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Abstract: Convolutional Neural Networks (ConvNets) can be shrunk to fit embedded CPUs adopted
on mobile end-nodes, like smartphones or drones. The deployment onto such devices encompasses
several algorithmic level optimizations, e.g., topology restructuring, pruning, and quantization,
that reduce the complexity of the network, ensuring less resource usage and hence higher speed.
Several studies revealed remarkable performance, paving the way towards real-time inference on
low power cores. However, continuous execution at maximum speed is quite unrealistic due to
a fast increase of the on-chip temperature. Indeed, proper thermal management is paramount to
guarantee silicon reliability and a safe user experience. Power management schemes, like voltage
lowering and frequency scaling, are common knobs to control the thermal stability. Obviously,
this implies a performance degradation, often not considered during the training and optimization
stages. The objective of this work is to present the performance assessment of embedded ConvNets
under thermal management. Our study covers the behavior of two control policies, namely reactive
and proactive, implemented through the Dynamic Voltage-Frequency Scaling (DVFS) mechanism
available on commercial embedded CPUs. As benchmarks, we used four state-of-the-art ConvNets
for computer vision flashed into the ARM Cortex-A15 CPU. With the collected results, we aim to show
the existing temperature-performance trade-off and give a more realistic analysis of the maximum
performance achievable. Moreover, we empirically demonstrate the strict relationship between the
on-chip thermal behavior and the hyper-parameters of the ConvNet, revealing optimization margins
for a thermal-aware design of neural network layers.

Keywords: deep learning; convolutional neural network; dynamic voltage and frequency scaling;
thermal management; continuous inference; edge computing

1. Introduction

Recent advancements in the field of deep learning theories and applications have enabled
the deployment of Convolutional Neural Networks (ConvNets) on the edge, namely on resource
constrained embedded systems. This opened new scenarios of applications where low power
end-nodes can make sense of the sampled data and understand the surrounding context with limited
energy budgets [1]. The shift to the edge has several implications and advantages for the growth
of a sustainable Internet-of-Things (IoT) ecosystem: (i) guarantee user-privacy as data stay local;
(ii) improve the whole energy efficiency as data transfers from/to the cloud become low; (iii) reduce the
time-of-flight and make the service response predictable. These aspects are paramount for always-on
applications that run real-time continuous inference over consecutive frames of data. Some examples
are context sensing [2], health monitoring [3], and object tracking [4], for which ceaseless uploading of
data in the cloud would be impractical due to high energy consumption and long/uncertain latency.
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General-purpose CPUs are the most common design choice for embedded systems today. Millions
of chip-sets powered by Reduced Instruction Set Cores (RISCs) are already in the field (e.g., in mobile
phones) and can be employed for inference with a simple software update [5]. Unfortunately, ConvNets
are complex and resource hungry models. To accelerate their processing and achieve reasonable
performance even on low power budgets, there are several design actions to take. At the hardware
level, a common practice is to adopt heterogeneous architectures that jointly integrate high-end
multi-core CPUs with arithmetic accelerators. For instance, the ARM Cortex-A15 of the Samsung
Exynos 5422 system-on-chip (SoC) [6] is a four-core CPU that can run up to 2.0 GHz; each core hosts
the NEON unit [7], a Single-Instruction Multiple-Data (SIMD) data-path for parallel arithmetic. At the
software level, algorithmic optimizations can be applied to reduce the cardinality of ConvNets. Among
the many available, the most effective techniques include topology restructuring [8], pruning [9],
quantization [10] (e.g., 8 bit fixed-point), or a mix of them [11]. When properly implemented, these
methods reduce the memory footprint and the number of operations to run, helping to achieve
higher execution speed and less energy consumption. Moreover, specialized routines for tensor
operators (e.g., multi-dimensional matrix convolutions) are used at compile time to build highly
efficient executable code [12].

As a result of the optimization chain, ConvNets become super-dense workloads that flood the
hardware, saturating both memory and CPU utilization. While this may seem positive in terms of
efficiency, it represents a serious concern over long execution intervals, when thermal issues arise
affecting the reliability. This aspect is neglected in modern deep learning optimization frameworks.
Since high-end cores are integrated into embedded devices with a small form factor, high utilization
rates come at the cost of much higher power density, which in turn generates more heat than cooling
systems can dissipate. The on-chip temperature increases quickly, reaching critical values even in short
time windows. High temperatures do activate several degradation mechanisms that undermine the
lifetime of the device [13] or affect the user experience. It is therefore paramount to adopt a control
mechanism to prevent thermal runaway.

In its most general embodiment, the strategy for thermal control is to make active cores switching
into a low power mode as soon as they reach a critical temperature. With lower power densities,
the thermal equilibrium is restored, and temperatures cool down. Needless to say, thermal controls
alter the CPUs speed, impairing the performance estimated at design time. As will be shown in
the paper, state-of-the-art ConvNets, both accuracy optimized ConvNets (e.g., Inception [14]) and
performance optimized ConvNets (e.g., MobileNets [15]), reach safety-critical temperature just after
1–3 s of continuous inference, making the average performance gap quite large. Neglecting this aspect
may have dramatic impacts on the dependability of the system, causing functional failures in the
worst case. Instead, a thermal-conscious deployment of ConvNets would help to improve several
figures of merit. While thermal issues and thermal-aware hardware/software co-design are well
established topics in the literature, the intersection with ConvNets is a less explored field. An in-depth
analysis may reveal interesting trends with new insights for ConvNets’ optimization. This is precisely
the scope of this paper, which proposes a performance assessment of thermally managed ConvNets
implemented into low power CPUs for mobile applications.

Looking at practical implementations, supply-voltage lowering is an effective knob to meet
Thermal Design Power (TDP) constraints. If combined with frequency scaling, it enables a cubic
reduction of dynamic power consumption. Moreover, lower voltages decrease the static power.
Embedded CPUs come with integrated Dynamic Voltage and Frequency Scaling (DVFS) mechanisms
offering a wide range of operating points in the power-temperature-performance space. Thermal
governors can implement temperature driven DVFS to maximize performance within the available TDP
budget. Identifying the best control policy is an interesting problem that has been extensively addressed
in the literature. While sophisticated schemes based on workload prediction and/or temperature
speculation are currently available [16], ConvNets are static graphs with data independent workloads.
This offers a unique chance to profile the thermal-vs.-performance behavior at design-time. We thereby
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built an automatic framework that supports multiple ConvNet models allowing a parametric analysis
over different use cases. The experiments, conducted over four state-of-the-art ConvNets for computer
vision tasks deployed on an Odroid-XU4 board [17] powered by the ARM Cortex-A15 core, enables
the following key achievements:

• Quantify the thermal headroom of ConvNets deployed for continuous inference. Our analysis
identifies applications that can be critical for power constrained devices.

• Assess the performance of ConvNets under thermal-aware DVFS. The experiments cover two
control policies, namely reactive and proactive.

• Identify the optimal operating points of voltage scaled ConvNets. The analysis provides useful
guidelines to develop smarter control policies specialized for ConvNets.

• Demonstrate that the thermal profile of ConvNets depends on the network topology. The collected
results reveal the need for new optimization techniques for training thermal-aware ConvNets.

The remainder of the paper is organized as follows: Section 2 reviews previous works. Section 3
summarizes the most common thermal management mechanisms adopted in off-the-shelf embedded
systems. Section 4 introduces the characterization framework. Section 5 shows the experimental results
and their analysis. Finally, Section 6 concludes the work.

2. Related Works

The assessment of ConvNets performance on embedded systems has been the target of extensive
studies whose main objective was to quantify the gap with cloud services.The authors in [18] compared
the performance of ConvNets running on workstations against those deployed onto high-end
embedded systems in order to evaluate the portability of existing training frameworks. A similar
analysis was performed in [19] comparing cloud platforms against edge devices, both embedded CPUs
and GPUs. The authors in [20] estimated the performance boost achieved by custom accelerators for the
mobile segment with respect to embedded CPUs. Although they guarantee more stable temperature
and power consumption, accelerators are available only on a small fraction of existing embedded
systems. Furthermore, they still lack stable software support, thus preventing the deployment of the
most advanced ConvNet architectures. The investigation conducted in [21] evaluated the compatibility
of state-of-the-art networks across different off-the-shelf components to prove that optimal deployment
depends on the underlying hardware. Finally, the study in [22] showed that increasing the batch size
during inference enabled a trade-off between latency and throughput. Once again, this work confirms
that the optimal configuration is strictly related to the target hardware, specifically with the degree of
parallelism offered by the arithmetic units.

Similar to previous works, our study focuses on the performance profiling of ConvNets running
on high-end embedded CPUs. However, while previous works assessed inference time only in
nominal conditions, i.e., single inference at maximum frequency, we provide a parametric analysis
through an in-house characterization framework that integrates the effects of thermal management
via voltage lowering. Our experiments prove that designers should carefully assess the thermal
and power constraints of the hosting hardware to avoid mismatches between expected performance
(at design-time) and run-time execution. The conducted analysis provides useful guidelines for
future thermal-aware ConvNet optimization, such as neural network compression [23] and neural
architecture search [24], which may exploit the power-thermal characterization of the target hardware.

3. Background

3.1. Thermal Management Strategies

Thermal management strategies change the operating point of the system to reduce the power
consumption and control the on-chip temperature. Among the available options, DVFS represents
one of the most effective knobs since the active power consumption shows a quadratic dependence
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on voltage and a linear dependence on frequency. Custom power distribution schemes, e.g., [25], can
push the efficiency of DVFS even beyond these theoretical relationships.

Commercial CPUs offer a standard set of voltage and frequency (VF) levels (19 in the Cortex-A15),
which enable a fine grained control on power and performance. As will be discussed in Section 5.3, we
observed that other knobs are less efficient for controlling temperature during continuous inference.
Each VF level identifies a specific operating point in the power-performance space. The maximum
performance can be achieved using the highest voltage and the maximum frequency available, which
we refer to as VFmax; within the Cortex-A15, VFmax = 1.3625 V @ 2 GHz. Changing the operating
point at run-time enables managing the power-performance trade-off, which means controlling the
temperature profile at the expense of some latency penalty.

An efficient management policy aims to guarantee thermal stability with minimum speed
degradation. Off-the-shelf SoCs implements a reactive thermal management mechanism. To meet high
computational demands, the active cores operate at VFmax and invoke a safety mechanism, thermal
throttling, that reduces the VF level when the temperature reaches a critical threshold, thus preventing
the processor, and the whole device, from overheating. For instance, the Cortex-A15 CPU down-scales
the voltage-frequency level from VFmax to VFlow = 0.8875 V @ 900 MHz when the temperature exceeds
Tmax = 90 ◦C. A qualitative analysis of this strategy is depicted in Figure 1.

Time (s)

T (°C)

Tmax

VFmax

VFlow

Thermal 
Throttling

Occurrence

VF

Time (s)

Latency (s)

Lnom

Sustained Thermal Throttling

Unpredictable Latency

Latency
Increase

Figure 1. Qualitative analysis of temperature (above) and inference latency (below) evolution over
time under reactive thermal management.

Under intensive workloads, like those of ConvNets, this mechanism may lead to significant
performance degradation, especially when continuous inference is held for long time intervals.
As shown in the top plot of Figure 1, running the cores at maximum performance pushes the
temperature towards the critical threshold Tmax and forces the SoC to throttle the performance of the
cores switching from the high performance state VFmax to the low power state VFlow. As soon as the
temperature falls below Tmax, the SoC switches back to VFmax, forcing another invocation of thermal
throttling in a very short time; the sequence repeats ceaselessly till the task ends. This working mode
is called sustained thermal throttling: the temperature fluctuates around the safety threshold over
a sustained period, and so does the voltage-frequency operating point, which moves up and down
between VFmax and VFlow. As shown in the bottom plot of Figure 1, this has a negative impact on
latency: (i) working at VFlow introduces an overhead with respect to the nominal latency Lnom; (ii) the
cyclic swapping from high performance (VFmax) to low power (VFlow) modes makes the latency less
predictable. For these reasons, reactive strategies turn out to be quite inefficient. In the specific case of
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continuous inference, we measured a latency overhead ranging from 30% to 43% depending on the
ConvNet, together with an increase of variability up to 70× (see Section 5.3 for more details).

Proactive thermal management represents a more efficient alternative. It works ahead of time
as it enacts a more stable voltage lowering before the temperature reaches critical limits. More
precisely, the CPU is made to work at an intermediate operating point VFopt between VFmax and VFlow
from the beginning. The benefits are qualitatively shown in Figure 2, which provides a comparison
against the reactive strategy. While the proactive approach introduces some performance overhead
on the very first short term (Lopt > Lnom), it ensures substantial gains in the long term because it
prevents the occurrence of the throttling events. Overall, the average latency improves, while the
predictability is guaranteed for much longer. Under highly demanding workloads of a very long
duration, the temperature might reach critical values even with a proactive control, and hence, thermal
throttling (from VFopt to VFlow) may still occur. However, its occurrence is less frequent.

Reactive
Proactive

Lopt

Time (s)

Latency (s)

Lnom

Latency
SavingsLimited 

overhead

Sustained Thermal Throttling

Figure 2. Inference latency in reactive (red) and proactive (blue) thermal management.

3.2. Optimal Trade-Off

For a given maximum temperature, there exists an optimal trade-off between power (i.e., the VF
level) and performance. The plot reported in Figure 3 gives a graphical representation of such
an optimality problem. It shows the average latency (Lavg) for different VF levels considering
a pre-defined sequence of N inference runs. On the right side of the minimum latency point,
achieved working at VFopt, it happens that frequent throttling events induce performance penalty;
on the left side of VFopt, thermal throttling does not occur often, but latency increases due to a too
conservative voltage-frequency scaling. The precise position of VFopt is a function of the total active
time, i.e., the number of inference runs N, and the topology of ConvNet (size, number of operations,
and memory allocation).

VF

Lavg

VFopt

Lopt

VFmax

Proactive

Reactive

Figure 3. Average latency under different thermal management strategies.

3.3. Proactive Control Policies

Previous works conducted extensive study on proactive thermal management on embedded
systems. They presented control policies that aimed to identify the optimal operating point of the
system according to the current workload. An exhaustive taxonomy of the existing techniques can be
found in [16].

The work described in [26] was a pioneer in this field. The authors proposed a closed-loop
controller that adjusts the voltage and frequency level to reduce the error between the expected and
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measured performance. More advanced controllers make use of regression models to predict the
future temperature and identify the operating point that achieves maximum performance, yet avoiding
thermal violation. The model can be trained off-line on a set of representative benchmarks [27] or it
can be continuously updated at run-time [28,29].

Motivated by the observation that ConvNets are static graphs that always execute the same flow
of operations, we propose a characterization framework that enables extracting the thermal profile of a
given ConvNet at design time. Rather than proposing a novel controller, this work aims to quantify
the performance of ConvNets in a power/thermal constrained environment and to identify the best
operating points for thermal management during continuous inference.

4. Thermal-Aware Performance Optimization and Characterization Framework

The problem of finding the optimal operating point of continuous-inference applications
under proactive thermal management can be formulated as follows: given a pre-trained ConvNet,
deployed on a given embedded CPU, and made to run for a fixed number of inferences N, find the
voltage-frequency operating point VFopt that minimizes the average latency. Considering the relatively
low cardinality of the solution space, we opted for an exhaustive exploration conducted through the
characterization framework shown in Figure 4.

ConvNet # Inferences (N)

VFopt

Hardware

….

Characterization Flow

.tflite

VF

Lavg

VFopt

Lopt

Model 
Benchmarking

Inference 
Engine

N runs

VF1

VF2
VF3

VFm

Lavg 1

Lavg 2

Lavg 3

Lavg m

Figure 4. Schematic view of the proposed characterization flow.

The framework consists of two main components: (i) an inference engine that runs the ConvNet
workload and (ii) a benchmarking tool that is in charge of assessing the performance, i.e., the inference
latency. The inference engine is based on TensorFlow Lite (TFL) by Google, i.e., a collection of software
routines for deep learning highly optimized to run tensor graphs on multi-core processors integrating
an SIMD data-path. Furthermore, TFL integrates a benchmarking utility, called the TensorFlow Lite
Model Benchmark, that allows the measurement of the inference time on the target device by randomly
assembling inputs from the dataset. The tool collects several statistics recorded on-board, in particular
the average latency and the standard deviation over multiple runs.

The frameworks are fed with three main inputs: (i) a ConvNet architecture in tflite format;
(ii) the number of continuous inferences N; (iii) the specifications of the device that hosts the ConvNet
(i.e., the available VF levels). The framework is compiled and executed on the specified hardware to
collect the average latency over N continuous inferences run for all available VF points. The main
outcome is the minimum latency value Lopt and the corresponding optimal operating point VFopt.
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5. Experimental Setup and Results

The objective of the analysis reported in this section is threefold: (i) understand when continuous
inference generates temperature violations; (ii) quantify the actual performance of ConvNets under
reactive/proactive thermal management and different network architectures; (iii) identify the optimal
operating points for voltage scaled ConvNets to guide the development of smart control policies
oriented toward neural tasks. The contents are organized as follows. First, we describe the hardware
board used in the experiments along with the software environment adopted for the deployment.
Second, we introduce the ConvNets taken as benchmarks. Finally, we report the collected results and
discuss the key insights.

5.1. Hardware Platform and Software Configurations

The hardware test bench was the Odroid-XU4 platform powered with the Samsung Exynos 5422
SoC. The CPU was an ARM Cortex-A15, which integrates four cores that can work at VFmax = 1.3625 V
@ 2 GHz in nominal conditions. The board runs Ubuntu Mate 16.04, kernel Version 3.10.106-154,
released by Hardkernel. The standard thermal governor (reactive) scales the operating point of the A15
cores to VFlow = 0.8875 V @ 900 MHz as soon as the temperature exceeds the threshold Tmax = 90 ◦C.
The kernel offers 19 voltage and frequency levels with a step of 100 MHz (the minimum frequency is
200 MHz). For the sake of simplicity, we denote the VF operating points just using the frequency value
(in GHz). The board was cooled with an active fan controlled by pulse-width modulation (PWM);
all the experiments were run at a constant fan speed of 36%. Unless explicitly specified, collected
measurements refer to four thread execution.

The inference engine was TensorFlow Lite 1.14; it offers a collection of neural network routines
optimized to run on the ARM Cortex-A architecture. Specifically, the convolutional operators make
use of SIMD instructions to leverage the parallelism offered by the NEON unit [10]. In our setup,
TensorFlow Lite was cross-compiled using the GNU ARM Embedded Toolchain (Version 6.5) [30].

5.2. ConvNet Benchmarks

The adopted ConvNets were picked from the TensorFlow Hosted Models [31] repository.
In particular, we used two representative types of models: MobileNet and Inception. For each model,
we investigated two different versions for a total of four ConvNets; their features are summarized in
Table 1. Notice that all the ConvNets are converted using an 8 bit fixed-point representation, a common
choice for edge inference as it ensures lower memory footprint and better performance with negligible
accuracy loss with respect to the floating-point. The column Memory collects the size of the tflite,
which contains the data structures needed to deploy the model on-chip, i.e., the network weights and
the topology description. The column Top-1 refers to the top-1 classification accuracy measured on
the ImageNet validation set. The column Lnom reports the nominal latency, that is the one obtained
under maximum performance (VFmax). The reported numbers refer to the average over 100 inference
runs, each of them interleaved by a two-second pause to avoid temperature variations of the chip.
The column σnom reports the standard deviation of the nominal latency measured over 100 runs.

Table 1. Memory, accuracy, and nominal latency of the selected benchmarks.

ConvNet Memory (MB) Top-1 (%) Lnom (ms) σnom (ms)

MobileNet v1 4.3 70.0 31.99 0.06
MobileNet v2 3.4 70.8 30.24 0.06
Inception v1 6.4 70.1 87.84 0.13
Inception v4 41.0 79.5 658.06 0.57

MobileNets are compact networks optimized for high performance on embedded applications.
Inception models are designed to achieve higher accuracy; therefore, they have a more complex
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architecture that requires more computational resources. Inception v4 guarantees 8.7% higher accuracy
than MobileNet v2 at the cost of 12× more memory and 22× higher latency.

5.3. Results

Thermal headroom in continuous inference: Table 2 reports the number of continuous inferences
Nsafe and the execution time tsafe at VFmax = 2.0 GHz before the temperature exceeds the critical
threshold Tmax = 90 ◦C. For all the ConvNets, the critical threshold was reached after a low number of
inferences, e.g., only four in Inception v4. This motivated the need for thermal management.

It is possible to observe different trends across the selected benchmarks. For instance, Inception v4
presented the first thermal throttling event 2.3× later than MobileNets v2 (2.93 s vs. 1.27 s). This finding
suggests that the thermal gradient strictly depends on the topology of ConvNets, which is quite
intuitive as different models come with a different number of layers of different sizes and cardinality.
Obviously, the smaller the net, the larger the number of inferences run within tsafe.

Table 2. Thermal headroom of different ConvNets in continuous inference. Nsafe and tsafe are
the maximum number of consecutive inferences and the execution time at safe temperature values
(i.e., T < Tmax).

ConvNet Nsafe tsafe (s)

MobileNet v1 39 1.26
MobileNet v2 42 1.27
Inception v1 25 2.21
Inception v4 4 2.93

Performance under thermal management: A more interesting analysis concerns the performance
gap between reactive thermal management (i.e., working at VFmax) and proactive thermal management
(i.e., working at VFopt). For proactive, the optimal level VFopt is extracted from the proposed
characterization framework (see Section 4). The framework runs a continuous number of inferences N,
with N ranging from 50 to 1000 with a step of 50 inferences. Figure 5 reports the collected results for
all the benchmarks.

The plots in Figure 5a show the average latency as a function of N; the red “×” marker refers to
reactive. whereas the blue “+” marker is for proactive. The black dashed line quantifies the nominal
latency Lnom (the exact value is also reported in the label). In both cases, thermal management produces
a performance overhead with respect to Lnom. As expected, proactive management outperforms
reactive management as it mitigates the occurrence of thermal throttling. For longer execution time,
i.e., larger N, the level of VFopt scales down (value reported in the blue boxes, in GHz), as larger
thermal headroom is needed to ensure safety. Again, the performance analysis reveals different trends
depending on the ConvNet topology. First, MobileNets showed a higher performance overhead
with respect to Lnom than Inception nets when running in continuous inference. In the worst case,
the overhead was 43% and 30% for MobileNet v2 and Inception v4, respectively. Second, in proactive
management, the value of VFopt varied with N, but also with the kind of network. For example,
in MobileNets, VFopt scaled down to 1.7 GHz, whereas in Inception nets, the minimum value was
1.8 GHz.
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Figure 5b gives a more detailed analysis of the performance gains achieved with proactive
management. Concerning the MobileNets, the savings against reactive increased up to 15.3% and
16.8% for v1 and v2, respectively; for the Inception nets, the performance savings were greater than
10% for N > 100, with peaks of 15.1% and 16.2% for v1 and v4, respectively.

Proactive management also guaranteed lower latency variability. This is shown in Figure 5c.
The plots report the standard deviation σ measured at different N. For all the benchmarks, a proactive
strategy kept σ close to the variability measured at nominal conditions (depicted by the black dashed
line). These findings demonstrate that proactive management enables a more efficient and reliable
neural task scheduling.

Topology impact on temperature: To better analyze the impact of different topologies on the
temperature gradient, we collected the chip temperature with a sampling rate of 10 ms over an interval
time of 100 s. Figure 6 (top) reveals that the Inception nets had a slower temperature gradient than that
of the MobileNets, both in reactive and proactive management. This suggests there is room for power-
and thermal-aware design of ConvNet operators that might help to achieve higher thermal stability.
Current research trends in deep learning do not consider this aspect as the design of ConvNets is
mainly driven by performance and energy optimization in nominal conditions, which is misleading
indeed. Furthermore, we measured the latency of each inference over the same activity time in
order to highlight the variations resulting from thermal management. The analysis is reported in
Figure 6 (down). In reactive management (red line), the latency quickly increased, both in terms of
absolute values and variability, as soon as the SoC entered the sustained thermal throttling regime.
This condition held for all the benchmarks. On a long term period, proactive management (blue line)
outperformed the reactive approach by far, ensuring better performance on average with a higher
degree of stability. As expected, the latency under pro-active management became worse just in a very
short term window at the beginning, when the cores were cold.

The bar plot in Figure 7 quantifies the percentage of time during which the cores were pushed to
work in the low power mode (VFlow) due to the occurrence of thermal throttling. The percentage was
much lower for proactive management indeed. Interestingly, Inception nets were less prone to thermal
protection, even if their size is larger than MobileNets. Under proactive management, Inception v1
spent 277× less time in throttling than MobileNet v1, even if working at a higher VF level (1.8 GHz
vs. 1.7 GHz, as shown in Figure 6 down). Overall, proactive management can be appreciated as an
effective strategy to reduce the throttling time (2.77% as the worst case).
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Figure 6. Temperature gradient (top) and inference latency (down) of continuous inference for 100 s.
The annotations reports the occurrence of the first thermal throttling event.
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Efficiency of DVFS: Multi-core CPUs offer another power knob to control the thermal state of the
chip: Dynamic Power Management (DPM) via core shutdown. This strategy adjusts the number of
active cores to limit peak power consumption. Given the parallel nature of ConvNets, reducing the
number of processing elements could have a severe impact on performance. Instead, supply voltage
reduction enables a finer control on the power-performance trade-off. Table 3 provides empirical
evidence of this observation. For each benchmark, the table reports the nominal latency of three
thread execution (column Lnom-3) and the worst case latency measured under DVFS based proactive
management at four thread execution (column Lopt-wc). Even in nominal conditions, i.e., at VFmax w/o
thermal throttling, DPM had lower performance than thermal-aware DVFS (Lnom-3 > Lopt-wc in all
cases). The collected results demonstrate that operating at low voltage is the most effective solution for
the thermal management of ConvNets.

Table 3. Nominal inference latency at 3 thread execution vs. worst case latency under DVFS based
proactive management at 4 thread execution.

ConvNet Lnom-3 (ms) Lopt-wc (ms)

MobileNet v1 41 38
MobileNet v2 38 36
Inception v1 103 102
Inception v4 770 768

6. Conclusions

In this work, we introduced a parametric characterization of the performance of thermally
managed ConvNets deployed on embedded CPUs. The study assessed the quality of thermal
protection using DVFS, under both reactive and proactive schemes. The collected results provide useful
guidelines for hardware-aware ConvNet optimization since they reveal a significant mismatch between
nominal and actual performance in power constrained systems that need thermal management to meet
the TDP constraints. A detailed analysis demonstrated that proactive management via DVFS could
help to reduce the performance overhead and guarantee low performance variability. Finally, our
research opens a new optimization margin for the design of thermal-aware neural network operators
as it empirically demonstrated the existence of different thermal mismatches, which depend on the
internal structure of the ConvNets. There might exist networks with the same memory footprint
and latency, but different thermal profiles. Finding those configurations could help to improve the
efficiency of continuous inference tasks.
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