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Abstract: One of the main techniques for debugging power converters is hardware-in-the-loop (HIL),
which is used for real-time emulation. Field programmable gate arrays (FPGA) are the most common
design platforms due to their acceleration capability. In this case, the widths of the signals have to be
carefully chosen to optimize the area and speed. For this purpose, fixed-point arithmetic is one of the
best options because although the design time is high, it allows the personalization of the number of
bits in every signal. The representation of state variables in power converters has been previously
studied, however other signals, such as feedback signals, can also have a big influence because they
transmit the value of one state variable to the rest, and vice versa. This paper presents an analysis of
the number of bits in the feedback signals of a boost converter, but the conclusions can be extended to
other power converters. The purpose of this work is to study how many bits are necessary in order to
avoid the loss of information, but also without wasting bits. Errors of the state variables are obtained
with different sizes of feedback signals. These show that the errors in each state variable have similar
patterns. When the number of bits increases, the error decreases down to a certain number of bits,
where an almost constant error appears. However, when the bits decrease, the error increases linearly.
Furthermore, the results show that there is a direct relation between the number of bits in feedback
signals and the inputs of the converter in the global error. Finally, a design criterion is given to choose
the optimum width for each feedback signal, without wasting bits.

Keywords: hardware-in-the-loop; resolution; fixed-point; feedback; state variables

1. Introduction

Nowadays, there is no doubt that tests and debugging are crucial in electronics. These tests avoid
damage to the hardware and allow engineers to know the behavior of the converter before including
it in the real system. In recent years, due to the increase of digital controllers, a final system usually
contains both digital and analog signals. In order to be able to work with these, different debugging
techniques have emerged [1–3]. One of the most important is hardware-in-the-loop (HIL), which
allows debugging part of the system, such as the power converters, accurately emulating the behavior
of the final real system and saving time, money, and effort during the design process [4–10]. Recently,
given the progress in digital electronics, the maximum switching frequencies that can be emulated in
HIL have increased from tens to hundreds of kilohertz. The hardware platforms that can reach these
real-time emulations are the field programmable gate arrays (FPGAs) [11–13]. As such, in the last years
the use of FPGAs with HIL models has increased [14–19].

In these real-time emulations of FPGAs, special attention must be paid to the occupied area
and the integration step. To reach high switching frequency, a very small integration step is needed,
however resolution problems can appear. Therefore, for both resolution issues and the final area in our
design, the number representation in the signals plays a very important role. As has been previously
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studied by Sanchez et al. [20], the fixed-point method is the perfect number representation method
to optimize the integration step and area, due to the possibility of adjusting the number of bits for
every signal, although this implies a higher time design than in the floating-point method [18,21,22].
Sanchez et al. made a comparison among different representation methods, namely float-type and
fixed-point methods, implementing a HIL model for a digital converter. They concluded that float can
be synthesized, but this requires many resources. However, the fixed-point method is proposed as
an alternative to this problem, because although it has the disadvantage of high design effort owing
to the model being hand-coded, it also has an advantage in that every signal can be personalized
regarding the number of bits, providing the minimum necessary number of bits without wasting them.
Goñi et al. [23] studied two methods to determine the number of bits of state variables in models
of power converters and also in fixed-point simulated and analytical representation. However, the
width of the other variables was not addressed. A similar analytical approach is used in this work for
feedback signals. To our knowledge, no previous work has studied the influence of the number of bits
of these signals, which play an important role in a power converter because it is a loop system and
each signal influences the others. These signals transmit the value of one state variable to the rest of
the system, which is required for the system to calculate the new value of the other state variables.
This paper proposes to find out the minimum necessary number of bits for use in the feedback signals,
the knowledge of which would increase the necessary resources for implementation. The information
will be maintained to calculate a new and accurate value of the state variable in the next clock cycle.

The rest of the paper is organized as follows. Section 2 presents the application example. Section 3
presents the resolution issues, such as QX.Y notation and methods for estimation of the number of bits
in the signals for implementation. Section 4 presents the results. Finally, Section 5 discusses the results
and proposes a final design method, while conclusions are given in Section 6.

2. Application Example

For the purpose of this paper, an application example is used, specifically a boost converter,
to explain every process in detail. The topology of the boost converter is shown in Figure 1. For
the sake of clarity, the proposed model is the simplest one and does not contain losses, but similar
conclusions could be drawn for other topologies. The model needs to calculate the state variables,
namely the capacitor voltage (vout) and the inductor current (iL) in every time step considering the
state of the switch.
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Figure 1. Schematic of a boost converter.

The inductor voltage is defined by Equation (1)

vL = L
diL
dt

(1)

From Equation (1), the inductor current for each time step k, using the explicit Euler method, is
defined as:

iL(k) = iL(k− 1) +
∆t
L
·vL(k− 1) (2)
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Similarly, the capacitor current is defined by Equation (3)

iC = C
dvout

dt
(3)

where, the output voltage for each time step k is

vout(k) = vout(k− 1) +
∆t
C
·iC(k− 1) (4)

where ∆t is the simulation time step, L is the inductance, and C the capacitance. Considering the state
of the switch (named Q), the values of the inductor voltage (vL) or capacitor current (iC) change. When
the switch is closed (Q = 1), the diode does not conduct. On the one hand, the inductor current flows
through the switch, while on the other hand the capacitor discharges through the load resistor. When
the switch is open (Q = 0) and the input current is positive, the diode conducts. This mode is known as
continuous conduction mode (CCM). When the input current is zero and the diode does not conduct,
the discontinuous conduction mode (DCM) appears. Thus, there are three possibilities: closed switch
(Q = 1), open switch (Q = 0) in CCM when iL > 0, and open switch in DCM when iL = 0), which are
defined in Equations (5), (6), and (7), respectively,

Q = 1

iL(k) = iL(k− 1) +
∆t
L
·vg(k− 1)vout(k) = vout(k− 1) −

∆t
C
·iR(k− 1) (5)

Q = 0 and iL > 0

iL(k) = iL(k− 1) +
∆t
L
·

(
vg(k− 1) − vout(k− 1)

)
vout(k) = vout(k− 1) +

∆t
C
·(iL(k− 1) − iR(k− 1)) (6)

Q = 0 and iL = 0

iL(k) = 0vout(k) = vout(k− 1) −
∆t
C
·iR(k− 1) (7)

where vg is the input voltage and iR is the output current. The selected parameters of the boost
converter used for experimental results are shown in Table 1.

Table 1. Boost converter parameters.

Parameter Value

fsw 100 kHz
L 1 mH
C 100 µF
P 300 W

vout 400 V
vg 200 V

3. Resolution Issues and Implementation

This section describes the methods and rules that are applied to calculate the number of bits in the
signals of our application example boost power converter.

The number of bits in the signals in HIL models of power converters is hugely important in
real-time simulations in FPGAs. The clock frequency and the final area occupied in the FPGA are key
factors in this kind of simulation. Although there are not many studies on the resolution of signals in
HIL models of power converters, Goñi et al. [23] proposed two methods to determine the resolution
of state variables in models of power converters: an analytical approach and an approach based on
simulations. Both methods lead to almost identical results, so the analytical approach is recommended
due to its greatly reduced burden.
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In the analytical approach, the width required for a state variable is determined by the maximum
magnitude that can be stored in it (x) and its resolution (∆x). For state variables of power converters,
which are the voltages in every capacitor and the currents in every inductor, it should be considered
that the resolution for these signals is determined by their incremental values, which are added in
every time step (see Equations (2) and (4)). Therefore, the width is determined by both the maximum
and the incremental values. To be able to simultaneously represent both x and ∆x, the minimum
number of bits would be:

min.width =
⌈
log2

x
∆x

⌉
(8)

However, ∆x is only represented in Equation (8) by one bit, which is not enough to distinguish
between its different values. For instance, with x = 5 and ∆x = 0.25, the width is 5 bits—three
representing x and two representing ∆x. With this number of bits, in the fractional parts, only multiples
of ∆x can be represented, namely 0.25, 0.5, or 0.75. Then, as it has been previously shown in [23] for the
state variables, to be able to have enough resolution to store incremental values with higher accuracy,
extra bits, named as n, are added to the signal width:

width =
⌈
log2

x
∆x

⌉
+ n (9)

Goñi et al. proposed that x should be the maximum value allowed in the simulation during
transients, whereas ∆x is the minimum reasonable incremental value of the state variable excluding
zero. For the value of n, they proposed that with a value around 8, the resolution obtained for the
incremental values is enough. Following this approach, the number of bits for the state variables iL
and vOut are obtained, as will be shown later.

Another important issue is the type of representation. In this paper, the fixed-point method with
QX.Y notation has been chosen. With this notation, the number of bits for the integer part is named
X, whereas the number of bits for the fractional part is named Y. Also, an extra bit denotes the sign
using a complementary notation for 2. For instance, a Q5.2 signal has 1 + 5 + 2 bits. So, to represent
1.75 with this format, “00001” is used for X, with an inherent sign in the complementary notation of 2,
while “11” is represented by Y, so finally the value is “0000111”. When the widths of the state variables
are calculated with Equation (9), X has the number of bits needed to represent the maximum of the
signal, and the rest are assigned to the fractional part Y. In other signals in the application, their widths
depend on their associated hardware; therefore, they also depend on their equations. Rules of addition,
subtraction, and multiplication with the fixed-point method are applied in order to retain information.
To avoid overflow, in the addition and subtraction, the maximum of the integer parts of both operands
(X1 and X2) is chosen by adding an extra bit. In the case of multiplication, the total number of bits of
the integer part is the addition of the integer parts of both operands and an extra bit (X1 + X2 + 1). To
avoid loss of resolution, the addition and subtraction requires the maximum of the fractional parts in
the operands (Y1 and Y2), and in the case of multiplication requires the addition of both parts (Y1 + Y2).

(QX1.Y1) ± (QX2.Y2)→ Q(max(X1, X2) + 1).max(Y1, Y2) (10)

(QX1.Y1)·(QX2.Y2)→ Q(X1 + X2 + 1).(Y1 + Y2) (11)

For the implementation, the number of bits for every signal in the boost converter should be
selected. Firstly, the signals, which are shown in Figure 2, have to be classified. The state variables
(iL and vout), constants (dtL and dtC), inputs (vg and ir), outputs (iin and voutExt), and feedback signals
(voutFeedback and iLFeedback) are shown in red.
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The state variables acquire their values from the addition of themselves and their incremental
values, as is observed in Equations (2) and (4). As these variables are accumulative, the number
of bits for their width, applying the rule of addition in the QX.Y notation (Equation (10)), would
increase indefinitely. To avoid this, the width is limited to the value recommended by Goñi et al. in
the analytical approach, shown in Equation (9). The maximum value during the transient phase for
the output voltage, vout, is 792.7 V in the worst case simulation, whereas its increment is 20 µV. As
such, the recommended width when applying Equation (9) is 26 + n (i.e., 34), but with the sign bit the
total number of bits is 35. For the integer part (X), at least 10 bits are needed, with which the fractional
part (Y) would be 24. Although 10 bits are enough for this specific maximum, to cover other possible
critical maximums in other simulations, an extra bit is added to the integer part. Thus, the final format
is Q (10 + 1).(24), that is Q11.24, with a total of 36 bits. For the current inductor, iL, the maximum is
127.3 A and its incremental value is 1.991 mA. Therefore, the recommended width would be 16 + n bits
(i.e., 24), but the sign is added the numbers of bit would be 25. As 7 bits are needed for the integer part
(X), then the fractional part (Y) would be 17 bits. Although 7 bits is enough for the integer part, one
extra is added to avoid overflow situations. Thus, the final format is Q (7 + 1).17, that is, Q8.17, with a
total width of 26 bits.

Constants have a single value, so their range is the minimum. Therefore, it was decided that 10
bits are enough to represent them. Regarding the inputs and outputs, the width is imposed by external
restrictions, such as analog–digital (ADC or DAC) converters [24], so it was decided that the width
would be 13 bits (12 + sign bit). The number of bits of their integer parts is calculated based on their
maximums, using the rest for the fractional part.

Now that the widths of most of the signals in our application example have been explained, we
can focus on how many bits are useful in the feedback signals, voutFeedback and iLFeedback, without losing
important information and avoiding wasting bits. This is the main contribution of the paper. These
signals have the same information as the state variables. The only difference is that they do not need to
accurately store the small increments, ∆x, which are already stored in the state variables themselves.
The information that they have to transmit to the rest of the model is the present value of the state
variable, so it can be used to calculate the increment of the other state variable.

It is without doubt that the number of integer bits of the feedback signals has to be the same as their
homonymous state variables because their ranges (maximum values) are exactly the same. However,
there is doubt over the number of fractional bits. It must be taken into account that the feedback signals
are used in addition or subtraction with the inputs (see Figure 2). For instance, voutFeedback is subtracted
from vg in order to calculate the next increment in the inductor current. The same is true when iLFeedback
and iR are used to calculate the next increment in the output voltage. Therefore, there doubt over
whether using more bits in the feedback signals than in their associated inputs is useful or not, and to
which extent. This doubt will be solved in the Results section by studying the condition in the width of
the feedback signals that should be reached; that is, whether reaching the condition Y (feedback) > Y
(input) is enough, if X (feedback) + Y (feedback) > X (input) + Y (input) is the real need, or if some
other condition must be reached.
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It is important to note that the model is a loop in which any signal has influence on both state
variables. For instance, voutFeedback is used to calculate the next value of iL, and iLFeedback is then used to
calculate the next value of vout, closing the loop. As a consequence, the signal with the highest error is
finally responsible for the error of the circuit. Therefore, the following experiment is performed. All
the variables are increased in 24 fractional bits, except for one input, which is maintained at 13 bits,
along with its associated feedback signal. In this last signal, the fractional bits, Y, are removed to study
the relation between the overall error and Y. The removal is done by decreasing Y until the error is
near 100%.

4. Results

In order to carry out these experiments, this section presents different simulations. All of them are
in an open loop from the point of view of the controller. To be more precise, they use a constant duty
cycle. The reason is that a controller would tend to compensate for the errors of the model by trying to
reach the same final value, so the error values would be artificially modified.

The results will be presented as the error obtained for each value of Y in either feedback signal
(voutFeedback or iLFeedback). The error is calculated from a reference or golden model, which should ideally
be exactly the same as the fixed-point model but with infinite resolution. This is modelled through the
implementation of the same model using the real VHSIC Hardware Description Language (VHDL)
data type, which is a floating point containing 64 bits. Then, the difference between the fixed-point
model with each value of Y and the real model is represented through the mean average error (MAE)
divided by the typical values, which are 0.75 A and 400 V for iL and vout, respectively.

The first set of simulations are carried out starting with initial conditions vout = 400 V and iL = 0 A.
The waveforms of the inputs and feedback signals are shown in Figure 3. Here, iR has the same kind of
waveform as vout because a resistive load is simulated. Regarding vg, which is an independent input,
as this application example is a DC–DC conversion, it could be a constant. However, if it was constant,
it would be difficult to study the necessary number of bits in its associated feedback signal (voutFeedback),
as will be explained later. That is why white noise is superimposed to the average value of 200 V, as
shown in Figure 3.
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Analyzing Figure 3, the number of bits that change in each signal can be extracted. For instance,
vout changes between approximately 397 and 403 V. Its maximum variation is 6 V, so a total of log2

(6) bits, rounded up to 3, are changed. Then, the number of integer bits that really change in vout is 3,
which will be noted as Xmov (vout) = 3. However, the total number of changing bits in vout is Xmov +
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Y = 3 + Y, since all the fractional bits will also change. Using the same reasoning, for vg (represented
with Q9.3 bits) with a variation of 5 V, Xmov (vg) = 3, but its total moving bits are Xmov + Y = 3 + 3 = 6
in vg. For iR, that is Q2.10 bits, a variation of 0.01125 A is obtained, so Xmov + Y = (−6) + 10 = 4 bits
are changing, and finally for the iLFeedback that varies 3 A, the changing bits are Xmov + Y = 2 + Y.

As previously explained, the first experiment checks the error when all the signals have 24 bits
more than those theoretically necessary (as shown in Figure 2), except vg and voutFeedback. Here, vg is
set to Q9.3, while voutFeedback is Q11.Y with variable Y. Therefore, these two signals should be the main
ones responsible for the error. The relative MAE in each state variable for this case is represented in
Figure 4a for vout and Figure 4b for iL. The vertical axis is the relative MAE in logarithmic scale (so 0
means 100% error) and the horizontal axis is Y, the number of fractional bits of voutFeedback. Y is moved
from a maximum of 48 bits (24 of the original vout in Figure 2 plus the 24 extra bits) down to −3, when
the relative error of the inductor current approaches 100%. The relative error of the output voltage is
smaller, but in accordance with the smaller relative change of this state variable, as seen in Figure 3.
Regardless, the behavior in both state variables follows the same pattern. This agrees with the fact that
the model is a loop in which the error in any point propagates to the rest of the model. The second
conclusion is that the error stops decreasing after a certain number of Y bits is used (flat area of each
series in the graphs). This reflects the fact that the signal with the highest error is responsible for almost
all the error, and a slightly decrease of the error in other signals leads does not produce positive results.
However, the left part of each series in the graphs shows that the error decreases as the number of Y
bits increases almost linearly. Therefore, the error in that part of each series is mainly caused by the
signal, which changes its number of bits, voutFeedback, while the error in the flat part is mainly caused
by another signal. As all other signals except vg and voutFeedback have 24 bits more than theoretically
necessary, the signal causing the error in this right part is vg. Figure 4 also shows the frontier between
both error-dominant parts, which is when Y (voutFeedback) = 3. This is also the number of fractional bits
of its associated input, vg.
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The same analysis of the error in the state variables, vout and iL, is done in Figure 5. In this case,
the other feedback signal, iLFeedback, changes its number of fractional bits (Q8.Y) and iR is set to Q2.10,
so only these two signals can be the cause of the error, since the rest of the signals have 24 bits more
than they need. In this case, Y is moved from 41 (17 + 24) down to −4. The same general conclusions
can be extracted, while the frontier between error-dominant parts is around Y (iLFeedback) = 0. However,
the number of fractional bits in iR is 10. This discards the possibility that the necessary number of
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fractional bits in each feedback signal must be equal to the number of fractional bits in its associated
input. However, when analyzing the number of changing bits in both signals it can be seen that they
are very similar in the error frontier: Xmov (iLFeedback) + Y (iLFeedback) = 2 + 0 = 2 bits, while Xmov (iR) +

Y (iR) = −6 + 10 = 4 bits.
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Therefore, the proposed hypothesis is that the total number of moving bits in each pair of feedback
values and the associated input must be the same. This also agrees with the results of Figure 4. In
this case, Xmov (voutFeedback) + Y (voutFeedback) = 3 + 3 = 6 bits in the error frontier, while Xmov (vg) + Y
(vg) = 3 + 3 = 6 bits. However, in order to confirm this hypothesis, additional results are desirable.
These are extracted from a similar experiment with other simulation results.

In this second set of simulations, a constant duty cycle with initial conditions vout = 0 V and
iL = 0 A is used. The waveforms of the four signals under study are represented in Figure 6 with
these initial conditions, in contrast to Figure 3, which shows the waveforms under other set of initial
conditions. However, very different limits are reached in these new simulations, which significantly
change Xmov. The new obtained values are Xmov (vg) = 3, Xmov (voutFeedback) = 10, Xmov (iR) = 2, and
Xmov (iLFeedback) = 7.
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Again, the first error analysis is carried out by removing voutFeedback, while vg is set to Q9.3. The
rest of the signals have 24 additional bits to discard if they are the source of error. Figure 7 shows
the relative MAE in both state variables. In this case, the error frontier is Y (voutFeedback) = −5 or −3,
depending on the state variable. Analyzing the total number of changing bits in the error frontier,
Xmov (voutFeedback) + Y (voutFeedback) = 10 + (−5) = 5 or 10 + (−3) = 7 bits, while Xmov (vg) + Y (vg) = 3 +

3 = 6 bits, so the results are in agreement with the hypothesis.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 12 

 

Figure 6. Inputs and feedback signals waveforms with initial conditions vout = 0 V and iL = 0. 

Again, the first error analysis is carried out by removing voutFeedback, while vg is set to Q9.3. The rest 
of the signals have 24 additional bits to discard if they are the source of error. Figure 7 shows the 
relative MAE in both state variables. In this case, the error frontier is Y (voutFeedback) = −5 or −3, depending 
on the state variable. Analyzing the total number of changing bits in the error frontier, Xmov 
(voutFeedback) + Y (voutFeedback) = 10 + (−5) = 5 or 10 + (−3) = 7 bits, while Xmov (vg) + Y (vg) = 3 + 3 = 6 bits, so 
the results are in agreement with the hypothesis. 

 
Figure 7. Relative MAE in each state variable when sweeping the number of fractional bits of voutFeedback. 
Initial conditions are vout = 0 V and iL = 0 A. (a) MAE in vout. (b) MAE in iL. 

Regarding the other pair of feedback input signals, iLFeedback and iR, an additional consideration 
must be taken into account. The number of moving bits of iLFeedback is very different in two parts of the 
simulation. In the start-up, which lasts for 2 ms (marked in red color in Figure 6), Xmov (iLFeedback) = 7, 
since the current reaches 127.3 A starting from 0 A. However, after that short abrupt transient phase, 
the current dramatically decreases and in fact enters the DCM for a long time. Not only is the number 
of changing bits dramatically decreased, but the possible error is reset to 0 every switching period, 
since the current is forced to be 0 A. Therefore, the error comparison should be made only during 
that part of the simulation (first 2 ms) to avoid biased results because of the DCM mode resetting the 
error of iLFeedback every switching period. 

The error during those starting 2 ms is analyzed in Figure 8. The error frontier is in Y (iLFeedback) = 
4, so Xmov (iLFeedback) + Y (iLFeedback) = 7 + 4 = 11 bits, while Xmov (iR) + Y (iR) = 2 + 10 = 12 bits, which is in 
good agreement with the hypothesis. 

 

(a) (b)

(a) (b)

Figure 7. Relative MAE in each state variable when sweeping the number of fractional bits of voutFeedback.
Initial conditions are vout = 0 V and iL = 0 A. (a) MAE in vout. (b) MAE in iL.

Regarding the other pair of feedback input signals, iLFeedback and iR, an additional consideration
must be taken into account. The number of moving bits of iLFeedback is very different in two parts of the
simulation. In the start-up, which lasts for 2 ms (marked in red color in Figure 6), Xmov (iLFeedback) = 7,
since the current reaches 127.3 A starting from 0 A. However, after that short abrupt transient phase,
the current dramatically decreases and in fact enters the DCM for a long time. Not only is the number
of changing bits dramatically decreased, but the possible error is reset to 0 every switching period,
since the current is forced to be 0 A. Therefore, the error comparison should be made only during that
part of the simulation (first 2 ms) to avoid biased results because of the DCM mode resetting the error
of iLFeedback every switching period.

The error during those starting 2 ms is analyzed in Figure 8. The error frontier is in Y (iLFeedback) = 4,
so Xmov (iLFeedback) + Y (iLFeedback) = 7 + 4 = 11 bits, while Xmov (iR) + Y (iR) = 2 + 10 = 12 bits, which is
in good agreement with the hypothesis.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 12 

 

Figure 6. Inputs and feedback signals waveforms with initial conditions vout = 0 V and iL = 0. 

Again, the first error analysis is carried out by removing voutFeedback, while vg is set to Q9.3. The rest 
of the signals have 24 additional bits to discard if they are the source of error. Figure 7 shows the 
relative MAE in both state variables. In this case, the error frontier is Y (voutFeedback) = −5 or −3, depending 
on the state variable. Analyzing the total number of changing bits in the error frontier, Xmov 
(voutFeedback) + Y (voutFeedback) = 10 + (−5) = 5 or 10 + (−3) = 7 bits, while Xmov (vg) + Y (vg) = 3 + 3 = 6 bits, so 
the results are in agreement with the hypothesis. 

 
Figure 7. Relative MAE in each state variable when sweeping the number of fractional bits of voutFeedback. 
Initial conditions are vout = 0 V and iL = 0 A. (a) MAE in vout. (b) MAE in iL. 

Regarding the other pair of feedback input signals, iLFeedback and iR, an additional consideration 
must be taken into account. The number of moving bits of iLFeedback is very different in two parts of the 
simulation. In the start-up, which lasts for 2 ms (marked in red color in Figure 6), Xmov (iLFeedback) = 7, 
since the current reaches 127.3 A starting from 0 A. However, after that short abrupt transient phase, 
the current dramatically decreases and in fact enters the DCM for a long time. Not only is the number 
of changing bits dramatically decreased, but the possible error is reset to 0 every switching period, 
since the current is forced to be 0 A. Therefore, the error comparison should be made only during 
that part of the simulation (first 2 ms) to avoid biased results because of the DCM mode resetting the 
error of iLFeedback every switching period. 

The error during those starting 2 ms is analyzed in Figure 8. The error frontier is in Y (iLFeedback) = 
4, so Xmov (iLFeedback) + Y (iLFeedback) = 7 + 4 = 11 bits, while Xmov (iR) + Y (iR) = 2 + 10 = 12 bits, which is in 
good agreement with the hypothesis. 

 

(a) (b)

(a) (b)

Figure 8. Relative MAE in each state variable when sweeping the number of fractional bits of iLFeedback.
Initial conditions are vout = 0 V and iL = 0 A, time considered is 2 ms. (a) MAE in vout. (b) MAE in iL.



Electronics 2019, 8, 1527 10 of 12

5. Discussion and Proposed Design Criteria

The conclusion of the previous results is that the number of moving bits (Xmov + Y) in a feedback
signal must be equal or greater than those in its associated input (see Equation (12)) in order to reach
the same level of error. Further additional fractional bits, Y, in the feedback signal are wasted since the
error is then imposed by the input, for which the number of bits is externally set by some hardware
restriction (e.g., number of bits in an ADC). However, this criterion of (Xmov + Y) would be difficult to
use because, as has been previously seen, Xmov changes in the same model in different simulation
scenarios. The question is how to set a reasonable number of bits for the feedback signals that will be
enough for most simulation conditions, without unnecessary waste of resources and without having to
know in detail all possible simulations conditions. Since X (feedback) is directly inherited from the
state variable, the only parameter to determine is Y (feedback).

Xmov( f eedback) + Y( f eedback) ≥ Xmov(input) + Y(input) (12)

The proposed solution to set Y (feedback) is by simultaneously meeting the following three criteria:

I. Y (feedback) ≥ Y (input)
II. X (feedback) + Y (feedback) ≥ X (input) + Y (input)
III. Max error (feedback) < 2−Y(feedback)

In all the cases in which Xmov (feedback) ≥ Xmov (input), only with criterion I is Equation (12)
met. For the cases in which Xmov (feedback) < Xmov (input), meeting criterion I is not enough to also
fulfill Equation (12). However, Equation (12) will be met using criterion II as long as [Xmov (input) −
Xmov (feedback)] ≤ [X (input) − X (feedback)].

With criteria I and II, the only possibility for not meeting Equation (12) is that Xmov (feedback)
< Xmov (input) and [Xmov (input) − Xmov (feedback)] > [X (input) − X (feedback)]. This limits the
possibility to cases in which Xmov (feedback) is quite low (i.e., the feedback signal (and therefore the
state variable) has small changes during the simulation. When the changes are small, the error will
also be smaller, so this possibility will be self-limited in its impact. For those cases, criterion III sets a
natural ceiling for the possible error in that specific signal. This criterion is true for any signal and is a
natural part of any fixed-point design. This last criterion assures an acceptable level of error, even
when not meeting Equation (12). The error will be caused by the feedback and not the input, but the
error will be low anyhow.

6. Conclusions

This paper focuses on how to choose the width of feedback signals in HIL models of power
converters implemented with a fixed point method. Feedback signals transmit the information of the
state variables to the rest of the model. However, this paper shows it is not necessary to send all the
fractional bits of the state variables in order to maintain the level of error, with the advantage that
fewer bits in the feedback signal will require less resources for implementation. Since the integer bits
will be equal to the integer bits of the state variable, this paper focuses on how to choose the fractional
bits. While state variables need many fractional bits to accurately calculate their increments, once a
new value is calculated it can be sent to the rest of the model with fewer fractional bits. The question is
which width is appropriate for each feedback signal.

The results show that the error is imposed by the inputs that are added or subtracted to the
feedback signals when the moving bits in a feedback signal exceed the moving bits of its associated
input. Since it is difficult to know a priori how many bits will be moving in the inputs during all
possible simulation scenarios, the following criteria are proposed. First, the number of fractional bits,
Y, in a feedback signal should be at least equal to the number of fractional bits in its associated input.
Second, the total number of bits, X + Y, in a feedback signal should be at least equal to the total number
of bits in its associated input. It must be considered that the inputs are restricted in their number of bits
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because they come from ADCs or similar means. Following this methodology, the feedback signals
will not be involved in imposing the error of the system, except in cases in which the state variables
have small ranges during a simulation, which also means that the error will be even smaller. For those
cases, the natural design criterion of any fixed-point signal to choose the fractional bits to limit its error
sets a maximum limit to the error.
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