes.

There are two main classes of EEG-based brain-controlled assistive robots which namely are
brain-controlled manipulators and brain-controlled mobile robots. Similarly, assistive mobile robots are
classified in two categories according to their mode of operation [11].

The first category consists of assistive mobile robots which operate under direct BCI control. Robots
of this kind are controlled exclusively via the commands that their users send to the robots controlled
via BCI modules, without any additional assistance by robot intelligence elements. For this reason,
they are less expensive and complex to develop and their users keep the absolute motion control.

On the other hand, the overall performance of these brain-controlled mobile robots mainly
depends on the performance of the BCIs, which in many cases may have inadequate speed of response
and accuracy. Furthermore, the demand for continuous production of motor control commands by the
users may be extremely tiring for them.

The initial example of a robot of this kind was presented in [18] where the left and right turning
movements of a robotic wheelchair were directly controlled by corresponding motion commands
translated from user brain signals.

Similarly, in [19] a brain-controlled mobile robot was able to perform forward, left, and right
motions by using a BCI based on motor imagery.

Moreover, in [20] the motion control of a wheelchair is performed via a BCI, which captures
alpha brainwaves. Specifically, a set of icons corresponding to predefined commands are sequentially
displayed on a screen and the user is able to select the desired command by closing his/her eyes as
soon as its corresponding icon appears on the display unit.

The second category consists of assistive mobile robots which operate under shared control. In the
robots of this category the control is performed by combining a BCI system along with an intelligent
controller, such as an autonomous navigation system. Due to their enhanced intelligence, robots of
this type are safer and less tiring for their users and more accurate in interpreting and executing their
commands. On the other hand, their development is of higher cost and computational complexity.

A typical example of shared control in assistive mobile robots is proposed in [21]. In this system
the operator, by using a SSVEP BCI system, has the ability to send commands in order to move a robotic
wheelchair in four directions (forwards, backwards, left, and right), while an autonomous navigation
system executes the delivered commands.

Similarly, in [22], by using a P300 BCI, the operator uses a list of predefined locations in order to
select the desired location and then sends this selection to an autonomous navigation system, which
guides a robotic wheelchair to the selected location. The limitation of the specific system is that it is
able to be operated only in a known environment.

Likewise, in [23] shared control is used. Specifically, the combined use of a P300 BCI along with
an autonomous navigation system is proposed in order to perform the motion control of a robotic wheelchair
in an environment which is unknown. Moreover, the user has the ability to make the wheelchair turn
either left or right by focusing correspondingly on one of two relative icons at a predefined visual display.

In [24] three mental tasks, which namely are the imagination of right or left hand movements and
the generation of words beginning with the same random letter, were used in a BCI system applied to
a robotic wheelchair. The system developed, which interacts with the user by using a PDA screen and
speakers, is able to guide the robotic wheelchair both in known and unknown environments.

3. Materials and Methods

The research work carried out made use of the experimental equipment described in Section 3.1
and followed the procedure explained in Section 3.2.
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3.1. Experimental Equipment

3.1.1. BCI Unit

The BCI device that was used, in order to capture the alpha brainwaves during the developed
experimental procedure, is the OpenBCI Ganglion [25], which is shown in Figure 3. This board has 4
available input channels and samples data at 200 Hz.
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3.1.2. Robotic Unit

The vehicle used for the execution of the experimental procedure is a crawler robot built on
Dagu Rover 5 Chassis. A Raspberry Pi (model 3 B+) acts as the central processing unit for the
robot. Communication between the robotic vehicle and the computer is achieved via a TCP/IP socket
connection. As soon as the classifier determines the desired movement, a command is transmitted
to the robot. A serial communication is established between the Raspberry Pi and an Arduino UNO
microcontroller. Once a specified command is received by the Raspberry Pi, it is relayed to the
microcontroller, which in turn uses a L298N H-Bridge driver module to control the motors of the robot.
The experimental platform developed is illustrated in Figure 4.
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3.2. Experimental Procedure

The performance of the system developed was experimentally evaluated through a series of tests.
The main phases of the executed experimental procedure are as follows:



Electronics 2019, 8, 1387 7 of 16

3.2.1. Signal Acquisition

The brain signals monitored are alpha waves, which, as mentioned above, is the prominent EEG
wave pattern in awake adults while having eyes closed in the frequency range of 8–13 Hz. Generally,
EEG-BCIs based on rhythms like alpha waveforms are less sensitive to artifacts than other types due to
the fact that signal monitoring is limited in thin frequency bands. For this reason, high signal-to-noise
ratio (SNR) is achieved [12].

Gold-plated electrodes were placed on the scalp of each one of the subjects that participated in the
experimental procedure, according to the 10–20 system (displayed in Figure 2) at positions O1 and O2.
The specific positions were chosen because, although alpha rhythms can be also generated in other
parts of the brain, they are considered to exhibit greater amplitude in the posterior part of the brain,
specifically at derivations O1 and O2 [26]. The reference electrode was placed on the left earlobe (A1),
while the ground electrode was placed on the right earlobe (A2). In this way it is feasible to monitor
alpha brainwaves.

As it was abovementioned, the amplitude of alpha brainwaves diminishes when subjects open
their eyes. This is called alpha blocking phenomenon. By taking advantage of this phenomenon, subjects
can form n-bit binary sequences by opening or closing their eyes in 2-second intervals. Each bit interval
is designated by an acoustic cue.

Moreover, since this is a synchronous BCI, a button has to be pressed for the recording procedure
to start. Increased alpha activity (eyes closed) corresponds to a binary ‘1’, while decreased activity
(eyes open) corresponds to a binary ‘0’. As a proof of concept, 4-bit binary sequences were selected to
demonstrate the effectiveness of this system. In total, 4 control signals were designated for 4 robotic
movements as it can be seen in Table 1.

Table 1. Binary sequences with corresponding robotic movements.

Binary Sequence Robotic Movement

‘1010’ Forward
‘0101’ Reverse
‘1100’ Left
‘0011’ Right

3.2.2. Preprocessing and Feature Extraction

In order to extract the desired alpha brainwaves from the EEG signals, filtering was applied.
More specifically, a second order IIR notch filter, having a quality factor Q equal to 35, was applied
in order to remove mains frequency (50 Hz).

Consequently, the signals were further filtered by using a Butterworth IIR bandpass filter with
cutoff frequencies of 5 and 15 Hz. The maximum loss in the passband was found to be equal to 0.1 dB.
Similarly, the minimum attenuation in the stopband was measured to be equal to 30 db. The SciPy
Python library was used for the design and application of the filters.

A typical sample of the signal filtering process performed is indicatively depicted in Figure 5.
Specifically, the top graph shows the unfiltered signal acquired from the O1 position on the scalp of
a subject, which gives the command for a ‘left’ movement of the robotic vehicle. As aforementioned
in Table 1, the corresponding binary sequence is 1100 and this is why the signal amplitude is higher
during the first half of the signal duration and lower during the last half. The middle graph of Figure 5
illustrates the signal filtered via the use of the notch filter while the bottom graph shows the signal
further filtered with the bandpass filter.

Since alpha wave blocking is the reduction of alpha waves’ amplitude, this change can be measured
by transforming the EEG signal from the time domain to the frequency domain. This is achieved by
computing the Discrete Fourier Transform (DFT) of the signal using the FFT algorithm. The resulting
amplitudes for the alpha wave frequency range are then summed. This process is repeated 4 times for
each individual control signal; this is because control signals comprise of 4 2-second recording intervals.
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Min-Max normalization is used to scale the features in the range of [0, 1], which are then saved
as a dataset. The resulting feature vector consists of 8 amplitude sums, 4 for each channel (O1, O2).
A total of 256 feature vectors are contained within the dataset. A visualization of an example feature
vector for the movement “left” is depicted in Figure 6, where there are 8 different values, 2 for each bit.
It is fairly easy to distinguish each individual bit value; in this case ‘1100’.
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3.2.3. Classification and Translation

The classifier utilized for this research is a Multilayer Perceptron (MLP) neural network. This selection
was made because MLP neural networks constitute a very popular machine learning technique and there
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is an abundance of successful applications of MLP neural networks in EEG signal classification and BCI
research [27,28].

The classifier built consists of an input layer with 8 neurons, since the feature vector contains 8
amplitude sums, 4 for each channel. Furthermore, there are 4 neurons in the output layer because
there are 4 available classes (forward, reverse, left, and right). Moreover, there are 2 hidden layers,
each one consisting of 100 neurons.

The number of hidden layers and neurons was determined by a trial and error procedure.
Specifically, 1–3 hidden layers were considered. In addition, for each layer the number of neurons
examined was 20–200 with a step of 20. In total, 175 different network configurations were considered.
It was concluded that a2 hidden layers network with 100 neurons in each layer achieved the desired
performance in terms of classification accuracy. A graphical depiction of the classifier built is illustrated
in Figure 7.
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The activation function for the hidden layers is the Rectified Linear Unit (ReLU). The advantages
of ReLU include increased training speed and less suffering from the vanishing gradient problem [28].
The formula for ReLU is

ReLU(x) = max(0, x).

As for the output layers, the sigmoid function was used, which is given by the formula:

σ(x) =
1

1 + e−x ,

which bounds the output of each layer in the range of [0, 1]. This means that each neuron in the output
layer produces probabilities of the input being one of the 4 commands. The command with the highest
probability is selected.

The loss function used to measure the prediction error of the network during training is binary
cross-entropy [29], which is widely used in binary classification problems. It is defined as

L =
1
N

N∑
n=1

[yn· log ŷn + (1− yn)· log(1− ŷn)],
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where N is the number of samples, yn is the target output, and ŷn is the predicted output. Finally,
the optimization algorithm used to minimize the prediction error by adjusting the weight of each
neuron is Adam, using the default hyperparameter values, as described in [30]. All models were
trained in TensorFlow [31], using the Keras API [32].

In Figure 8 the neural network model training and validation loss is displayed. It can be distinguished
that training could take place for a smaller number of epochs, since the loss is at an already acceptable
value at around 25 epochs. The data used for validation is 40% of the total data.
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4. Results and Discussion

The performance of the developed system was evaluated by using both offline and online
data which were gathered through a series of experimental tests performed in which 12 healthy
subjects participated.

4.1. Evaluation with Offline Data

For the offline evaluation, the system was tested by using prerecorded data gathered from
the same subjects used for recording the training data. Specifically, a small testing dataset of
50 feature vectors representing different movements was used. The neural network classified all of the
movements correctly.

4.2. Real-Time Evaluation

After evaluating the system on offline data, a real-time performance analysis was carried out
by using six female and six male subjects aged 20 to 28, and two female and two male subjects aged
32 to 40 years. The specific subjects were different from those that were used for the classifier training
and offline evaluation. For this purpose, an experimental process was carried out. The subjects were
instructed to move the robot in the following order: forward, reverse, left, and right consecutively.

Each one of the 12 subjects was briefed shortly on how the BCI works and how to issue each
movement command to the robot. A small number of trial runs were performed for the subjects to get
acquainted with the procedure. In total, 40 experimental tests were carried out. The total number of
commands issued was 480.

The results of the experimental procedure showed that lowest classification accuracy achieved
among the subjects was 85% while the highest one was 97.5%. The overall accuracy for all commands
was 92.1%. The confusion matrix for the total number of commands considered for classification
is illustrated in Figure 9, where green diagonal cells correspond to commands that are successfully
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classified, the red cells correspond to incorrectly classified commands, the gray column on the right
displays the precision and false recovery rate of the classifier, the gray row in the bottom expresses the
recall and the false negative rate of the classifier, and the blue cell displays the overall accuracy.
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Next, for analysis purposes, the experimental results were studied according to the gender and
the age of the subjects that participated in the experimental procedure.

Specifically, the results were first grouped and analyzed separately for each gender. The confusion
matrices for the female subjects and the male subjects are depicted in Figures 10 and 11, respectively,
where it is shown that the female subjects had a 1.6% higher classification accuracy compared to the
male subjects (92.9% to 91.3%).
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Next, the experimental results were grouped and analyzed according to the age of the subjects.
The first group contains the results that refer to the eight subjects aged between 20 and 28 years and
the second one the results derived by the four subjects aged between 32 and 40 years. The confusion
matrices for the group 20–28 and the group 32–40 are depicted in Figures 12 and 13, respectively, where
it is shown that these two groups have almost the same precision accuracy (92.2% for the subjects aged
20 to 28 and 91.9% for the subjects aged 32 to 40).
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4.3. Discussion

The overall accuracy of 92.1% achieved by the proposed approach is considered to be rather
satisfactory, especially given the fact that this rate is the result of real-time evaluation. It is also
important to note that different subjects than the ones used for training were employed for this
evaluation, a fact which attests to the robustness of the proposed method.

Better insight to the results can be gained by looking at the confusion matrix for all issued subject
commands. It can be seen that the proposed approach not only achieves a satisfactory overall success
rate, but also provides good performance per each individual movement.

Further analysis of inter-class performance shows that in 8.3% of the cases a ‘reverse’ command
was issued, it was misclassified as a ‘right’ command. Moreover, the command ‘left’ was misclassified
as a ‘forward’ command at a rate of 5.8% and the ‘right’ command as a ‘reverse’ command at a rate of
7.5%. This can be attributed to the fact that there is a short time delay until alpha wave amplitudes
increase or decrease upon eye closing or opening, respectively. Therefore, these amplitudes are
calculated into the next bit value, which can lead to errors.

A good indicator of the probability of a command being classified wrongly is the Hamming
distance between each command (Table 2). Therefore, the ‘forward’ and ‘reverse’ commands are more
likely to be misinterpreted into ‘left’ or ‘right’ commands and vice versa. Representing each command
with more than four bits would increase the Hamming distance and, as a result, the system accuracy,
but it would increase the overall recording time since the duration of every bit recording is two seconds.

Table 2. Hamming distances between robot commands.

Command ‘1010’ ‘0101’ ‘1100’ ‘0011’

Forward ‘1010’ 0 4 2 2
Reverse ‘0101’ 4 0 2 2

Left ‘1100’ 2 2 0 4
Right ‘0011’ 2 2 4 0

The categorization of the experimental results performed according to the age of the subjects
showed that the deviation in the classification accuracy of the age groups is negligible, probably
because of the relatively small age difference between the two groups.



Electronics 2019, 8, 1387 14 of 16

However, female subjects in the experimental procedure followed, achieved relatively higher
classification accuracy than the male ones. This can be attributed to the fact that women in general
exhibit greater alpha amplitudes than men [33,34].

On the other hand, although the performance of the proposed system was found to be successful,
it is true that all the participants during the experiments made in this research work were healthy.
Therefore, in real life conditions the effectiveness of experimental systems, like the one developed in
this research work, is questionable because it strongly depends on the health conditions of their users
who are supposed not only to be disabled persons but also having disability of various levels.

Moreover, the achievement of successful performance of a mobile robot within the territory of
a controlled laboratory environment does not guarantee its effectiveness in real-world applications
where the conditions are mostly variable and fuzzy.

Furthermore, the BCI systems that are based on a single signal may not be applicable to all users.
Therefore, hybrid schemes which make combined use of various types of brain signals can be a more
complex yet even more effective alternative.

5. Conclusions and Future Research

The research work, presented in this paper, concerns the development of a control system which
guides the motion of a mobile robot via a synchronous and endogenous EEG-based BCI, which uses
the alpha brain waveforms of a human operator.

Experiments made, with the involvement of 12 subjects who had minimum training, proved that
the system developed is able to guide the robotic vehicle under control in forward, left, backward, and
right direction according to the eyes’ blinking of its human operator. The accuracy achieved ranges
from 85% up to 97.5% among the subjects while the overall accuracy was found to be equal to 92.1%
for all commands. Further analysis of the experimental data related with the classification accuracy
between different genders and age groups showed that female subjects performed slightly better than
male ones (92.9% to 91.3%, respectively), while there was just a trivial difference detected between
subjects aged from 20 to 28 years and subjects aged from 32 to 40 years (92.2% to 91.9%, respectively).

Considering both the classification accuracy achieved, by applying real-time evaluation, and
the robustness evinced by the fact that subjects involved during training were different than those
during the experimental evaluation, it is concluded that the proposed method has the potential to be
incorporated in applications such as the motion assistance to handicapped persons.

In the future, the conductors of this research work intend to experiment with hybrid BCIs where
alpha brainwaves will be used along with brain signals of other type(s) such as P300 or SSVEP [35].

Moreover, task metrics, such as task completion time and path length traveled, and ergonomic
metrics, such as mental workload of participants, can be additionally used for the accomplishment of
multivariable evaluation of the performance of the system built [11].

Additionally, robot guidance can be assisted via additional sensors embedded into the robotic
vehicle [36].

The detrimental effect of artifacts on EEG data can be removed by using modern algorithms that
combine source decomposition with blind source separation and adaptive filtering [37].

Furthermore, enhanced performance can be achieved by applying advanced methods which
have been proposed in order to add new knowledge to already learned models of robot semantic
localization [38].
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