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Abstract: The energy demand of mankind is constantly growing, thus the utilization of various
renewable energy sources, which also reduces negative environmental effects, is becoming more and
more important. Because of the achievement of climate protection targets, photovoltaic (PV) energy
has an increasing role in the global energy mix. This paper presents the technical and economic
aspects of different photovoltaic system configurations designed to suit the Hungarian renewable
energy regulations. In this study, five alternative PV configurations were examined for systems with
a capacity from 50 kW to 500 kW, related to low- and medium-voltage installations. This article also
introduces and explains the Hungarian economic PV and Feed-in-Tariff (FiT) regulations, where
three different investment alternatives are analyzed with the help of economic indicators. This study
could help stakeholders in the market (e.g., the Hungarian industry sector and local governments)
understand the possible directions of technical and economic PV development. According to
the results, the payback periods in all the studied economic-technical cases were below 10 years.
The experimental results show that each investment option may be a good decision from an economic
and technical point of view under the Hungarian regulations in force in 2019.
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1. Introduction

1.1. Changes in the Spreading of Photovoltaic (PV) Technology

Nowadays more and more countries worldwide understand the harmful consequences of climate
change. It is important to keep the global temperature rise below 2 ◦C compared to the preindustrial
level and aim for a maximum increase of only 1.5 ◦C [1]. In the transition process that is needed
to achieve these targets and to reduce the greenhouse effect, the use of variable renewable energy
(VRE) will become more and more important in global energy systems. Advances in renewable energy
technologies have provided several sustainable alternatives, and the role of solar energy sources
is becoming increasingly important. As one of the consequences, many cities started to include
solar energy programs in their urban planning all around the world in order to support sustainable
development and environmental protection. The reasons are truly understandable; the energy from
the Sun, which is the base of most natural processes, is available to everyone and it is a sustainable,
plentiful and clean resource [2–11]. It can be stated that the annual solar energy potential on the surface
of the Earth is thousands of times greater than the current global energy demand. PV technologies use
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photovoltaic cells, which transform the incoming solar radiation into DC energy [12–14]. Today, the
most widely used PV technologies are the polycrystalline (p-Si), monocrystalline (m-Si) and amorphous
silicon (a-Si) ones. Because of the good reliability of crystalline solar modules, their market share is
about 90% currently. In the case of the p-Si and m-Si PV modules it is possible to achieve an efficiency
of even 21.9% and 25.6%, respectively [15–24]. The efficiency of the most commonly used m-Si and
p-Si modules is typically between 10–18% in the EU [25]. The a-Si photovoltaic technology is a type of
thin film PV technology, which nowadays has a maximum efficiency of 10.5%. This efficiency value is
typically between 4 and 6% in the case of the most commonly used a-Si modules. The market share of
a-Si technology is unknown, but the share of all thin-film solar modules is around 10%. The price of
a-Si technology may even be as low as 0.06–0.09 €/WP, which is a significant advantage promoting the
spread of PV technology in the European Union (EU) [15,18–20,24–27]. The components of crystalline
PV technology are shown in Figure 1.
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Figure 1. The components of the polycrystalline (p-Si) technology.

In the last 10 years, a significant market growth has been observed in the PV sector, mainly
due to newly introduced governmental financial support, the Feed-in-Tariff, decreasing investment
costs and dynamic technological developments [6,15,28]. In 2017, the renewable electricity generation
amounted to 26.5% of the global electricity production, 1.9% of which was the share of PV technologies.
In the same year, the whole global capacity of built-in photovoltaic systems was 402 GW. The leading
producers were China with 131.1 GW, the European Union with 108 GW, the United States of America
with 51 GW and Japan with 49 GW. It is interesting to note the change that PV technology became
China’s most significant new power capacity (Figure 2) [6,29].
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Figure 2. The photovoltaic (PV) capacity and the additions in the case of the top 10 countries,
2017 [6,30–34].

In Hungary, the cumulative installed PV capacity was around 0.31 GW in 2017 and 0.7 GW at the
end of December 2018. The main reason for this growth was the modified PV regulation [35].



Electronics 2019, 8, 149 3 of 17

The amount of PV energy produced depends primarily on the solar radiation, the technology,
the temperature, the current natural factors, the composition of the particular module, the combined
effect of the installation and the efficiency rates. Based on the European PV power potential map it
can be concluded that the yearly average amount of the PV energy that can be generated is between
700–1900 kWh/kWp depending on the various geographical locations. In Hungary, these values range
between 1050–1250 kWh/kWp (Figure 3). For economic reasons, large (>50 kWp) PV systems are
primarily mounted on fixed mounting systems in Hungary [19,36–40].
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1.2. Feed-in-Tariff (FiT) in Hungary—Overall Summary

Various countries use diverse schemes to support green energy usage. These concepts are typically
modified from year to year, and the country-specific changes are difficult to follow (Figure 4) [41]. Also,
the information is often several-years-old and, therefore, unreliable. Currently, no reliable summarized
data are available from Hungary. The most common schemes are various investment supports (IS), the
Feed-in-Tariff (FiT) and the net metering system (NS) [42–46].

In Hungary, the government supports electric power generated by utilizing renewable sources
by means of a FiT in the case of installations of a peak power between 50–500 kWp, while those
with a kilowatt-peak of 500–1000 kWp enjoy the market premium. The green premium is awarded
to PV power plants of a peak power over 1000 kWp only as a result of taking part in a tendering
process, whereas household-sized power plants (HMKE) with a maximum 50 kWp peak power can
profit from net metering. Moreover, the application of renewable energy sources is usually also
subsidized in the heating and electricity category. The most commonly realized subsidy programs
within the Economic Development and Innovation Programme (EDIOP) and the Environment and
Energy Efficiency Operational Programme (EEEOP) in 2017 were those that provided non-repayable
loans and grants, among others combined with the FiT. Most of the calls for tender are still to be
published. The most important program intended to support the use of green energy is a system of
quotas coupled with the reimbursement of an excise duty in the category of transportation. Priority grid
access and grid connections are to be granted to the producers of green power. The costs of expanding
the grid and of connecting the renewable energy plants to it are to be covered by the grid operator or
the plant owner, subject to a number of conditions. Numerous measures designed to encourage the
development, building and use of green energy installations have been introduced [45,47,48]. The year
2017 saw non-repayable loans and grants combined with the FiT distributed as a part of the Economic
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Development and Innovation Programme (EDIOP) and the Environment and Energy Efficiency
Operational Programme (EEEOP). Also in the same year, on 1 January 2017, the new Renewable
Energy Support Scheme (METÁR) came into force to partly supplant the older Hungarian system
of supporting green energy from renewable energy sources (KÁT), which had been amended a year
earlier, in 2016. Electricity-producing facilities over the size of 50 kWp are required to make 15-minute
electricity production forecasts for each day under the current system. Furthermore, PV system owners
are to pay a surcharge for any divergence of more than +/−50% (in the case of 15-minute intervals
between measurements) from 1 July 2018. If the deviation is less than +/−50%, it is possible to get a FiT
bonus. This is a motivating regulation, which helps create more accurate energy forecasts. For example,
if the deviation in the case of 15 mins measurement intervals is +30%, a 20% bonus will be available
for this period [45,47,48].Electronics 2019, 8, x FOR PEER REVIEW  4 of 19 
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Another scheme of support meant for business customers, local governments and even residential
customers, called HMKE, was designed for PV systems with capacities of less than 50 kW which feed
the energy produced by the PV modules into the grid in addition to purchasing energy. According to
this scheme, the owner or operator of the PV system is required to pay only the balance of the quantity
of energy they have consumed from the grid and the amount of energy they have fed into the system,
which is calculated once annually (only the difference has to be financially settled). Under this scheme,
15-minute energy production forecasts are not required, and thus, there is not a surcharge either. In the
event of excess consumption by the owner of the PV system he/she needs to pay, but if the amount of
power generated exceeds that of the consumption, it is the service provider who has to pay (about
50% less) the consumer. In this system, storing the energy is the responsibility of the national grid,
which means that consumers having relatively small PV systems can be self-sufficient and do not need
to be concerned about the losses and costs associated with storage. From the point of view of the
government, it is the potential economic benefits related to the production of green energy that can
also be crucial considerations with regards to this regulation [40,49].

When the goal is only to reduce one’s own energy consumption in larger buildings, it is a possible
solution to build a Small-scale PV system (>50 kWp), which can be done in two alternative ways. In the
first option, the PV system may only produce as much electric energy as the user needs at a given
moment. In this case, the feeding of the PV energy into the grid is not allowed, which is guaranteed
by a regulatory device. The device can even stop the energy generation of the entire PV system if
self-consumption is less than the electricity production. In the second option, it is allowed to feed
the extra PV energy into the grid when the amount of the generated PV energy exceeds that of the
consumption. Besides the fact that the licensing process is much more complicated and a contract
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must be also concluded with the service provider concerning the extra PV energy, the FiT is also much
lower (about 0.015 €/kWh/2019) than in the cases of KÁT, METÁR or HMKE [50].

According to current regulations, PV system owners do not have the opportunity to sell their CO2

savings on the global market and the state does not compensate them. For this reason, this study does
not deal with this market regulation [47,51].

1.3. Popular PV Inverter Technologies and Systems in Hungary

Grid-connected PV systems have the fastest growth rate in the international energy industry,
and this sector plays a dominant role in the global market. Grid-connected or on-grid PV systems
only generate energy when the utility power grid is available. They need to connect to the grid to
function, and they can send excess power generated back to the grid when the energy consumption of
the building or facility is low. Moreover, these systems are characterized by low costs, high efficiency,
strong scalability and high reliability [52–57].

The following main components, services and materials are required for on-grid PV systems in
Hungary [38,50,58,59]:

• PV modules, PV-inverter, frames, cable with outlets, AC/DC overcurrent and overvoltage protection,
grounding network, additional electric outfit, costs of design, installation and transportation.

• Optional: fence, fence alarm system, cabling of a compact station, piling, camera security system,
access control system, transformer station and maintenance [38,58].

It can be seen, that a PV system requires a number of devices, among which one of the most
important ones is the inverter.

There are many inverter manufacturers in the world, of which the three most significant ones are
Huawei Technologies Co., Ltd., Sungrow Power Supply Co., Ltd. and SMA Solar Technology AG [60].
In Hungary, the use of SMA inverters is popular for PV systems with sizes ranging from a few kWp to
MWp sizes [61–63]. However, Growatt inverters (Growatt New Energy Technology Co., Ltd.) are also
becoming increasingly popular in Hungary because all Hungarian service providers authorize their
installation on their grids. In the Hungarian HMKE regulation, PV systems can only connect to the
low voltage grid (0.4 kV) with a maximum performance of 50 kVA (3 x 63 A) (Figure 5). A three-phase
inverter block diagram shows (Growatt 30000TL3-S, 33000TL3-S, 40000TL3-NS/50000TL3) the main
logical structure of such a configuration in Figure 6 [64–68].
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Technology Co., Ltd. [68,69].

In the case of Small-scale or KÁT PV systems, the connection to the low- (0.4 kV) or medium-
voltage (22 kV) network has to be examined individually [48,66,70–76]. For medium-voltage connections,
SMA’s MV Power Station configurations are the preferred technology in Hungary because these are plug
and play concepts, easy to plan, transport, install and the inverters include PID protections.
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Figure 6. A Growatt 30-50kTL3-(N)S topology block diagram [68,69].

In this solution, the inverters are installed in the center of the inverter compartment with an
air outlet facing backward, and the terminals for the DC area can be connected to either the front or
the back. The inverter compartment of a medium-voltage power station includes two standard sun
protection roofs and two standard service platforms. The outdoor transformer has been optimized
without an active fan for reduced maintenance. In addition to the medium-voltage switchgear, other
features have also been installed with three panels, including two cable panels with a load-break switch,
one transformer panel with a circuit breaker or a load-break switch with fuses (Figure 7) [77–79].
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2. Material and Methods

Methods and Details of the Technical and Economic Assessment

Our work deals with the Hungarian PV techno-economic and Feed-in-Tariff (FiT) options where
three different, most commonly built crystalline PV facility alternatives were examined with the help
of economic indicators:

• a 50 kWp PV system subject to the HMKE regulation (NS + FiT);
• a 500 kWp Small-scale PV system, where feeding into the grid is not allowed (only NS); and
• a 500 kWp PV system subject to the 31.12.2016 KÁT regulation (FiT + FiT bonus) (Table 1).

In the course of these economic calculations, not only the investment needed for each PV system
but also the annual extra yield and financial expenditure under the respective regulations currently in
force in Hungary are examined. The authors carried out a sensitivity analysis for the future changes
of FiT because they may have significant effects on the investment indicators. The HMKE option
is available for residential, business and local government customers on a yearly basis, and this
option is the simplest solution for PV construction [40,49,80,81]. In the HMKE or Small-scale market
environment, it is not necessary to create an electricity production forecast (see KÁT) [47].

For the validation of the model, PANNON Pro Innovations Ltd., based in Hungary in Budapest,
made the necessary empirical data available. Hungary’s foremost private PV development firm,
Pannon Green Power Ltd. (Budapest, Hungary), was also established by the same PANNON Pro
Innovations Ltd., which had developed a profitable business model for the PV project development [82].

In the case of a well-planned Small-scale PV system where the goal is to achieve annual energy
savings of 20%, the annual PV energy available for use will be reduced by about 5% if feeding into the
grid is not allowed (due to the regulatory device). If the PV system investor wants to save 25% of the
energy per year, the annual profitable PV energy will be already 10–11% less. In our calculations, a PV
energy loss of 5% was estimated annually [82]. We did not calculate with the second option in which
feeding the extra PV energy into the grid is allowed because that involves a great number of various
options, which will be the subject of a future study.

The KÁT regulation presents a much heavier administrative burden due to the required procedure
of the electricity production forecasts. Many PV system owners overcome this difficulty with the help
of companies who specialize in this problem and take care of all the difficulties of administration and
forecasting in exchange for 54% of the FiT bonus. Accordingly, in the calculations, the remaining 46%
of the FiT bonus was considered [83].

Crystalline PV modules are characterized by an annual performance degradation. For this
research, its value was set at 0.5%, which is the generally accepted rate [15,84]. Regarding the operation
time, a 15-year period was chosen, since presently, that is the most frequent investment practice in
Europe. In addition, in Hungary, about 15 years will soon become the FiT support time in the KÁT
regulation (Table 1). After 15 years, the devices (PV modules and inverters) still remain in good
condition, and they can be sold at reasonable prices. This practice has two advantages:

• This solution makes it possible for investors to use new and more efficient PV technologies every
15 years.

• It is also possible for poorer people to buy PV technologies at a more affordable price [25,85].

Based on practical experience, the maintenance costs were considered (PV washing, lawn mowing,
unexpected technical failure, etc.), while the replacement of the inverter was not taken into account in
this time period. Furthermore, we calculated with a 10% PV system loss, and the model featured a tilt
angle of 35◦. The internationally accepted methodology in the literature helped us with determining
the profitability indices (PI), the discounted payback periods (DPP) and the net present values (NPV)
associated with the PV systems as well as with the economic calculations (Table 2) [44,86]. The standing
of the long-term Hungarian bond yields dated 13 November 2018 was the basis of the 4.36% interest
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rate that was used in the calculation of the time values of the dynamic economic indicators. For the
yearly alterations in the HMKE and the Small-scale PV electricity FiT, which were considered to have
a value of 3.07%, the inflation rate between 2003 and 2017 was taken as a basis.

Considering government bond yields are necessary for forecasting future incomes, changes in the
Feed-in-Tariffs depend on the current rate of inflation [40,87,88]. The KÁT FiT changes were calculated
based on the 4 years’ features because in this set of regulations, the degree of change can be more
accurately predicted by using such a period. The changes in the FiT bonus are uncertain, so its amount
was regarded to be constant. For the calculations, an exchange rate of 322 Hungarian forints against
the € and net values were applied [89]. The costs of land purchases were not taken into account; we
considered land to be already available. All the important primary information is shown in Table 1 [90].
Our grid-tied PV system simulations benefitted from data from the JRC Photovoltaic Geographical
Information System (PVGIS), which also contained several decades’ real climatic data series. With
this online software, it is possible to estimate the average monthly and yearly energy production of
typical grid-tied and off-grid PV systems. The calculation takes into account the solar radiation, the
temperature, the wind speed, the installed peak PV power, the tilt angle, the azimuth, the system loss,
the mounting position and the type of the PV module. The user can set any values and can easily
generate estimates for PV energy production. For this model average, easily accessible crystalline
PV modules were taken into account [91]. The data used for the average electric energy production
of 1 kWp PV systems were validated by data from real PV systems (Table 1) [92–94]. In our model,
the PV modules and inverters will be sold and a demolition fee will be charged at the end of the
investment period.

Table 1. The initial economic-technical data for the calculations. [15,25,38,49,58,61,82,84,85,87,88,90–98].

Content Value

Average validated electric energy production of a 1 kWp HMKE or KÁT PV system in
Hungary, first year (kWh/a)

1200

Average validated electric energy production of a 1 kWp Small-scale PV system with a
regulatory device in Hungary, first year (kWh/a) 1140

Decrease of annual performance of average crystalline modules after the 1st year (%) 0.5
Duration of the investment (year) 15
System loss (PV inverter, grid) (%) 10
Tilt angle of PV modules (◦) 35
Orientation (azimuth) (◦) 180

Household-sized power plant (HMKE) (kWp) 50
Small-scale PV system (kWp) 500
31 December 2016 KÁT regulation (kWp) 500

Average delivery price for electric energy for business customers in the HMKE and in the
Small-scale PV system (€/kWh/2019) 0.1175

KÁT FiT (€/kWh/2019) 0.1095
KÁT FiT bonus for daily forecast (€/kWh/2019) 0.0093
Rate of average inflation (2003–2017) (%) 3.7
Bond yield interest rate (%) 4.36
Financial support (%) 0

Investment costs, HMKE PV system, net, 2019 (€) 41,817
Investment costs, Small-scale or KÁT PV system, net, 2019 (€) 447,205
Average price of 1 kWp used crystalline PV modules, 2019 (€) 100
Average price of 1 kW used PV inverter power, HMKE, 2019 (€) 56
Average price of 1 kW used PV inverter power, Small-scale or KÁT, 2019 (€) 52
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Table 2. The main context for the calculations.

Description Context Ref.

Annual PV system energy
output (kWh/a)

First year: E1 = The software results of PVGIS [91]
Other years: Et = E(t−1)(1 − 0.005) [15,47,84]

Total cash flow (€)
CFtotal =

[ (EtotalFiTtotal) + Sales of photovoltaic modules and inverters)]−
(C0 + CO&Mtotal + Demolition fee)

[15,44,47,82,84,99]

Net present value (€) NPV = −C0 +
n
∑

t=1

Ct

(1+r)t

[86,100]
Internal Rate of Return (%) 0 = −C0 +

n
∑

t=1

Ct

(1+IRR)t

Discounted payback period (€) C0 +
DPP
∑

t=1
Ct = 0

3. Results

The Economic-Technical Aspects of the Examined PV Systems

Tables 3 and 4 show us the comparison of the different investment alternatives. In every case, the
net present value was positive, so the investments can be profitable in the studied economic situation.

According to the calculations, the best investment alternative is the HMKE. In this market
environment, the important factors are the easy and quick licensing and realization, the positive
market environment and the annual financial settlement. In this type of regulation, the amount of
energy consumed and the amount fed into the system are calculated once a year and only the balance
has to be financially settled. On the other hand, it is not necessary to create 15-min energy production
forecasts. Local governments prefer the building of HMKE PV systems by the institutions they own,
such as hospitals, libraries, schools, kindergartens, etc. because some renewable energy or energy
efficiency investments can get 60% or even 85% non-refundable support in Hungary [48,49,64,101–103].
It is clearly visible (Tables 3 and 4) that the HMKE PV investment payback period was 7 years without
financial support and that the internal rate of return was relatively high: 16.5% (Tables 3 and 4).

In the case of a well-planned Small-scale PV system where the goal is to reduce the own energy
consumption in larger buildings, it is possible to save about 20–25% of the annual energy consumption
due to the regulatory device. These values represent the economically reasonable limit because in
these cases, the annual profitable PV energy is reduced by about 5–10% (due to the regulatory device)
compared to the HMKE or KÁT systems. In the cases subject to this regulation, considering the used
inflation values and the interest rate of the Small-scale system, the expected profit and the maintenance
costs show us that the payback period was only 1 year worse than that of the HMKE solution. The
internal rate of return was 14.7%, which is 1.8% lower than the previous one (Tables 3 and 4). To
build a small case power plant, it is possible for self-consumption (with a device which does not allow
feeding electricity into the grid) or for self-consumption plus electricity selling. We did not calculate
with the second option where feeding extra PV energy into the grid is allowed because that could
involve the examination of a number of further options, which will be the subject of a later study.

The KÁT legislation in force until 31 December 2016 was a better business opportunity for market
investors in the case of larger (>50 kWp) PV systems than the new regulation of METÁR. Shortly
before that date, 2428 PV building permit requests had been received by the Hungarian Energy and
Utilities Regulatory Office [104]. The main reason for that high number was the modified 15-minute
electricity production forecast regulation, which came into force on 1 July 2018. From that date, in the
case of a deviation of more than +/−50%/15-min measurement interval, the PV system owners have
to pay a surcharge for any PV size. All in all, this change reduces the FiT bonus. The KÁT investment
alternative is the only one which does not have any self-consumption, so this is only a power plant
which produces PV energy and feeds it all into the grid. In the KÁT system, having a fence, a fence
alarm system, a camera security system, an access control system and more maintenance are highly
recommended (Figure 8). These factors also affect the payback period, which was 9 years in this case.
The internal rate of return was 12.2% (Tables 3 and 4).
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For an easier comparison of the investments, the net present values and the investment costs were
calculated for a 1 kWp system in Figure 9.

According to Tables 3 and 4, each of the studied investment alternatives can be a good choice for
investors. All the three alternatives had a positive NPV, and the DPPs were less than 10 years. The
shortest DPP belonged to the HMKE, and it had the lowest investment costs too. That means that
a HMKE investment can be recommended to investors with lower financial powers who want to get the
invested money back as soon as possible. That alternative required also the least administration-related
costs, and there was no need to create any PV energy production forecasts, either. That is why we
would suggest that alternative to municipalities, which are usually not very powerful financially and
also have self-consumption.
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Table 3. The evaluation of the three studied investment alternatives in 2019.

HMKE Small-Case KÁT

Feeding energy into the grid yes no yes yes
Self-consumption 100% 100% possible no self-consumption

Energy trader not necessary not necessary necessary necessary
Energy billing/balance annual continuous continuous continuous

NPV calculation in our study yes yes no yes
NPV after 15 years low highest not analyzed medium
15-minutes forecast not necessary not necessary not necessary needed

Investment cost for the whole system low high high high
Administration needs low low medium high

Table 4. The overall investment-efficiency indices in the HMKE, Small-scale and KÁT regulations
in 2019.

Content Values

Studied investment period (years) 15
Studied PV economic environment HMKE Small-scale KÁT

System size (kWp) 50 500
Investment costs, net, 2019 (€) 41,817 447,205

Negative cash flow (CO&M,total + Demolition fee), net (€) 10,026 66,966 81,366
Positive cash flow, net (€) 140,681 1,344,867 1,140,558

Net present value (NPV) (€) 48,935 438,470 298,490
Internal rate of return (IRR) (%) 16.5 14.7 12.2

Discounted payback period (DPP) (year) 7 8 9
Needed support intensity for 0 NPV (%) -

It was found that the highest NPV belonged to the Small-scale power plant, which had an NPV of
€438,470 by the end of the 15 years. This alternative had the highest investment costs (total) followed
by the HMKE one, so investors need to be financially stronger than in the case of the HMKE alternative.
As it can be seen in Figure 9, the HMKE alternative had the lowest investment costs as well as the
highest NPV per kWp.
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When choosing between the studied investment alternatives, the demand for self-consumption
is an important factor. If there is no self-consumption, only the KÁT alternative is possible, but if
self-consumption is also taken into consideration, the HMKE or the Small-scale alternatives represent
the most favorable investment choices.

4. Conclusions

This study examined some technical and economic aspects related to the Hungarian renewable
energy regulations. Five main technical options for PV systems ranging from sizes of 50 kWp to
500 kWp were analyzed related to low- and medium-voltage facilities. In the course of the economic
calculations not only the financial investments needed for the PV systems but also the annual extra
yields and the financial expenditures under the current regulations in Hungary were examined in
the cases of the HMKE, the Small-scale and the KÁT market environments. According to the results,
the payback periods were between 7–9 years in all the studied economic-technical cases. The best
IRR, which was 16.5%, belonged to the HMKE alternative, while in the cases governed by the KÁT
regulation, this value was 12.2%, because of the higher security needs. The experimental results
show that each investment alternative can be a good decision from an economic and technical point
of view under the Hungarian regulations in force in 2018. It is hoped that this study will help
stakeholders of the Hungarian market understand the possible trends in future technical and economic
PV developments.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating Current (A)
AFCI Arc Fault Circuit Interrupter (-)
a-Si Amorphous silicon (-)
CFtotal Total cash flow (not discounted) (€)
CO&M,total Total operation and maintenance costs for the duration of the investment (€)
Ct Discounted (net) cash inflow for the duration of investment (€)
C0 Total initial investment costs (€)
DC Direct Current (A)
DPP Discounted payback period (years)
E Annual PV energy output (kWh)
E1 First year, annual PV energy output (kWh)
Et Other years, annual PV energy output (kWh)
Etotal Total PV energy output for the duration of the investment (kWh)
EDIOP Economic Development and Innovation Program (-)
EEEOP Environment and Energy Efficiency Operational Program (-)
EMI filter Electromagnetic interference filter (-)
EU European Union (-)
FiT Feed-in-tariff (€/kWh)
FiTtotal Total feed-in-tariff for the duration of the investment (€/kWh)
GFCI ground fault circuit interrupter (-)
HMKE Household-sized power plants (-)
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IRR Internal Rate of Return (%)
IS Investment supports (-)
KÁT Renewable Energy Support Scheme till 31 December 2016 (-)
m-Si Monocrystalline silicon (-)
METÁR Renewable Energy Support Scheme from 1 January 2017 (-)
MPPT Maximum Power Point Tracking (-)
NPV Net present value (€)
NS Net metering system (-)
PV Photovoltaic (-)
PWM Pulse-width modulation (-)
p-Si Polycrystalline silicon (-)
PVGIS JRC Photovoltaic Geographical Information System (-)
SPD Surge Protection Device (-)
r Discount rate (%)
VRE Variable renewable energy (-)
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