
electronics

Article

Fast Scalable Architecture of a Near-ML Detector for a
MIMO-QSM Receiver

Ismael Lopez 1, L. Pizano-Escalante 2, Joaquin Cortez 1,∗ and O. Longoria-Gandara 2

and Armando Garcia 1

1 Electronics and Electrical Engineering Department, Instituto Tecnologico de Sonora,
Ciudad Obregon 85000, Mexico; ilopez@firstpassglobal.com (I.L.); armando.garcia@itson.edu.mx (A.G.)

2 Department of Electronics, Systems and Computer Science, Instituto Tecnologico y de Estudios Superiores
de Occidente, Tlaquepaque 45604, Mexico; luispizano@iteso.mx (L.P.-E.); olongoria@iteso.mx (O.L.-G.)

* Correspondence: joaquin.cortez@itson.edu.mx

Received: 25 October 2019; Accepted: 29 November 2019; Published: 9 December 2019
����������
�������

Abstract: This paper presents a proposal for an architecture in FPGA for the implementation of a low
complexity near maximum likelihood (Near-ML) detection algorithm for a multiple input-multiple
output (MIMO) quadrature spatial modulation (QSM) transmission system. The proposed low
complexity detection algorithm is based on a tree search and a spherical detection strategy.
Our proposal was verified in the context of a MIMO receiver. The effects of the finite length
arithmetic and limited precision were evaluated in terms of their impact on the receiver bit error
rate (BER). We defined the minimum fixed point word size required not to impact performance
adversely for nT transmit antennas and nR receive antennas. The results showed that the proposal
performed very near to optimal with the advantage of a meaningful reduction in the complexity
of the receiver. The performance analysis of the proposed detector of the MIMO receiver under
these conditions showed a strong robustness on the numerical precision, which allowed having
a receiver performance very close to that obtained with floating point arithmetic in terms of BER;
therefore, we believe this architecture can be an attractive candidate for its implementation in current
communications standards.

Keywords: FPGA; QSM; MIMO; Near-ML detection

1. Introduction

A wireless communications system employing multiple antennas achieves a better performance
over the wireless channel in terms of capacity and bit error rate (BER) [1] by spreading the transmitted
information over space and time in a pattern specified by a space-time block code [2]. Classic examples
include V-BLAST, which maximizes the spatial multiplexing gain [3], and the Alamouti code [4],
which maximizes the diversity gain. A wide variety of space-time coding techniques has been
proposed in the past two decades, each achieving a specific combination of rate and diversity gains
and whose decoding requires a certain computational complexity.

Recently, the spatial dimension of MIMO systems was used to modulate the transmitted signal
instead of using it for diversity or multiplexing. This technique is known as spatial modulation
(SM) [5–7]. SM considers the complete array of transmit (Tx) antennas as a spatial constellation,
where each Tx antenna in this array represents a point in the spatial constellation. In SM, only one
Tx antenna is activated at a time, while the other Tx antennas stay off the air during one symbol
transmission. Ideally, there is a different and unique channel between each Tx antenna and a
receive (Rx) antenna. Therefore, the receiver can determine which Tx antenna has been utilized

Electronics 2019, 8, 1509; doi:10.3390/electronics8121509 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3900-5880
http://www.mdpi.com/2079-9292/8/12/1509?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8121509
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 1509 2 of 18

in the transmission. In this way, spatially modulated bits add to the received quadrature amplitude
modulation (QAM) symbol [8].

Quadrature spatial modulation (QSM) is an SM based transmission technique that uses
the quadrature (Q) and the in-phase (I) QAM components to independently modulate a spatial
constellation. As a result, QSM has better spectral efficiency (SE) since it transmits twice the number of
bits in the spatial domain [9–11] with the aim of further improving the performance of SM systems in
terms of bit error rate.

The complexity in the receiver is an important factor to take into account for hardware
implementations [12], mainly in MIMO and massive MIMO systems where the number of antennas
used increases significantly the complexity of the receivers. Some previous works have analyzed
this problem for basic QSM transmission schemes. For example, low complexity QSM detectors that
consider compressive sensing [13,14], sphere decoding [15], minimum mean squared error (MMSE) [16],
equivalent maximum likelihood [17], and zero forcing precoding [18] based low complexity detectors
have been recently proposed. However, to the best of our knowledge, practical implementations of
hardware architectures for the detection process in MIMO-QSM systems have not been discussed.

Against this background, this research proposes an architecture in FPGA to implement a low
complexity near maximum likelihood (Near-ML) detector for a MIMO-QSM system. The proposed low
complexity detection algorithm is compared with the ML criterion in terms of BER performance and
complexity. Results show that the proposed low complexity Near-ML algorithm performs very near to
the optimal detector while achieving a complexity reduction of up to 88% for the analyzed cases.

The contribution of the paper is three-fold:

• A modified low complexity Near-ML detection algorithm based in sphere detectors for the
MIMO-QSM system is proposed.

• A new reconfigurable architecture to implement in FPGA the Near-ML detection algorithm
is proposed.

• The proposed architecture for the MIMO-QSM receiver can operate for different combinations in
transmitter and receiver antennas, including all different sizes of modulation schemes M-QAM,
which makes it attractive to be used in the new wireless communication standards.

The remainder of the paper is organized as follows: A description of the QSM general system
model with a brief explanation of the QSM implementation, the channel effects at the QSM receiver,
and the considerations for an ML detection are presented in Section 2; Section 3 describes the low
complexity detection algorithm implemented at the MIMO-QSM receiver; Section 4 show a full
description of the proposed architecture for the MIMO-QSM receiver; Section 5 shows the results of
BER performance and the proposed architecture to implement the receiver for the MIMO-QSM system.
Finally, conclusions are summarized in Section 6.

Notation: Uppercase boldface letters denote matrices, whereas lowercase boldface letters denote
vectors. The transpose, Hermitian transpose, and Frobenius norm of A are denoted by AT , AH ,
and ‖A‖2

F, respectively. Finally, CN (µ, σ2) is used to represent the circularly symmetric complex
Gaussian distribution with mean µ and variance σ2.

2. MIMO-QSM Transmission System

The system model of the MIMO-QSM transmission scheme is presented in Figure 1. We considered
a transmitter with nT transmit antennas and a receiver with nR receiving antennas. Thus, the end-to-
end configuration can be considered as a nR × nT MIMO transmission system. We assumed a rich
scattering, Rayleigh wireless channel with flat and slow fading, where the channel between transmitter
antenna j and receiver antenna i can be modeled as a complex Gaussian gain hij ∼ C(0, 1) of zero mean
and variance 0.5 per dimension. This gain remains constant for several symbol intervals, after which
it changes to a new independent channel realization. The system considered here can transmit
mQSM = log2(M) + 2 log2(nT) bits in each time slot, where M is the size of the M-ary quadrature

Electronics 2019, 8, 1509 3 of 18

amplitude modulation (QAM) constellation S = {s1, s2, · · · , sM} and nT is the size of the QSM
transmission vector. Thus, the general MIMO-QSM communication system can be mathematically
modeled as: 


y1
...

ynR


 =
√

γ




h1,1 · · · h1,nT
...

. . .
...

hnR ,1 · · · hnR ,nT







x1
...

xnT


+




n1
...

nnR


 , (1)

which can be expressed equivalently as:

y =
√

γHx + n, (2)

where x ∈ CnT×1 is the overall transmission vector and y ∈ CnR×1 is the received vector. H ∈ CnR×nT

is the channel matrix; γ is the signal-to-noise ratio (SNR) at each antenna; and n ∈ CnR×1 represents
the AWGN vector. The generated noise samples are independent and identically distributed (i.i.d.)
with CN (0, σ2).

Electronics 2019, 8, 00 3 of 18

amplitude modulation (QAM) constellation S = {s1, s2, · · · , sM} and nT is the size of the QSM
transmission vector. Thus, the general MIMO-QSM communication system can be mathematically
modeled as: 


y1
...

ynR


 =
√

γ




h1,1 · · · h1,nT
...

. . .
...

hnR ,1 · · · hnR ,nT







x1
...

xnT


+




n1
...

nnR


 , (1)

which can be expressed equivalently as:

y =
√

γHx + n, (2)

where x ∈ CnT×1 is the overall transmission vector and y ∈ CnR×1 is the received vector. H ∈ CnR×nT

is the channel matrix; γ is the signal-to-noise ratio (SNR) at each antenna; and n ∈ CnR×1 represents
the AWGN vector. The generated noise samples are independent and identically distributed (i.i.d.)
with CN (0, σ2).

Figure 1. The MIMO-QSM system model.

Further assumptions were that all the antennas transmit information symbols from the same
M-QAM constellation, the receiver has perfect channel state information (CSI), and the receiver is
perfectly synchronized to the transmitter.

2.1. QSM Modulation

In order to generate the QSM signals x, the input sequence of bits a was split into three flows.
One flow was utilized to modulate an M-QAM signal, and the other two flows (spatial bits) were used
to modulate the position in the output vector x. For an input bit sequence of length mQSM bits, the first
log2(M) bits modulated an M-QAM symbol. The remaining 2 log2(nT) bits were split into two flows
of log2(nT) spatial bits. These spatial bits modulated the position in the output vector x as follows:
the real part of the QAM symbol was assigned to one specific position in the output vector of length
nT . The imaginary part of the QAM symbol was assigned to another one or even the same position
antenna in the output vector x. Finally, these two SM signals were combined to obtain the QSM output
vector [9].

Table 1 shows a mapping rule example for QSM using four-QAM and nT = 2. The first column
shows the input bit sequence of length mQSM, where the first two bits modulate a four-QAM symbol
and the remaining two bits modulate the position of the non-zero entries in the output vector x as
follows: the real part of the QAM symbol was assigned to one Tx antenna out of nT available in order
to modulate log2(nT) = 1 bit, whereas the imaginary part of the QAM symbol was assigned to another
or even the same position to modulate log2(nT) = 1 bit to define the `< and `= index transmitter
antenna, respectively, as shown in the third column of Table 1.

Figure 1. The MIMO-QSM system model.

Further assumptions were that all the antennas transmit information symbols from the same
M-QAM constellation, the receiver has perfect channel state information (CSI), and the receiver is
perfectly synchronized to the transmitter.

2.1. QSM Modulation

In order to generate the QSM signals x, the input sequence of bits a was split into three flows.
One flow was utilized to modulate an M-QAM signal, and the other two flows (spatial bits) were used
to modulate the position in the output vector x. For an input bit sequence of length mQSM bits, the first
log2(M) bits modulated an M-QAM symbol. The remaining 2 log2(nT) bits were split into two flows
of log2(nT) spatial bits. These spatial bits modulated the position in the output vector x as follows:
the real part of the QAM symbol was assigned to one specific position in the output vector of length
nT . The imaginary part of the QAM symbol was assigned to another one or even the same position
antenna in the output vector x. Finally, these two SM signals were combined to obtain the QSM output
vector [9].

Table 1 shows a mapping rule example for QSM using four-QAM and nT = 2. The first column
shows the input bit sequence of length mQSM, where the first two bits modulate a four-QAM symbol
and the remaining two bits modulate the position of the non-zero entries in the output vector x as
follows: the real part of the QAM symbol was assigned to one Tx antenna out of nT available in order
to modulate log2(nT) = 1 bit, whereas the imaginary part of the QAM symbol was assigned to another
or even the same position to modulate log2(nT) = 1 bit to define the `< and `= index transmitter
antenna, respectively, as shown in the third column of Table 1.

Electronics 2019, 8, 1509 4 of 18

Table 1. Example of the QSM mapping rule with nT = 2.

Input QAM Symbol Position Antenna Output Vector

a s (`<, `=) xi

0000 1 + j (1, 1) 1 + j, 0

0001 1 + j (1, 2) 1,+j

0010 1 + j (2, 1) j,+1

0011 1 + j (2, 2) 0, 1 + j

0100 −1 + j (1, 1) −1 + j, 0

0101 −1 + j (1, 2) −1,+j

0110 −1 + j (2, 1) j,−1

0111 −1 + j (2, 2) 0,−1 + j

1000 −1− j (1, 1) −1− j, 0

1001 −1− j (1, 2) −1,−j

1010 −1− j (2, 1) −j,−1

1011 −1− j (2, 2) 0,−1− j

1100 1− j (1, 1) 1− j, 0

1101 1− j (1, 2) 1,−j

1110 1− j (2, 1) −j,+1

1111 1− j (2, 2) 0, 1− j

2.2. ML Detection

The MIMO transmitted signal is:
r =
√

γHx (3)

where the transmitted symbol x can be split into two real valued signals, s< and s=, according to
the QSM mapping rule described in Table 1. Since the QAM symbol s is expanded by the matrix
H ∈ CnR×nT , (3) can be expressed as:

r = h(`<) · s< + jh(`=) · s=, (4)

where h(`<) and h(`=) denote the `th
< and `th

= columns of H, respectively, with `<, `= ∈ {1, 2, · · · , nT},
and the vectors s< = < {S} and s= = = {S} of dimension q< and q=, respectively, represent the
different real and imaginary parts of the symbols belonging to the M-QAM constellation S ; finally,
the symbol · represents the product among the `th

< and `th
= columns of H and each element of the

vectors s< and s=.
Assuming that the receiver had perfect channel state information, the ML estimation compared the

distance between the received signal and all possible received signals. The ML criterion is defined as:

x̂ = argmin
x∈X

‖ y−√γHx ‖2
F, (5)

where ‖‖2
F is the Euclidean distance among two vectors and X ∈ CnT×2mQSM is the full spatial

modulation QSM used in the transmitter; therefore, the ML detector jointly estimated the two
possible active Tx antenna indices, ˆ̀< and ˆ̀=, and the corresponding real valued signals ŝ< and
ŝ=. Therefore, (5) can be written as:

[
ˆ̀<, ˆ̀=, ŝ<, ŝ=

]
= argmin

`< ,`= ,s< ,s=
‖y−h(`<) ·s<− jh(`=) ·s= ‖2

F (6)

Electronics 2019, 8, 1509 5 of 18

3. Low Complexity Detection Algorithm

In recent works, some low complexity algorithms have been presented for MIMO, SM, and QSM
signal detection [10,13,19]. In the works presented by [14,16], optimization algorithms and trigonometric
functions were required in the receiver to detect the most likely antenna combinations. After the
antenna indices were detected, a reduced ML detector was utilized to identify the transmitted symbols
in the MIMO-QSM system. However, these schemes demand many hardware implementation
resources. Other detection techniques for MIMO-SM-QSM were reported in [15,19,20]. These detectors
were based on tree search and spherical detection. These algorithms had an excellent BER performance,
and their detection complexity in terms of flops were relatively simple for hardware implementation
in FPGA.

In this section, a modified low complexity Near-ML detector for MIMO-QSM signals is presented.
The proposed detector is based on a tree search and a spherical algorithm [20,21].

The ML solution to (6) may be expressed as a tree search: each branch in this tree was assigned
a distance metric where the symbols with the smallest overall distance were selected as possible
optimum solutions [22] in each level of the tree. To carry out this process, an adaptive M-algorithm
based on a breadth first sorted tree search was used. The proposed algorithm reduced the search
complexity by storing only, at maximum, the best L branches at a time [23] in each level of the tree.
Henceforth, a small L resulted in low complexity and relatively sub-optimal performance. As L
increased, the complexity of the detector in terms of flops also increased, and the performance of the
algorithm approached the ML solution.

The decision metrics d1 and dT , required in the Near-ML proposal detector for the MIMO-QSM
scheme can be established as follows:

d1 =‖ y− h(ˆ̀<) · ŝ< ‖2
F, (7)

dT =‖ y− h(ˆ̀<) · ŝ(l)< − h(ˆ̀=) · ŝ(m)
= ‖2

F . (8)

We denote the lth and mth element in the vectors s< and s= by s(l)< and s(m)
= , respectively. The goal

of the decoder is to find the optimum solution to the ML criterion in (6), using the distances calculated
in (7) and (8). For the case of the distance d1, it is a vector of distances calculated for each valid
combination between the ˆ̀th

< transmitter antenna h(ˆ̀<) and each element of the vector s<. The decoding
procedure was split into two parts. First, a pre-ordering with s< was carried out; specifically,
the distance of (7) was calculated, and symbols were re-ordered in ascending order. In this way,
a set of N< = q<nT tuples was obtained, each tuple

(
ˆ̀(l)
< , ŝ(l)<

)
being formed of a combination of the

Tx antenna index ˆ̀< ∈ {1, · · · , nT} and the Tx symbol ŝ(l)< . This part is summarized in Algorithm 1.
The second part corresponds to an optimized detector based on the detector for SM signals

published in [21]. Since the first part of the Near-ML algorithm estimated the real part of the
transmitted QSM symbol,

(
ˆ̀(l)
< , ŝ(l)<

)
, the second part considered that only one Tx antenna was active,

which corresponded to the imaginary part of the QSM transmitted symbol
(

ˆ̀(m)
= , ŝ(m)

=
)

. Therefore,
the proposed method performed the search using the following modified Rx vector:

y(1) = y− h(ˆ̀(l)
<)s(l)< , l = 1, · · · , N<. (9)

The decision metrics d2 required in the second part or the Near-ML proposal detector for the
MIMO-QSM scheme can be established as follows:

d2 =‖ y(1) − h(ˆ̀=) · ŝ= ‖2
F, (10)

Electronics 2019, 8, 1509 6 of 18

Algorithm 1 QSM real part decoding.

Require: Channel matrix H, received vector y, s<, nT
Ensure: The set of tuples ordered (ˆ̀(l)

< , ŝ(l)<)
1: Let d1 = [·], tuple< = [·]
2: for i = 1 : nT do

3: Let d1 =
[
d1 ‖ y− h(i) · s< ‖2

F

]

4: for l = 1 : q< do

5: Let tuple< =
[
tuple< (ˆ̀(l)

< = i, ŝ(l)<)
]

6: end for
7: end for
8: Let [d< ord<] = sort(d1) in ascending order.
9: Order tuple< with the same order of ord<

10: Return tuple<, [d< ord<]

For the case of the distance d2, it was a vector of distances calculated for each valid combinations
between the ˆ̀th

= transmitter antenna h(ˆ̀=) and each element of the vector s=. This part of the Near-ML
algorithm is summarized in Algorithm 2. We denote the ith column of H like h(i) and the jth row of
h(i) and y(1) like as h(i)(j) and y(1)(j), respectively.

Algorithm 2 QSM imaginary part decoding.

Require: Channel matrix H, modified received vector y(1), s=, nT , nR Vth2
Ensure: The optimum tuple (ˆ̀=, ŝ=),dT

1: Let d2 = [·], tuple= = [·]
2: for i = 1 : nT do

3: Let d2 =
[
d2 ‖ y(1)(1)− h(i)(1) · s= ‖2

F

]

4: for m = 1 : q= do

5: Let tuple= =
[
tuple= (ˆ̀(m)

= = i, ŝ(m)
=)

]

6: end for
7: end for
8: Let [d= ord=] = sort(d2) in ascending order.
9: Order tuple= with the same order of ord=

10: Let lim = q=nT
11: for i = 2 : nR do

12: Let dmin = ∞
13: for m = 1 : lim do

14: Let ˆ̀= = `
[ord=(m)]
= and ŝ= = s[ord=(m)]

=
15: Let err =‖ y(1)(i)− h(ˆ̀=)(i) · ŝ= ‖2

16: Let d=(m) = d=(m) + err
17: if d=(m) < dmin then

18: Let dmin = d=(m)
19: Let ˆ̀= = `

[ord=(m)]
= and ŝ= = s[ord=(m)]

=
20: else if d=(m + 1) > Vth2 then

21: lim = m
22: break
23: end if
24: end for
25: end for
26: Return [ˆ̀=, ŝ=], dmin

Electronics 2019, 8, 1509 7 of 18

The complete Near-ML detector is described with detail in Algorithm 3. Each iteration produced
a symbol estimation

[
ˆ̀<, ŝ<, ˆ̀=, ŝ=

]
with distance dT . Symbol pairs

[
tuple<, ˆ̀=, ŝ=

]
whose distance

dmin were not smaller than the previous ones were skipped. In each iteration, we used the criterion
(Vth1 = nR

√
γ and Vth2 = 2Vth1). The detector used the metrics of the sphere detector to stop the

search and discard branches of the tree that were not viable solutions because they exceeded the
maximum radius of the detection sphere according to [15,24]. With this modification, the number of
branches for each level was adaptive and depended on the SNR and the channel. For these reasons,
the proposed algorithm had a significantly reduced complexity.

Algorithm 3 Complete Near-ML detector.

Require: Channel matrix H, modified received vector y, s<, s= nT , nT , q, Nb, γ, N<
Ensure: Optimum

[
ˆ̀<, ŝ<, ˆ̀=, ŝ=

]

1: Let dT = ∞

2: Let Vth1 = nR
√

γ and Vth2 = 2Vth1

3: Execute the QSM real part decoding to obtain tuple<, [d< ord<]

4: Let lim = length(tuple<)

5: for m = 1 : lim do

6: Let (ˆ̀(m)
< , ŝ(m)

<) = tuple<(m)

7: Let y(1) = y− h ˆ̀< ŝ<
8: Execute the QSM imaginary part decoding to obtain [ˆ̀=, ŝ=], dmin

9: if dmin < dT then

10: Let dT = dmin

11: Let ˆ̀< = `
(m)
<

12: Let ŝ< = s(m)
<

13: Let ˆ̀= = `=
14: Let ŝ= = s=
15: if dmin < Vth1 then

16: break

17: end if

18: else if dT > Vth1 and (Vth2 < dmin < Vth1) then

19: break

20: end if

21: end for

22: Return
[

ˆ̀<, ŝ<, ˆ̀=, ŝ=
]

It is also worth noting that in the proposed algorithm, it is possible to adjust the complexity/BER
performance trade-off of the detector the maximum limit of the thresholds Vth1 and Vth2.
The advantages of our proposal with respect to other similar schemes recently proposed were: It did
not require calculating the QR decomposition; therefore, it was less complex. Additionally, it did not
require using complex operations; therefore, it was most adequate for hardware implementation.

In the next subsection, BER performance results and the detection complexity of the proposed
scheme were compared to the conventional MIMO-QSM scheme for the ML detection algorithm.

Electronics 2019, 8, 1509 8 of 18

Furthermore, the BER performance and the complexity of the proposed low-complexity detection
algorithm were analyzed.

3.1. BER Performance Comparison of the MIMO-QSM Scheme

In this subsection, two different configurations were used in order to compare the BER
performance of the proposed MIMO-QSM scheme for the ML detection under uncorrelated Rayleigh
fading channels. The systems were analyzed considering the same spectral efficiency, the same number
of Tx and Rx antennas, and a normalized transmission power in the transmitter. For all computer
simulations, we targeted a BER of 10−4.

Figure 2 shows the performance comparison for the optimal ML and the proposed low complexity
Near-ML algorithm for the MIMO-QSM scheme using the 2× 2 and 8× 8 configuration with QPSK
modulator. For both cases, the proposed detector performed very near to the ML algorithm, and for
this reason, we called our proposal detector Near-ML.

0 3 6 9 12 15 18 21 24

SNR

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

ML Detector 2x2

Near ML Detector 2x2

ML Detector 8x8

Near ML Detector 8x8

Figure 2. Performance comparison for an 2 × 2 and 8 × 8 configuration at mQSM = 4 and
mQSM = 8 bpcu respectively.

3.2. Complexity

The ML detection complexity η for the ML criterion in (6) was measured in terms of complex
operations (CO). One arithmetic operation was considered as one CO; also, one comparison was
considered as one CO. The lattice in the system had 2mQSM points. Subtraction, obtaining the
square, and finding the minimum in (6) resulted in 2mQSM+2 CO. Considering nR receive antennas,
the complexity for ML in (6) can be approximated by:

η ≈ 2mQSM+2nR. (11)

Table 2 shows a comparison of the complexity for two MIMO configurations. In Table 2, the QSM
scheme with ML detector is considered as the reference with 100% of complexity for an SNR of 9 dB.
The last column shows the complexity of the proposed Near-ML algorithm where it is observed how
this detector outperformed significantly the QSM ML detector in terms of complexity.

Electronics 2019, 8, 1509 9 of 18

Table 2. Comparison of complexity (η).

Scheme/η
QSM QSM

ML Near ML

4 bpcu 2× 2 256 282

QPSK (100%) (73%)

8 bpcu 8× 8 12,288 1475

QPSK (100%) (12%)

The results showed that the proposed Near-ML algorithm performed very near to the optimal
one with the advantage of a reduction in detection complexity of 88%.

4. Proposed Hardware Architecture for the Digital QSM Detector

A hardware architecture that implements the detection algorithm presented in Section 3 was
proposed. In order to illustrate it, the top module is shown first, and then, the internals of each
module are explored.

The design of the architecture followed a top-down approach, and it was composed of the
data-path that included four modules and a control unit. The detector is presented in Figure 3.
The DET1and DET2 modules implemented the first and second parts of the detection process,
described in Algorithms 1 and 2, respectively; the SORT module performed the sort operation used in
the three algorithms; the FD module compared the distance metrics needed to determine the received
symbol (inside the for cycle in Algorithm 3); and the CTRL module provided the timing signals and
activation flags for the data-path.

����

���

�����

�	
��
��

�	
�����

����
��

�������

����

���

�����

�	
���
��

�	
������

����
��

�������

�	
���
��

�	
������

�����
��

��������

����

	��

��

�������������
�

�������������
�

���������

��������

�	

Figure 3. QSM detector architecture.

From this point onwards, a bold line represents a bit vector, whereas a thin line represents
a single bit.

4.1. Top View of the QSM Detector Architecture

Using the description of the QSM communication system in Section 2.1 and the architecture
proposed in Figure 3, a top view of the detector is presented considering the following parameters:

Electronics 2019, 8, 1509 10 of 18

• NT: number of Tx antennas.
• NR: number of Rx antennas.
• WL: word length used for fixed point representation.
• IP: amount of bits used to represent the integer part of data.
• FP: amount of bits used to represent the fractional part of data. Result of subtracting WL and IP.
• HXQC: number of columns of an auxiliary matrix needed for calculations in DET1.
• HXQ1S: size of an auxiliary vector needed for calculations in DET2.

Considering Table 3, which summarizes the inputs and outputs of the whole system, the detection
process started when the received signal y was mapped into ports yt_real and yt_imag. This input signal
was then processed by DET1, which executed Algorithm 1 in hardware. After that, DET2 received
data in its yt1_real and yt1_imag (equivalent to the modified received vector y) ports to continue
with Algorithm 2.

Table 3. Inputs and outputs of the detector.

Input Size (Bits) Goes into Description

yt_real WL × NR DET1 Real part of the received data, y,
in antennas for DET1

yt_imag WL × NR DET1 Imaginary part of the received data, y,
in antennas for DET1

aux_real WL × NR × NT DET1 Real part of the operation h(i)s
for DET1 (Algorithm 1, Line 3)

aux_imag WL × NR × NT DET1 Imaginary part of the operation h(i)s
for DET1 (Algorithm 1, Line 3)

yt1_real WL DET2 Real part of the received data, y,
in antennas for DET2

yt1_imag WL DET2 Imaginary part of the received data, y,
in antennas for DET2

aux1_real WL × HXQ1S DET2 Real part of the operation h(i)s
for DET2 (Algorithm 2, Line 3)

aux1_imag WL × HXQ1S DET2 Imaginary part of the operation h(i)s
for DET2 (Algorithm 2, Line 3)

yl_real WL DET2 Real part of the received data, y,
in antennas for DET2_P2

yl_imag WL DET2 Imaginary part of the received data, y,
in antennas for DET2_P2

auxl_real WL DET2 Real part of the operation h(i)s
for DET2_P2 (Algorithm 2, Line 14)

auxl_imag WL DET2 Imaginary part of the operation h(i)s
for DET2_P2 (Algorithm 2, Line 14)

Output Size (Bits) Goes to Description

detected_index1 log2(NT × HXQC) Detector output First detected index
detected_index2 log2(NT × HXQC) Detector output Second detected index

The sort operation was utilized by both detection processes; therefore, SORT can be used by
DET1 and DET2.

At the final step of the detection process, the FD module compared the current detection results
with predefined parameters (Vth1, Vth2, dmin, in Algorithm 3); if the process matched these parameters,
the current results became the final results; otherwise, the detection process was restarted until the
conditions were met. The CTRL module controlled and synchronized the whole interoperability
of the architecture.

The outputs detected_index1 and detected_index2 represent the pair [transmit antenna, symbol sent]
for QSM.

In what follows, the modules of the detector are described in detail.

Electronics 2019, 8, 1509 11 of 18

4.2. DET1 Module

The detection started with DET1, implementing Algorithm 1. Its architecture is shown in Figure 4,
and an explanation of the inputs and outputs is in Table 4.

Modules:

• Norm (NORM): operation of Euclidean distance.
• RegisterArray (RA): register array for the results of NORM.
• SortingRegs (SREGS): register array for the results of SORT.

����

��������

�����	�

�������

����	�

����

����

����

��

��

������

���������

�����	

������

�����	

�����	�
�

��������

��������

��
�

Figure 4. Architecture of DET1.

Table 4. Inputs and outputs of DET1.

Input Size (Bits) Comes from Description

yt_real WL × NR System input
Real part of the received data,

y, in antennas

yt_imag WL × NR System input
Imaginary part of the received data,

y, in antennas

aux_real WL × NR × NT System input Real part of the operation h(i)s
for DET1 (Algorithm 1, Line 3)

aux_imag WL × NR × NT System input Imaginary part of the operation h(i)s
for DET1 (Algorithm 1, Line 3)

Output Size (Bits) Goes to Description

data_out (data) WL FD Final data of DET1 (d< in Algorithm 1)
data_out (indexes) log2(NT × HXQC) FD Final index of DET1 (ord< in Algorithm 1)

When the detection started, the NORM modules computed the Euclidean distance operation
between (yt_real, yt_imag) and (aux_real, aux_imag) corresponding to the norm operation presented in
Line 3 of Algorithm 1.

The results were then added and stored in the corresponding RA registers in an orderly manner.
When every register had data stored, these results were sent to the SORT module in a parallel way,
as better described in Section 4.4.

When the sorted data returned, as seen in “From SORT” in Figure 4, the data and indexes were
stored, in the same order as they came out of the sorting module, in their respective SREGS, which was
another register array.

Electronics 2019, 8, 1509 12 of 18

4.3. DET2 Module

The second detection process, DET2, was at the same time divided into two parts representing
the for cycles in Lines 2 and 11, respectively, of Algorithm 2. Figure 5 shows the first part (DET2_P1)
with the first NORM blocks and the second part (DET2_P2) with the last block. When DET2_P1 ended,
DET2_P2 immediately started. Table 5 shows the inputs and outputs of the module.

Modules:

• Norm (NORM): operation of Euclidean distance.
• RegisterArray for DET2 (RA_DET2): register array for the results of NORM in DET2_P1.
• SortingRegs_SP (SREGS_SP): register array for the sorting results in DET2.
• SortingRegs_SP2 SREGS_SP2: register array for the sorting indexes results in DET2.
• RearrangerP(RP): rearranger for the sorting indexes.

����

���������

�����	
��

�
������

�
��	
��

����

����

�����	

���

����

�	�������

�������

�������

�

��
����

��
����

����

���������

�����	
��

�
������

�
��	
��

��
�����

�������

�������

�������

�������

����

Figure 5. Architecture of DET2.

After the calculations with the NORM modules were done, RA_DET2 sent its stored data to SORT.
When the data came back from the module, they were split into the data vector and index vector to be
stored in SREGS_SP and SREGS_SP2, respectively.

SREGS_SP was a register array that had both serial and parallel inputs and outputs and stored the
sorting data. It also had outputs like data1_out that fed the control module, equivalent to d=(m + 1) in
Algorithm 2, Line 19.

SREGS_SP2 stored the indexes given by the SORT module. It only had a parallel input, but serial
and parallel outputs; this configuration helps when you need to reorder all indexes (parallel output,
as in Line 9 of Algorithm 2) or you need to read only one index.

In DET2_P2, another NORM module was used, and its result was added to one of the already
stored in SREGS_SP, then fed back to the same register and sent to sorting again, emulating the
behavior of Lines 14 and 15 of Algorithm 2.

When coming back from sorting, RP rearranged the old indexes stored in SREGS_SP2 based on
the new ones and replaced them. For example, if the stored vector was [3, 1, 2, 4] and the new indexes
were [2, 1, 4, 3], then the rearranged vector would be [1, 3, 4, 2].

Electronics 2019, 8, 1509 13 of 18

Table 5. Inputs and outputs of DET2.

Input Size (Bits) Comes from Description

yt1_real WL System input
Real part of the received data in antennas

minus the influence of the detected data in DET1
(as in Line 7 of Algorithm 2)

yt1_imag WL System input
Imag.part of the received data in antennas

minus the influence of the detected data in DET1
(as in Line 7 of Algorithm 2)

aux1_real WL × HXQ1S System input
Real part of the operation

h(i)s for DET2 (Algorithm 2, Line 3)

aux1_imag WL × HXQ1S System input
Imaginary part of the operation

h(i)s for DET2 (Algorithm 2, Line 3)

yl_real WL System input
Real part of the received data in

the remaining antennas for DET2_P2

yl_imag WL System input
Imaginary part of the received data in
the remaining antennas for DET2_P2

auxl_real WL System input
Real part of the operation

h(i)s for DET2_P2 (Algorithm 2, Line 14)

auxl_imag WL System input
Imaginary part of the operation

h(i)s for DET2_P2 (Algorithm 2, Line 14)

Output Size (Bits) Goes to Description

data_out (data) WL FD Final data of DET2 (d= in Algorithm 2)
data_out (indexes) log2(NT × HXQC) FD Final index of DET2 (ord= in Algorithm 2)

4.4. SORT Module

The SORT module was the most used during the detection process. Sorting networks were chosen
as the option for sorting in FPGA [25].

A sorting network is one of the most efficient and traditional ways of sorting in FPGA. They are
attractive due two main reasons: they do not require control instructions, and they are relatively easy
to parallelize due to the simplicity of the data flow. Sorting networks are adequate for sorting short
arrays, the length of which is known beforehand.

According to the detection algorithm, besides sorting, the network must indicate in which position
of the array the elements were originally, before entering the network and being sorted; similar to
how MATLAB does it with its integrated function [B, I] = sort(A) [26]. There was already a work that
addressed this problem in hardware [27], so the architecture proposed there was used here.

The implemented sorting network consisted of purely combinational comparators so, as the
network grew according to the sorting needs, the critical route of the system increased as well.

Figure 6 shows the structure of the sorting network, and Table 6 describes the inputs and outputs
of the module.

�������

��������	
�����

���������

���������

�������

���������

���������

�������

��������������������

	
�����

	
�����

	
�����

�������

�������

�������	
�����

�������	
�����

�������	
�����

	
�����

	
�����

�������	
�����

�������	
�����

��������	

�����

�������	
�����

���

��������������������

Figure 6. Architecture of SORT.

Electronics 2019, 8, 1509 14 of 18

Table 6. Inputs and outputs of SORT.

Input Size (Bits)

Sorting_Elements WL × NT × HXQC
Elements WL

Index log2(NT × HXQC)

Output Size (Bits)

Sorted_Elements WL + log2(WL × HXQC) × E2S × NT × HXQC

The vector Sorting_Elements came from the registers in DET1 and DET2, and Sorted_Elements
was composed of the sorted data and their respective indexes that were going to be stored in SREGS.

4.5. FD and CTRL Modules

The FD module made the decision of accepting the current detected indexes as valid or not.
It achieved this by comparing the detection results with predefined parameters specific to QSM
detectors (Vth1, Vth2, dmin, in Algorithm 3). In case the results were accepted, the detection process
ended; otherwise, DET2 started over with different data. This was implemented with counters and a
state machine, so it emulated the behavior of the for cycle in Algorithm 3.

The CTRL module grouped three independent modules that controlled the three main parts of the
detector (DET1, DET2_P1, and DET2_P2).

The control modules for DET1 and DET2_P1 were composed mainly of counters that checked the
number of elapsed clock cycles, representing their respective for cycles in the algorithms.

The control module for DET2_P2 differed from the other two control modules. This one consisted
of a state machine and counters that performed the for cycles in Algorithm 2, specifically Lines 11 and
13. As is seen in Line 13, the lim variable was known until execution time and changed depending on
the data, the reason why a state machine was required for proper control.

5. Analysis of Hardware Implementation and Verification Results

5.1. Hardware Budget

In order to implement the proposed design, an Intel-Altera Cyclone IV EP4CE115 FPGA was
used. In Table 7, the amount of resources, maximum frequency, and throughput, are shown for two
representative cases of the QSM communication systems. The number in brackets represents the
percentage of resources used out of the total available in the FPGA device.

Table 8 presents a breakdown of post-synthesis resources used by the different modules of the
architecture for the 2 × 2 QPSK and 2 ×2 16-QAM configurations, respectively. Naturally, the amount
of resources went up as the order of modulation and the number of antennas increased.

According to the results, the SORT block was the module with the greatest amount of hardware
resources. It used only combinational components (as it was based on sorting networks) [27] to make a
comparison between elements and increased in size as the number of elements to sort rose. Given these
characteristics, the critical route of the whole implementation was established by this module and
affected the general performance of the architecture.

Table 7. Overall implementation results of the detector in a Cyclone IV FPGA.

Configuration Logic Elements Embedded Multipliers Max Frequency Throughput

2 × 2, QPSK 2385 (2%) 28 (5%) 37.11 MHz 416,966 ops
2 × 2, 16-QAM 6863 (5%) 36 (6%) 20.74 MHz 171,404 ops

Electronics 2019, 8, 1509 15 of 18

Due to the algorithm being inherently recursive, the number of clock cycles was data dependent.
Table 7 shows the max frequency considering the slow 1200 mV 0◦C model; and throughput, which is
the number of detection processes that can be done per second in the worst case.

Table 8. Resources used per module of the architecture.

2 × 2, QPSK Detector Module LCCombinational LC Registers DSPElements

DET1 308 152 16
DET2 408 140 12
SORT 1279 0 0

FD 33 32 0
CTRL 69 37 0

2 × 2, 16-QAM Detector Module LC Combinational LC Registers DSP Elements

DET1 386 320 16
DET2 835 288 20
SORT 4696 0 0

FD 34 36 0
CTRL 84 42 0

5.2. Simulation Results

In order to verify the results, a MATLAB implementation was used to generate random input
vectors written in text files for the architecture. These files were fed into a test bench that controlled
the reading of the test vectors and the writing of the results.

Figure 7 summarizes the testing process to obtain the results and compare them with the outputs
of the MATLAB algorithm.

�����

��������	�
	�
����
��
��
��

������

�������
	�
����
���	�
��
��

��
�
�	��
���
��������

���

���������	���

���

��������	�
	�
����
�
��
��

��
�	��
���

�	� ����	�
	�
������

����
��
���
�	��
���

����
��

��!��"
���
�	������	�
	�

���	��

#	

Figure 7. Process of the generation of simulation results.

Fixed point simulations were performed in order to determine the ideal IP and FP parameters
depending on the BER performance of the algorithm. Figure 8 shows the comparison for different
configurations of word length against the floating point model used (4 × 4, QPSK). Taking as a
reference Figure 8, the fixed point format IP = 5 and FP = 11 had a close performance to the floating
point model.

Electronics 2019, 8, 1509 16 of 18

0 2 4 6 8 10 12 14 16 18

SNR

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

IP = 4 bits, FP = 12 bits

IP = 5 bits, FP = 11 bits

IP = 6 bits, FP = 10 bits

Floating-point model (optimal, double precision)

Figure 8. Fixed point analysis for the algorithm, 16-bit word length, 4 × 4, QPSK.

Figure 9 shows the timing diagram of the detection process. When start = 1, yt_real and yt_imag
were processed by DET1 and after five cycles in the case of a QPSK modulation, the flag done_detection1
was set to one (END_DET1 in Figure 9), indicating that DET2_P1 could start. At this point, Algorithm 1
was performed.

Figure 9. Simulation in Modelsim of the proposed detector.

The DET2_P1 module read the yt1_real and yt1_imag inputs and processed them according to
Algorithm 2. Immediately after, DET2_P2 did the same with the yl_real and yl_imag inputs and set
done_detection2 to one (END DET2) when it finished, informing the FD module that the data were ready
for it to make a decision. At this point, Algorithm 2 was performed.

The FD module required one clock cycle to make the decision of accepting the current detected
indexes or not. In the case of this simulation, said indexes were not accepted at first, so it sent the
appropriate signals to start DET2 over.

DET2 read its respective signals and was performed again. When it finished (represented by
the rightmost END DET2 in Figure 9), the FD module took another clock cycle to decide. This time,
the detected indexes were accepted, as the finished_detection flag was raised, meaning that the detection
process (Algorithm 3) was over and the detected data (FINAL DATA in Figure 9) were valid.

Electronics 2019, 8, 1509 17 of 18

6. Conclusions

A low complexity detection algorithm based on a tree search and spherical detection, in the
context of MIMO QSM transmission, was presented. It was shown that the proposed algorithm
achieved a similar performance to the ML detector, but with a significant complexity reduction
in terms of the operations required in its software and hardware implementation. Fixed point
analysis showed that BER performance was maintained on the detection process, allowing a simpler
hardware implementation rather than the hardware needed for an implementation using floating point
precision. The novel hardware architecture showed the feasibility of the hardware implementation
of the proposed algorithm using fixed point precision and the process of transformation from the
algorithm to hardware architecture.

A possible workaround for the critical route would be the implementation of pipeline stages
inside the sorting module in order to improve the maximum frequency and throughput significantly,
even if the added registers would mean a redesign of the control unit.

Author Contributions: Conceptualization, I.L., J.C. and L.P.-E.; Methodology, I.L., J.C. and L.P.-E.; Software, I.L.
and J.C.; Experimentation, I.L., J.C., L.P.-E. and O.L.-G.; Validation, I.L., J.C., L.P.-E. and O.L.-G.; Formal Analysis,
I.L., J.C., L.P.-E., O.L.-G. and A.G.; Investigation, I.L., J.C., L.P.-E., O.L.-G. and A.G.; Resources, J.C. and A.G.; Data
Curation, I.L.; Writing—Original Draft Preparation, I.L.; Writing—Review & Editing, I.L., J.C., L.P.-E. and O.L.-G.;
Visualization, I.L., J.C., L.P.-E., O.L.-G. and A.G.; Supervision, I.L., J.C., L.P.-E. and O.L.-G.; Project Administration,
J.C. and A.G.; Funding Acquisition, J.C. and A.G.

Funding: The present article was jointly funded by PFCE 2019, CONACYT scholarship and PROFAPI 2019.

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.;
Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks.
IEEE Commun. Mag. 2014, 52, 122–130, doi:10.1109/MCOM.2014.6736752. [CrossRef]

2. Zheng, L.; Tse, D.N.C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels.
IEEE Trans. Inf. Theory 2003, 49, 1073–1096, doi:10.1109/TIT.2003.810646. [CrossRef]

3. Foschini, G.J. Layered space-time architecture for wireless communication in a fading environment when
using multi-element antennas. Bell Labs Tech. J. 1996, 1, 41–59, doi:10.1002/bltj.2015. [CrossRef]

4. Alamouti, S.M. A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun.
1998, 16, 1451–1458, doi:10.1109/49.730453. [CrossRef]

5. Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index Modulation Techniques for
Next-Generation Wireless Networks. IEEE Access 2017, 5, 16693–16746, doi:10.1109/ACCESS.2017.2737528.
[CrossRef]

6. Bai, Z.; Peng, S.; Zhang, Q.; Zhang, N. OCC-Selection-Based High-Efficient UWB Spatial Modulation System
Over a Multipath Fading Channel. IEEE Syst. J. 2019, 13, 1181–1189, doi:10.1109/JSYST.2018.2870423.
[CrossRef]

7. Wen, M.; Zheng, B.; Kim, K.J.; Di Renzo, M.; Tsiftsis, T.A.; Chen, K.; Al-Dhahir, N. A Survey on Spatial
Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE J. Sel. Areas Commun.
2019, 37, 1949–1972, doi:10.1109/JSAC.2019.2929453. [CrossRef]

8. Renzo, M.D.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial Modulation for Generalized
MIMO: Challenges, Opportunities, and Implementation. Proc. IEEE 2014, 102, 56–103,
doi:10.1109/JPROC.2013.2287851. [CrossRef]

9. Mesleh, R.; Ikki, S.S.; Aggoune, H.M. Quadrature Spatial Modulation. IEEE Trans. Veh. Technol. 2015,
64, 2738–2742, doi:10.1109/TVT.2014.2344036. [CrossRef]

10. Castillo-Soria, F.; Cortez, J.; Gutierrez, C.; Luna-Rivera, M.; Garcia-Barrientos, A. Extended quadrature
spatial modulation for MIMO wireless communications. Phys. Commun. 2019, 32, 88–95,
doi:10.1016/j.phycom.2018.11.006. [CrossRef]

https://doi.org/10.1109/MCOM.2014.6736752
http://dx.doi.org/10.1109/MCOM.2014.6736752
https://doi.org/10.1109/TIT.2003.810646
http://dx.doi.org/10.1109/TIT.2003.810646
https://doi.org/10.1002/bltj.2015
http://dx.doi.org/10.1002/bltj.2015
https://doi.org/10.1109/49.730453
http://dx.doi.org/10.1109/49.730453
https://doi.org/10.1109/ACCESS.2017.2737528
http://dx.doi.org/10.1109/ACCESS.2017.2737528
https://doi.org/10.1109/JSYST.2018.2870423
http://dx.doi.org/10.1109/JSYST.2018.2870423
https://doi.org/10.1109/JSAC.2019.2929453
http://dx.doi.org/10.1109/JSAC.2019.2929453
https://doi.org/10.1109/JPROC.2013.2287851
http://dx.doi.org/10.1109/JPROC.2013.2287851
https://doi.org/10.1109/TVT.2014.2344036
http://dx.doi.org/10.1109/TVT.2014.2344036
http://dx.doi.org/10.1016/j.phycom.2018.11.006

Electronics 2019, 8, 1509 18 of 18

11. Hussein, H.S.; Elsayed, M.; Mohamed, U.S.; Esmaiel, H.; Mohamed, E.M. Spectral Efficient Spatial
Modulation Techniques. IEEE Access 2019, 7, 1454–1469, doi:10.1109/ACCESS.2018.2885826. [CrossRef]

12. Mesleh, R.; Hiari, O.; Younis, A. Generalized space modulation techniques: Hardware design and
considerations. Phys. Commun. 2018, 26, 87–95, doi:10.1016/j.phycom.2017.11.009. [CrossRef]

13. Xiao, L.; Yang, P.; Fan, S.; Li, S.; Song, L.; Xiao, Y. Low-Complexity Signal Detection for
Large-Scale Quadrature Spatial Modulation Systems. IEEE Commun. Lett. 2016, 20, 2173–2176,
doi:10.1109/LCOMM.2016.2602210. [CrossRef]

14. Yigit, Z.; Basar, E. Low-complexity detection of quadrature spatial modulation. Electron. Lett. 2016,
52, 1729–1731, doi:10.1049/el.2016.1583. [CrossRef]

15. Al-Nahhal, I.; Dobre, O.A.; Ikki, S.S. Quadrature Spatial Modulation Decoding Complexity: Study and
Reduction. IEEE Wirel. Commun. Lett. 2017, 6, 378–381, doi:10.1109/LWC.2017.2694420. [CrossRef]

16. Li, J.; Jiang, X.; Yan, Y.; Yu, W.; Song, S.; Lee, M.H. Low Complexity Detection for Quadrature Spatial
Modulation Systems. Wirel. Pers. Commun. 2017, 95, 4171–4183, doi:10.1007/s11277-017-4057-y. [CrossRef]

17. Zheng, B.; Chen, F.; Wen, M.; Ji, F.; Yu, H.; Liu, Y. Low-Complexity ML Detector and Performance Analysis
for OFDM With In-Phase/Quadrature Index Modulation. IEEE Commun. Lett. 2015, 19, 1893–1896,
doi:10.1109/LCOMM.2015.2474863. [CrossRef]

18. Li, J.; Wen, M.; Cheng, X.; Yan, Y.; Song, S.; Lee, M.H. Generalized Precoding-Aided Quadrature Spatial
Modulation. IEEE Trans. Veh. Technol. 2017, 66, 1881–1886, doi:10.1109/TVT.2016.2565618. [CrossRef]

19. Al-Nahhal, I.; Basar, E.; Dobre, O.A.; Ikki, S. Optimum Low-Complexity Decoder for Spatial Modulation.
IEEE J. Sel. Areas Commun. 2019, 37, 2001–2013, doi:10.1109/JSAC.2019.2929454. [CrossRef]

20. Jiang, Y.; Lan, Y.; He, S.; Li, J.; Jiang, Z. Improved Low-Complexity Sphere Decoding for Generalized Spatial
Modulation. IEEE Commun. Lett. 2018, 22, 1164–1167, doi:10.1109/LCOMM.2018.2818706. [CrossRef]

21. Zheng, J.; Yang, X.; Li, Z. Low-complexity detection method for spatial modulation based on M-algorithm.
Electron. Lett. 2014, 50, 1552–1554, doi:10.1049/el.2014.2089. [CrossRef]

22. Anderson, J.; Mohan, S. Sequential Coding Algorithms: A Survey and Cost Analysis. IEEE Trans. Commun.
1984, 32, 169–176, doi:10.1109/TCOM.1984.1096023. [CrossRef]

23. Hassibi, B.; Vikalo, H. On the sphere-decoding algorithm I. Expected complexity. IEEE Trans. Signal Process.
2005, 53, 2806–2818, doi:10.1109/TSP.2005.850352. [CrossRef]

24. Xiao, L.; Yang, P.; Xiao, Y.; Fan, S.; Di Renzo, M.; Xiang, W.; Li, S. Efficient Compressive Sensing
Detectors for Generalized Spatial Modulation Systems. IEEE Trans. Veh. Technol. 2017, 66, 1284–1298,
doi:10.1109/TVT.2016.2558205. [CrossRef]

25. Mueller, R.; Teubner, J.; Alonso, G. Sorting Networks on FPGAs. VLDB J. 2012, 21, 1–23. [CrossRef]
26. MathWorks. Sort Array Elements—MATLAB Sort. Available online: https://www.mathworks.com/help/

matlab/ref/sort.html (accessed on 6 September 2018).
27. López Mendoza, I.; Pizano Escalante, J.L.; Cortez González, J.; Longoria Gándara, O.H. Implementation of

a parameterizable sorting network for spatial modulation detection on FPGA. In Proceedings of the 2019
IEEE Colombian Conference on Communications and Computing (COLCOM), Barranquilla, Colombia,
5–7 June 2019; pp. 1–6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/ACCESS.2018.2885826
http://dx.doi.org/10.1109/ACCESS.2018.2885826
http://dx.doi.org/10.1016/j.phycom.2017.11.009
https://doi.org/10.1109/LCOMM.2016.2602210
http://dx.doi.org/10.1109/LCOMM.2016.2602210
https://doi.org/10.1049/el.2016.1583
http://dx.doi.org/10.1049/el.2016.1583
https://doi.org/10.1109/LWC.2017.2694420
http://dx.doi.org/10.1109/LWC.2017.2694420
https://doi.org/10.1007/s11277-017-4057-y
http://dx.doi.org/10.1007/s11277-017-4057-y
https://doi.org/10.1109/LCOMM.2015.2474863
http://dx.doi.org/10.1109/LCOMM.2015.2474863
https://doi.org/10.1109/TVT.2016.2565618
http://dx.doi.org/10.1109/TVT.2016.2565618
https://doi.org/10.1109/JSAC.2019.2929454
http://dx.doi.org/10.1109/JSAC.2019.2929454
https://doi.org/10.1109/LCOMM.2018.2818706
http://dx.doi.org/10.1109/LCOMM.2018.2818706
https://doi.org/10.1049/el.2014.2089
http://dx.doi.org/10.1049/el.2014.2089
https://doi.org/10.1109/TCOM.1984.1096023
http://dx.doi.org/10.1109/TCOM.1984.1096023
https://doi.org/10.1109/TSP.2005.850352
http://dx.doi.org/10.1109/TSP.2005.850352
https://doi.org/10.1109/TVT.2016.2558205
http://dx.doi.org/10.1109/TVT.2016.2558205
http://dx.doi.org/10.1007/s00778-011-0232-z
https://www.mathworks.com/help/matlab/ref/sort.html
https://www.mathworks.com/help/matlab/ref/sort.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	MIMO-QSM Transmission System
	QSM Modulation
	ML Detection

	Low Complexity Detection Algorithm
	BER Performance Comparison of the MIMO-QSM Scheme
	Complexity

	Proposed Hardware Architecture for the Digital QSM Detector
	Top View of the QSM Detector Architecture
	det1 Module
	det2 Module
	sort Module
	fd and ctrl Modules

	Analysis of Hardware Implementation and Verification Results
	Hardware Budget
	Simulation Results

	Conclusions
	References

