
electronics

Article

SSCFM: Separate Signature-Based Control Flow
Error Monitoring for Multi-Threaded and
Multi-Core Environments

Kiho Choi , Daejin Park * and Jeonghun Cho *

School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea; posjkh22@gmail.com
* Correspondence: boltanut@knu.ac.kr (D.P.); jcho@ee.knu.ac.kr (J.C.); Tel.: +82-53-950-5548 (D.P.)

Received: 15 January 2019; Accepted: 29 January 2019; Published: 1 February 2019
����������
�������

Abstract: Soft error is a key challenge in computer systems. Without soft error mitigation, control
flow error (CFE) can lead to system crash. Signature-based CFE monitoring scheme is a representative
technique for detecting CFEs during runtime. However, most of the signature-based CFE monitoring
schemes proposed thus far are based on a single thread. Currently, the widely used multi-threaded
and multi-core environments have greatly improved the performance of the computing system,
but, if the these schemes are applied in these environments, performance improvement is difficult
to achieve, or rather performance degradation may occur. In this paper, we propose a separate
signature-based CFE monitoring (SSCFM) scheme that separates the signature update and the
signature verification on the thread level. The signature update is combined with application
thread and signature verification and executed on separate monitor threads, so that we can expect
performance improvements in multi-threaded or multi-core environments. Furthermore, the SSCFM
scheme can fully cover inter-procedural CFE not covered by many signature-based CFE monitoring
schemes by using inter-procedural control flow analysis. With the proposed SSCFM scheme,
the execution time overhead is reduced by approximately 26.67% on average from the SEDSR
scheme, and the average CFE detection rate with SSCFM is approximately 93.69%. In addition,
this paper also introduces the LLVM compiler-based SSCFM generator that makes it easy to apply
the SSCFM scheme to software applications.

Keywords: software signature-based control flow error monitoring; multi-threaded and multi-core
system; automatic code-generation

1. Introduction

Transient fault, or soft error, is a key challenge in computer system. Transient fault is caused
by electromagnetic interferences, power glitches, or highly energized particles passing through a
semiconductor device [1,2]. Since a transient fault occurs intermittently, it is different from a permanent
fault, and it may cause erroneous bit-flips. The bit-flips can corrupt memory such as registers,
main memory and may affect control flow of the software in execution. In particular, control flow
errors (CFE) due to erroneous bit-flops can lead to system crash [3].

To mitigate soft errors, many hardware-based CFE monitoring schemes and software-based CFE
monitoring schemes have been proposed. Hardware-based CFE monitoring schemes [4–7] incur
low run-time overhead but require additional hardware modules or modification to commodity
hardware. Software-based CFE monitoring schemes do not require additional hardware module or
hardware modification. Software-based CFE monitoring schemes can be divided into CFE monitoring
schemes using redundancy of instructions such as jump instructions [8–11] and signature-based
CFE monitoring schemes that represent control flows as signature variables and detect CFEs [12–18].

Electronics 2019, 8, 166; doi:10.3390/electronics8020166 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2072-3508
https://orcid.org/0000-0002-5560-873X
https://orcid.org/0000-0002-9330-6118
http://dx.doi.org/10.3390/electronics8020166
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/8/2/166?type=check_update&version=2

Electronics 2019, 8, 166 2 of 20

However, the software-based CFE monitoring scheme has a problem that execution time overhead is
very large because additional instructions or CFE detection code are required. In particular, CFE can
occur in a wide variety of forms in inter-block CFEs and inter-procedural CFEs, and there is a trade-off
between CFE detection rate and execution time overhead because more detection code is needed to
handle more types of CFEs.

In this paper, we propose a signature-based CFE monitoring scheme that fully covers the
inter-procedural CFE that is not covered or partially covered in previous works and that is modified
from the typical signature-based CFE monitoring scheme in order to take advantage of performance
improvement of execution time reduction in multi-threaded or multi-core systems. The main
contribution of this paper are as follows: (1) we propose a new model of signature-based CFE
monitoring scheme that take advantage of performance improvements of execution overhead reduction
in a multi-threaded or multi-core environment; (2) we introduce a signature-based CFE monitoring
scheme that can fully cover inter-procedural CFE; and (3) we propose and implement a code-generation
framework for the proposed signature-based CFE monitoring scheme that makes it easier to apply to
software application programs.

The remainder of this paper consists is organized as follows. In Section 2, related works for
existing signature-based CFE monitoring schemes are reviewed. Section 3 describes the proposed
separate signature-based CFE monitoring scheme, while Section 4 explores the feasibility of the
proposed scheme through several virtual monitoring scenarios. Section 5 introduces a code generation
framework for the proposed scheme. In Section 6, we prove the validity of the proposed scheme
through experimentation. Finally, we conclude in Section 7.

2. Related Works

2.1. Signature-Based CFE Monitoring Schemes

Control flow is the determined operation sequence of software, and control flow error (CFE) is
the operation state from the control flow. The control flow can be expressed as a directed graph [19],
as shown in Figure 1. Each node (vn) in the graph represents a basic block of the control flow. Each edge
set (en) corresponding to a node (vn) refers to a basic block-to-basic block connection set starting from
the node (vn). If node vp is connected to node vq, it can be expressed as vq ∈ ep in relation to ep and vq;
it can also be expressed as vp = prior(vq). In this case, the CFE is expressed as the state that the current
node vx is in relation of vx 6∈ prior(ex). The graph is called a “control flow graph” (CFG).

𝑣0

𝑉 = 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6
𝐸 = 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6

𝑒0 = 𝑣1, 𝑣2

𝑒1 = 𝑣4, 𝑣5

𝑒2 = 𝑣3

𝑒3 = 𝑣6

𝑒4 = 𝑣6

𝑒5 = 𝑣6

𝑒6 = ∅

CFE if 𝑣3 ∈ 𝑒0
CFE if 𝑣5 ∈ 𝑒1

𝐺 = (𝑉, 𝐸)

𝑣2

𝑣5

𝑣6

𝑣1

𝑣4

𝑣3

CFE

CFE

CFE
Control flow

Figure 1. Control flow and CFE.

The signature-based CFE monitoring scheme is a technique for describing the control flow of
software and for detecting the CFEs using signature variables, called “software signature”. In the

Electronics 2019, 8, 166 3 of 20

monitoring scheme, two routines called “signature update” and “signature verification” are alternated
in basic block units. The signature update updates signature variables according to the current basic
block in the CFG, and the signature verification checks that the updated signature variables do not
deviate from the CFG. In other words, the signature-based CFE monitoring scheme is based on a
model in which signature updates and signature verification are continuously alternated.

In the literature, many CFE monitoring schemes have been introduced in order to mitigate
system failures due to CFE. Signature-based CFE monitoring is a typical software-based CFE
monitoring scheme. Figure 2a shows the basic model of the existing signature-based CFE monitoring
scheme, which consists of two routines: signature update U(bn, s) and signature verification
V(s, dn). Bn represents the nth basic block; bn represents the signature variable in Bn and is determined
at compile time; s is a signature variable and is updated during runtime; and dn is a signature
determined with dn = U(bn, s) at compile time and it is used for comparison with the run-time
signature s. The run-time signature s in Bn is updated with signature update and it is verified with
signature verification in the next basic block Bn+1. If V(s, dn) does not meet zero, the CFE monitor
judges that CFE has occurred. As the simplest case of a signature-based CFE monitoring scheme,
U(bn, s) = bn and V(s, dn) = s − dn = s − bn can be selected, as shown in Figure 2b.

𝑈 𝑏𝑛, 𝒔 = 𝑏𝑛
𝑉 𝑑𝑛, 𝒔 = 𝒔 − 𝑏𝑛

𝑈 𝑏𝑛, 𝒔 : signature update

𝑉 𝑑1, 𝒔 : signature verification

(a) (b)

𝐢𝐟 𝑉 𝑑1, 𝒔 ≠ 0: error()

instructions in 𝐵1

𝒔 ← 𝑈(𝑏1, 𝒔)

𝒔 ← 𝑈(𝑏2, 𝒔)

𝐢𝐟 𝑉 𝑑2, 𝒔 ≠ 0: error()

instructions in 𝐵2

𝒔 ← 𝑈(𝑏3, 𝒔)

𝐢𝐟 𝑉 𝑑3, 𝒔 ≠ 0: error()

𝐢𝐟 𝑠 − 𝑏1 ≠ 0: error()

instructions in 𝐵1

𝒔 ← 𝑏1

𝒔 ← 𝑏2

𝐢𝐟 𝑠 − 𝑏2 ≠ 0: error()

instructions in 𝐵2

𝒔 ← 𝑏3

𝐢𝐟 𝑠 − 𝑏3 ≠ 0: error()

Figure 2. (a) Typical model of signature-based CFE monitoring scheme; and (b) the simplest case of
signature-based CFE monitoring scheme

Most of the existing signature-based CFE monitoring schemes, such as CFCSS [16], YACCA [17],
ECCA [18], RSCFC [15], SEDSR [14], SCFC [13], and RASM [12] have mainly focused on how to update
and verify software signatures. They have tried to more appropriately select the number of run-time
signatures and compile-time signatures, where to insert the signature update and signature verification
in each basic block, and the algorithms of signature update and signature verification to improve
performance through low execution overhead time and high CFE detection rate. For example, in CFCSS
scheme, signature variable G is used for run-time signature, and signature variable d, D, and s are used
for compile-time signature. In signature update routine, G is updated as G = G⊕ d⊕ D. In signature
verification routine, compile-time signature s is compared with the updated G and if G is not equal with
s, CFCSS judges that CFE occurs. The signature update routines and the signature verification routines
are inserted sequentially at the beginning of the each basic block. In SEDSR scheme, signature variable S

Electronics 2019, 8, 166 4 of 20

is used for run-time signature, and signature variable s is used for compile-time signature. In signature
update routine, S is updated as S = s. In signature verification routine, compile-time signature s is
compared with the updated S and, if s is not equal with S, SEDSR judges that CFE occurs. In SEDSR
scheme, unlike CFCSS scheme, the signature update routines are inserted in the middle of each basic
block, and the signature verification routines are inserted sequentially at the beginning of the each
basic block. Asghari et al. [14] claimed that simple operation without XOR or AND operation is used in
signature update to lower the execution time overhead and that locating the signature update routine in
the middle of the basic block will improve the CFE detection rate. In RASM scheme, signature variable
signature and adjustValue are used for run-time signature, and signature variable randomNumberBB
and subRanPreVal are used for compile-time signature. RASM is a two-update scheme, which is called
gradual update. In gradual update, the first update is inserted at the end of the previous basic block
and the second update is inserted at the beginning of current basic block. In the first signature update
routine, signature is updated as signature = signature − subRanPreVal. In the second signature
update routine, signature is updated as signature = signature − adjustValue if adjustValue > 0 or
signature = signature+ adjustValue if adjustValue ≤ 0. In signature verification routine, compile-time
signature randomNumberBB is compared with the updated signature and if signature is not equal with
randomNumberBB, RASM judges that CFE occurs. Vankeirsbilck et al. [12] claimed that operations
such as addition and subtraction are used in the signature update and the gradual update method
reduces the execution overhead and increases the CFE detection rate respectively. However, as can
be seen in the examples, the previous works on signature-based CFE monitoring schemes have a
very formal form and have different performance depending on the number of signatures used,
the signature update/verification routine type, and the location of the routine in basic block.

2.2. Coverage of CFE Detection

CFE is caused by jump, call, and return instructions that can change the value of the program
counter. Note that if a bit-flip occurs in the operand of each instruction, the program counter can be
changed to any value. CFE is divided into intra-block CFE, inter-block CFE, and inter-procedural
CFE. In this terminology, block refers to a basic block and procedure refers to a function. Intra-block
CFE monitoring schemes detect CFE using instruction redundancy at the instruction level. Intra-block
CFE monitoring schemes detect CFE by inserting redundant instructions and comparing the two
instructions. However, even if the instruction is executed repeatedly, it is executed continuously, so that
both the original instruction and the duplicated instruction may have errors, and the redundancy
of instructions causes a lot of execution time overhead. This paper is based on the signature-based
CFE monitoring scheme (included in the domain of the inter-block CFE detection or inter-procedural
CFE detection). Hence, the intra-block CFE monitoring scheme through redundancy of instructions is
beyond the scope of our research.

Inter-block CFE detection does not detect CFE at all instruction levels, but is a scheme for
detecting control flow as a connection of basic blocks and detecting whether the CFE is out of this.
Figure 3a shows the inter-block CFE generated between basic blocks. The inter-block CFE can be
divided into two types: a jump to an illegal basic block and a jump to the current basic block. CFE-a
illustrates a CFE caused by a jump to an illegal basic block and CFE-b illustrates a jump to the
current basic block. Many previous signature-based CFE monitoring schemes [12–18] detects CFE for
jump to an illegal basic block, but some schemes have not detected CFE for jump to a current basic
block [13,14]. Figure 3b shows the inter-procedural CFE where the CFE occurs beyond the function
boundary. The inter-procedural CFE can be divided into three types: a jump to incorrect address in
a call instruction, a jump to incorrect address in a return instruction, and a jump from a basic block
that has call instruction or return instruction in a function to any basic block in another function.
CFE-c illustrates a jump to incorrect address in a call instruction, CFE-d illustrates a jump to incorrect
address in a return instruction and CFE-e illustrates a jump from a basic block that has call instruction
or return instruction in a function to any basic block in another function.

Electronics 2019, 8, 166 5 of 20

F1 F2

BB1

BB2

BB3

BB4

BB5

BB6

BB7

BB8

BB9

BB10

Call

Return

F3

BB11

BB12

BB13

BB14

CFE-c

CFE-d

CFE-e

F1

C
F
E

-a

BB1

BB2

BB3

BB4

BB5

BB6

CFE-b

(a) (b)

Figure 3. (a) Cases of inter-block CFE; and (b) cases of inter-procedural CFE.

Many of the previous works [12–18] do not mention inter-procedural CFE and do not address
it. To deal with the inter-procedural CFE caused by a jump to incorrect address in a call instruction
(CFE-c) and a jump to incorrect address in a return instruction (CFE-d), some previous works give a
signature representing the function such as function identifier (FID) [20] and global signature register
(GSR) [21], update it before the call instruction, and verify after function return. However, it seems
that there is no proposed signature-based CFE monitoring scheme to fully detect inter-procedural
CFEs. This is because a function can be called often in a functional language such as C/C++, Java,
and Python. In the case of inter-block CFE detection, the connectivity between basic blocks can
be represented by a maximum of two at the conditional branch. However, since a function can be
called often depending on the software application, it is difficult to express the connectivities of
function call/return with signature update routines and signature verification routines of existing
signature-based CFE monitoring schemes.

In this paper, we propose a signature-based CFE monitoring scheme that can fully detect
inter-procedural CFE as well as inter-block CFE. Through a novel concept of function stack routine
that handles function calls and returns, inter-procedural CFE caused by a jump to an incorrect address
in call/return instruction is detected. In addition, through the characteristics of the signature queue,
inter-procedural CFE caused a jump from a basic block that does not have a call instruction or return
instruction in a function to any basic block in another function is detected.

2.3. Granularity of CFE Detection

Depending on the granularity of the CFE detection, the signature-based CFE monitoring scheme
is divided into two: fine-grained CFE monitoring and coarse-grained CFE monitoring schemes.
The initially proposed signature-based CFE monitoring schemes were mostly fined-grained CFE
monitoring schemes. A signature is assigned to each basic block and CFE monitoring is performed
on connectivity of all basic blocks. The advantage of fine-grained CFE monitoring is that it is highly
accurate. This is because the CFE detection code is inserted for all basic blocks. However, this causes a
problem of high execution time overhead.

In recent works, course-grained CFE schemes using dominator [22] or super nodes [23] have been
proposed to reduce execution time overhead by detecting only CFEs between dominator or super
node. After considering the connectivity of the basic blocks, the dominator is selected among the basic
blocks and the super node is created by combining the basic blocks. After considering the connectivity
of the basic blocks, the dominator is selected among the basic blocks and the super node is created by
combining the basic blocks. However, we think it has the same semantic as increasing the size of the
basic block in terms of inter-block CFE detection. Therefore, this can lead to an increase in CFE within
the block instead of obtaining a reduction in execution time overhead. In this paper, we propose a
scheme that can reduce execution time overhead in multi-threaded or multi-core environments while
following a fine-grained CFE monitoring scheme that monitors connectivity of all basic blocks.

Electronics 2019, 8, 166 6 of 20

2.4. Multi-Threading Technique and Multi-Core Environments

The multi-threading technique [24] and parallelism technique in a multi-core environment [25]
lead to overall improvement in system performance and are widely used in computer systems.
This technique enables maximum resource utilization for a given processor, and the parallelism
technique in a multi-core environment increases the number of processors in operation at once,
enabling parallel processing. However, if the previous signature-based CFE monitoring schemes
are applied to a system using this multi-threading technique or a multi-core system, execution time
overhead will be further increased due to context switching with other threads or other scheduling
routines. This is because the previous signature-based CFE monitoring schemes are based on a
single thread. In this way, previously proposed schemes that is based on a single thread can degrade
performance in multi-threaded or multi-core environments. The CRDC/CRMC [26] scheme proposed
in the CFE recovery scheme also mentions this.

In software-based CFE monitoring schemes, there has been an attempt to reduce the execution
time overhead by utilizing a multi-threaded or multi-core system. COMET [9] is a scheme to detect
CFE through redundancy of instructions. It makes redundant instructions operate in monitor threads
to reduce overhead. However, the previous signature-based CFE monitoring schemes tightly combine
a target software application with the CFE monitoring code on a single thread. This makes it difficult
to take advantage of multi-threading technique or multi-core environments. To do so, it is necessary to
separate the tightly combined target software application and CFE monitor code into more than two
independent routines. In our work, we selected the signature update and the signature verification as
separate routines. In our proposed signature-based CFE monitoring scheme, we modify the typical
signature-based CFE monitoring scheme, leading to a performance improvement in the reduction of
execution time overhead in multi-threaded or multi-core environments. The typical signature-based
CFE monitoring scheme, consisting of signature update and signature verification, is separated into
thread levels, and each signature update and signature verification is performed in separate threads,
enabling to be applied in multi-threaded and multi-core environments.

3. Separate Signature-Based CFE Monitoring Scheme

3.1. Separation of Signature Update and Signature Verification

In this paper, based on the fact that the multi-threading technique and multi-core parallelization
can improve performance, we propose a separate signature-based CFE monitoring (SSCFM) scheme
that can be applied to multi-threaded or multi-core environments. For the purpose of distinguishing
the existing signature-based CFE monitoring schemes from the proposed SSCFM scheme, the existing
signature-based CFE monitoring schemes are hereafter referred to as “non-SSCFM” schemes.

The previously proposed non-SSCFM schemes tightly combine a target application with the CFE
monitoring code on a single thread. This makes it difficult to take advantage of multi-core environments
and environments. Hence, it is necessary to separate the tightly combined CFE-detectable application
into more than two independent routines. The proposed SSCFM scheme treats the signature update and
the signature verification as separate routines. Figure 4 describes the typical model of the non-SSCFM
scheme and the proposed SSCFM scheme. In the non-SSCFM scheme, the signature update and
signature verification are alternately executed in each basic block. However, in the proposed SSCFM
scheme, the two routines perform separately on the thread level. The signature update, which is
called “signature enqueue” in the SSCFM scheme, is executed in the “application thread” on which the
monitored application runs. The signature verification is executed in a separately generated thread for
verification. Hereafter, we will call the separate thread for signature verification the “monitor thread”.

Electronics 2019, 8, 166 7 of 20

(a)

(b)

On monitor thread

signature update

signature enqueue
signature verification

time

On application thread

Provoke monitor routine

On application thread

time

time

Decreased overhead

Figure 4. (a) Typical non-SSCFM scheme; and (b) the proposed SSCFM scheme.

3.2. Signature Queue

The run-time signatures in the non-SSCFM schemes have shared characteristics based on the
fact that signature update is performed by overwriting in each basic block. In the proposed SSCFM
scheme, the concept of a “signature queue” is introduced so that signature verification is performed
collectively in monitor threads. The signature queue can be thought of as a run-time signature in
the format of a queue with no shared characteristics. The signature queue is filled with the updated
run-time signature in each basic block. In other words, the signature queue is updated in each basic
block with a signature enqueue described below. The signature queue’s non-shared characteristics may
lead to additional effects in solving the problem of CFE detection rate degradation due to run-time
signature sharing in existing non-SSCFM schemes.

Figure 5 shows two cases of CFEs that may not be found due to the shared characteristics of
the run-time signature in the typical non-SSCFM schemes: update after update and update after
verification. This is because the run-time signature is overwritten in each basic block in the signature
update. In the prior signature-based monitoring schemes, two-staged signature updates in ECCA [17]
and RASM [12] or two-staged signature verification in YACCA [16] are proposed in order to solve the
problem. However, these multi-staged update/verification approaches cause additional calculations
and hence increase the execution time overhead.

3.3. Signature Enqueue

In our work, we introduce a new concept of “signature queue” to collect information of
connectivity between basic blocks and collectively verify in separate monitor routines. In the existing
non-SSCFM schemes, XOR operation [16,20,27] and AND operation [17] are generally used for
signature update to indicate connectivity information between basic blocks during runtime [15,18].
However, in our proposed SSCFM scheme, the signature enqueue performs the same semantic role
of updating the run-time signature as the signature update. The signature queue is responsible for
putting the compile-time signatures of each basic block into the signature queue. SSCFM scheme
does not use XOR operation or AND operation as mentioned in SEDSR, so it can expect reduction of
execution time overhead. In the case that the signature queue is full, a monitor thread is generated and
the “monitor routine” described below is executed on the monitor thread, as depicted in Algorithm 1.

Electronics 2019, 8, 166 8 of 20

𝐢𝐟 𝑠 − 𝑏𝑛−1 ≠ 0: error()

instructions in 𝐵𝑛

𝒔 ← 𝑏𝑛

𝐢𝐟 𝒔 − 𝑏𝑛 ≠ 0: error()

instructions in 𝐵𝑛+1

𝒔 ← 𝑏𝑛+1

𝐢𝐟 𝒔 − 𝑏𝑛−2 ≠ 0: error()

instructions in 𝐵𝑛−1

𝒔 ← 𝑏𝑛−1

𝐢𝐟 𝑠 − 𝑏𝑛−1 ≠ 0: error()

instructions in 𝐵𝑛

𝒔 ← 𝑏𝑛

𝐢𝐟 𝒔 − 𝑏𝑛 ≠ 0: error()

instructions in 𝐵𝑛+1

𝒔 ← 𝑏𝑛+1

𝐢𝐟 𝒔 − 𝑏𝑛−2 ≠ 0: error()

instructions in 𝐵𝑛−1

𝒔 ← 𝑏𝑛−1

U
n
d
et

ec
te

d
 C

F
E

 :
 u

p
d
at

e
af

te
r

u
p
d
at

e
U

n
d
etected

 C
F

E
: u

p
d
ate after v

erificatio
n

(a) (b)

Figure 5. Cases of undetected CFE: (a) update after update; and (b) update after verification.

In Algorithm 1, s is a compile-time signature determined at compile time, which is unique value
and represents a basic block. Qs is a signature queue. Q̂s is the current size of signature queue. Q̂max

s is
the maximum size of signature queue. In each basic block, s is enqueued into Qs. After s is enqueued,
Q̂s is compared with Q̂max

s and if Q̂s is less than Q̂max
s , the value of Q̂s is incremented by one and

signature enqueue routine is terminated. However, if the values of Q̂s and Q̂max
s are equal (signature

queue is full), a new thread is created and the monitor routine runs on it. Next, a new signature queue
is created and the size of the signature queue Q̂s is assigned as zero. Note that the full signature queue
is used in the monitor routine.

Algorithm 1: signature_enqueue.

signature_enqueue(s, Qs, Q̂s, Q̂max
s)

s : an input signature
Qs : a signature queue
Q̂s : the current size of Qs

Q̂max
s : the maximum size of Qs

generate_thread(function, signature queue) : system function to generate a thread
generate_new_signature_queue(max size) : generate a new signature queue

Qs [Q̂s]← s
if Q̂s == Q̂max

s then
generate_new_thread(monitor_routine, Qs)
Qs ← generate_new_signature_queue(Q̂max

s)
Q̂s ← 0

end
else

Q̂s ← Q̂s + 1
end

Electronics 2019, 8, 166 9 of 20

In the non-SSCFM schemes, the run-time signature is shared in a basic block. In other words,
the signature update operation is repeated for each basic block in one signature variable. However,
in the signature enqueue, a compile-time signature representing each basic block is stored in each place
in the signature queue. Therefore, the run-time signature of previous works has a property of being
shared in basic block, but run-time signatures in SSCFM are not shared. As indicated, the non-shared
characteristics of these run-time signatures can solve the CFE detection rate degradation caused by the
run-time signature sharing nature of non-SSCFM schemes

3.4. Monitor Routine and Signature Verification

The “monitor routine” is described in Algorithm 2. The routine runs the signature verification
until the signature queue is empty. Algorithm 3 shows a pseudo-code of signature verification
performed by comparing the run-time signature in the signature queue and the compile-time signature
in the inter-procedural CFG. In the case that the run-time signature in the signature queue does not
correspond with the compile-time signature in the inter-procedural CFE, the SSCFM monitor judges
that CFE has occurred.

The SSCFM scheme collectively performs signature verification operations in a separate monitor
thread. A monitor routine is a collection of signature verification routines that run on separate monitor
threads. In Algorithm 2, the signature verification routine is performed until the value of Q̂s is
zero. There is a signature dequeue routine in the signature verification routine, which dequeues the
signatures in the signature queue, decreasing Q̂s by one. After all signature verification routines have
been completed, the empty signature queue is deleted.

The life cycle of a signature queue is as follows. (1) Generation of signature queue: A signature
queue is created in monitor initialization routine at the beginning of the program. The size of the
signature queue is determined by the target software application being monitored at compile-stage.
(2) Enqueue signature routine: During runtime, the signature enqueue routine is executed in each basic
block, and a compile-time signature is accumulated in the signature queue. (3) Full signature queue:
If the signature queue is full due to signature enqueue routine, the monitor routine is executed and the
monitor routine runs on a separate thread. (4) Delete signature queue: The monitor routine continues
until the signature queue is vacated by the signature verification routine, and the empty signature
queue is deleted after signature queue is empty. (5) Regeneration of signature queue: Immediately
after creating the monitor routine in Step 3, a new signature queue is created. The new life cycle starts
from Step 2.

Algorithm 2: monitor_routine.

monitor_routine(Qs, Q̂s, G, v̇s)

Qs : a signature queue
Q̂s : the current size of Qs

G : inter-procedural CFG
vs : the node corresponding to signature s in G
v̇s : the current node in G

delete_signature_queue(signature queue) : delete the signature queue

while Q̂s 6= 0 do
signature_verification(Q̂s, Qs, G, v̇s)

end
delete_signature_queue(Qs)

Electronics 2019, 8, 166 10 of 20

In Algorithm 3, dequeue routine dequeues the signatures in the signature queue, decreasing
Q̂s by one. G is the inter-procedural CFG determined at compile-time. G has the connection
information of all the basic blocks and function call information. As discussed in more detail in the next
subsection, SSCFM has an inter-procedural CFG that represents the connectivity of a basic function
block. The nodes of the inter-procedural CFG represent one basic block and each node has a unique
compile-time signature. In addition, each node is connected according to the connection of basic block.
get_node_ f rom_signature routine finds the node corresponding to that signature in the inter-procedural
CFG and returns the node to vs. v̇s represents the current node in the inter-procedural CFG, which is
the node that updates its state if CFE is not detected in signature verification. get_next_node_in_graph
routine returns information about the next nodes connected from current node v̇s. Next, if vs is not
included in the next nodes, SSCFM judges that CFE has occurred. Otherwise, v̇s is updated to vs.

Algorithm 3: signature_verification.

signature_verification(Qs, Q̂s, G, v̇s)

Qs : a signature queue
Q̂s : the current size of Qs

G : inter-procedural CFG
vs : the node corresponding to signature s in G
v̇s : the current node in G
s : the signature dequeued from Qs

sNEXT : the set of signatures in the nodes directed by vs

dequeue(signature queue, the current queue size) : dequeue from Qs and decrease Q̂s by 1
get_node_from_signature(signature) : get vs from s
get_next_node_in_graph(inter-procedural CFG, the current node)

s← dequeue(Qs, Q̂s)
vs ← get_node_from_signature(s)
sNEXT ← get_next_node_in_graph(G, v̇s)
if vs /∈ sNEXT then

error()
end
else

v̇s ← vs

end

In the non-SSCFM schemes, signature verification is the process of comparing the compile-time
signature with the updated run-time signature. Although the SSCFM scheme proposed in this paper
has the same semantic relation between the compile-time signature and the run-time signature, in the
proposed scheme, the compile-time signature to be compared is in the inter-procedural CFG and
run-time signature is in the signature queue. The inter-procedural CFG is generated at the beginning
of the program by a monitor initialization routine, which is a routine created through static analysis of
the target software application at compile time and is executed only once.

3.5. Inter-Procedural CFG

The SSCFM scheme detects CFE in the coverage of inter-procedural control flow. CFE detection
within each function could be one of the factors that degrades the CFE detection performance. Figure 6a
illustrates how the SSCFM generates an inter-procedural CFG from each CFG of a function f1 and a
function f2.

Electronics 2019, 8, 166 11 of 20

Each node in inter-procedural CFG represents each basic block in the monitored application,
with a compile-time signature that corresponds with the updated run-time signature during runtime.
s fm

n represents the compile-time signature in nth basic block of mth function. The generation of the
inter-procedural CFG follows the steps and principles below. (1) The nodes of the control graph in
each function represent the basic blocks. (2) Each node is divided into four types: branch, call, entry,
and return types. (3) If a node has more than two function calls, the node is divided so that a call-type
node has only one function call. (4) The call-type node is connected to the entry type node of the callee
function. (5) The return-type node is not connected to any nodes.

In the case of a function call, the connected node is uniquely determined to be one node.
However, in the case of a return from a function, it is difficult to uniquely determine the node
to be returned: the function can be called by a plurality of functions, and including all the functions
in the inter-procedural control graph may cause a drop in CFE detection rates. Therefore, we have
introduced a function stack so that the SSCFM scheme uniquely determines the node to be returned in
the inter-procedural CFG.

3.6. Function Stack Routine and Function Stack

The “function stack routine” consists of “push” and “pop”, and uses a “function stack” filled with
a call-return signature that is shared with a compile-time signature in each call-type and return-type
basic block. The function stack is pushed only when the basic block is a call-type. The function
stack is popped only when the basic block is a return-type. The function stack routine is included in
signature enqueue routine in call-type basic block, not all basic blocks. When the signature queue is
full, the function stack is passed to a generated monitor thread. In the monitor thread, the function
stack is used when the current node in inter-procedural CFG has to deal with a function call and return,
as shown in Figure 6b.

𝑠0
𝑓1

𝑠1
𝑓1

𝑠4
𝑓1

𝑠3
𝑓1

𝑠6
𝑓1

𝑠0
𝑓2

𝑠2
𝑓1

Branch

𝑠4
𝑓2

𝑠1
𝑓2

𝑠3
𝑓2

𝑠2
𝑓2

Call 𝑓2(1)

Call 𝑓2(2)

Return

from 𝑓2 (1)

Return

from 𝑓2 (2)

CallEntry Return Function stack

𝑠0
𝑓3

𝑠1
𝑓3

Call & return

Call 𝑓3

Return

from 𝑓3

𝑠4
𝑓1

𝑠4
𝑓1 𝑠3

𝑓2

𝑠4
𝑓1

𝑠6
𝑓1

𝑠6
𝑓1 𝑠3

𝑓2

𝑠3
𝑓2

Call 𝑓2 (1)

Call 𝑓3

Return from 𝑓3

Return from 𝑓2 (1)

Call 𝑓2 (2)

Call 𝑓3

Return from 𝑓3

Return from 𝑓2 (2)

(a) (b)

push

Routine

push

pop

pop

push

push

pop

pop

Figure 6. (a) Inter-procedural CFG; and (b) function stack routine.

3.7. Monitor Initialization

The “monitor initialization” routine is inserted at the front of the first basic block of the monitored
application. This routine generates the inter-procedural CFG used in the monitor routine and signature
verification in the monitor thread, as described above.

Electronics 2019, 8, 166 12 of 20

3.8. Overall Operation Sequence in SSCFM Scheme

(1) In the compile stage, a static analysis is performed on the target software application for which
CFE is to be monitored. At this time, a unique compile-time signature is assigned to each basic block,
and an inter-procedural CFG is generated based on the compile-time signature. (2) The signature
enqueue routine, the monitor initialization routine, and the monitor routine are also inserted into
the target software application at compile time. (3) At the beginning of the program, the monitor
initialization routine runs and generates inter-procedural CFG. (4) The program executes a signature
enqueue routine for each basic block, and the unique compile-time signatures of each basic block are
put into the signature queue. (5) When the signature queue is full, the monitor routine is executed in
the new thread and the signature verification routine is executed until the signature queue is empty.
Note that signature verification routines exist in the monitor routine. (6) If CFE is not detected until
signature queue is empty, the signature queue is removed and the monitor thread is terminated. (7) In
Step 5, a new signature queue is created immediately after the monitor routine is created in the new
thread. (8) After Step 7, from Step 4 to the end of the program is repeated.

4. Monitoring Scenario with SSCFM Scheme

In this section, we intuitively demonstrate performance improvements with the proposed SSCFM
scheme compared with non-SSCFM schemes. The scenario environments are determined by the
number of occupable cores (C), the size of the signature queue (Q), and the presence of a blocking
I/O of the monitored application (B). Note that, if the non-SSCFM schemes are applied to a system
using this multi-threading technique or a multi-core system, execution time overhead will be further
increased due to context switching with other threads or other scheduling routines as indicated. This is
because the non-SSCFM schemes are based on a single thread.

4.1. Performance Improvements in Multi-Core Environments

The comparison of the non-SSCFM scheme in Figure 4a and the SSCFM scheme in Figure 7a
intuitively shows the latter’s improved performance compared to the non-SSCFM scheme. There is no
signature verification in the application thread, but there is in the monitor thread. Of course, in this
case, the number of cores is more than 2 (C ≥ 2), which presents performance improvements obtained
from multi-core environments. However, the non-SSCFM scheme cannot have such performance
improvements in multi-core environments.

4.2. Performance Improvements in Multi-Core Environments and Blocking I/O

Figure 7b represents a case of an SSCFM-applied application with blocking I/O in multi-core
environments (C = 1, B = True). If the non-SSCFM scheme is applied, the CFE monitoring is blocked
along with the application. However, if the SSCFM scheme is applied, the CFE monitoring is able
to run in the monitor thread even with the application in a blocked state. Note that the non-SSCFM
scheme is based on a single thread. Therefore, if the target application program to be monitored has an
I/O operation and is blocked by an I/O operation, the monitor routine will also stop. However, in the
SSCFM scheme, a separate thread for CFE monitoring is created and the monitor routine operates
on the thread. Therefore, even if the application thread is blocked due to I/O operation, the monitor
thread can run in a separate thread.

4.3. Performance Improvements in Multi-Threaded Environments and Blocking I/O

Figure 7c shows a case of an SSCFM-applied application with blocking I/O in an environment in
which there is only a single core, or where only one core can be occupied (C = 1, B = True). Even if
the application is blocked due to I/O, the monitor thread can be context-switched to keep operating.
Of course, there is no guarantee that the monitor thread will always run at that time according to the

Electronics 2019, 8, 166 13 of 20

scheduling policy. However, since the non-SSCFM scheme is based on a single thread, it is impossible
to do so.

(a)

App

is blocked

(b)

App

is blocked

context switching

context switching

Mon with

low priority

(c)

Delayed

by low priority

(d)

App Mon1 Mon2 App Mon App Mon App Mon

provoke
monitoring
routine

provoke
monitoring
routine

provoke
monitoring
routine

provoke
monitoring
routine

Figure 7. Monitoring scenario with SSCFM: (a) separate signature-based monitoring (SSCFM) scheme
(Q = 4, C ≥ 2); (b) I/O blocking with SSCFM (Q = 50, C ≥ 2, B = True); (c) I/O blocking with SSCFM
(Q = 50, C = 1, B = True); and (d) delayed CFE monitoring with SSCFM (Q = 50, C ≥ 1).

4.4. Delayed Monitoring

Figure 7d shows the delayed operation of CFE monitoring in the case that SSCFM scheme is
applied. When many applications operate and try to occupy the cores simultaneously, a certain
resource may be insufficient. In that case, the SSCFM scheme can lower the priority of the monitor
thread so that the monitored application has priority to operate.

5. Code-Generation Framework for SSCFM

This section describes the overall structure of a monitoring code-generation framework for
the proposed SSCFM scheme (called an “SSCFM generator”) and shows how each module works.
The SSCFM generator depicted in Figure 8 is decomposed into front- and back-end modules.
The front-end modules consist of a Clang module, an LLVM IR parser module, and a control flow static
analyzer module. The back-end modules consist of a monitoring code generator module, a signature
code implanter module, and a target binary code generator module. The front-end modules perform a
static analysis of the input application and generate metadata for monitoring code generation, while the
back-end modules generate a signature-based monitoring code, insert the monitoring code into the
input application, and provide a control flow monitorable application using the SSCFM scheme.

5.1. Clang and LLVM Parser

The SSCFM generator adopts an LLVM complier infrastructure [28] and LLVM IR in order to
analyze a target application. Clang, a well-known module in the LLVM complier infrastructure,
converts the C/C++ code into LLVM IR. The LLVM parser provides a basic block-based data structure
to facilitate the basic block-level static analysis.

Electronics 2019, 8, 166 14 of 20

LLVM

IR

(*.bc)

LLVM
IR

parser
5.0

Control
flow
static

analyzer

Monitoring
code

generator

Signature
code

Implanter

Target
binary
code

generator
(llc)

SSCFM generator

SSCFM-

applied

output

application

(*.bin)

Clang
compiler

5.0

Input

application

code (*.c)

Figure 8. Overall structure of the code-generation framework for the SSCFM scheme.

5.2. Control Flow Static Analyzer

The control flow static analyzer module performs the analysis of the parsed LLVM IR code and
generates metadata such as function call graph, the CFG for each function, and compile-time signature
in each basic block.

5.3. Monitoring Code Generator

In the SSCFM generator, monitoring code for CFE detection is generated based on metadata
from the control flow static analyzer. The monitoring code in the SSCFM scheme consists of
monitor initialization code, signature enqueue code, and monitor routine code that includes signature
verification. The monitor routine initially generates an inter-procedural CFG and performs signature
verification by comparing the inter-procedural CFG with the signature queue in the monitor thread.
The code for monitor initialization and monitor routine is generated based on the inter-procedural CFG,
and the signature enqueue code is generated based on the compile-time signature in each basic block.

5.4. Signature Code Implanter

The signature code implanter module implants two signature-related codes into a target
application; one is code for the monitor initialization routine, and the other is for the signature
enqueue routine. The code for the monitor initialization routine is inserted into the first basic block of
the target application, and the code for the signature enqueue routine is inserted in every basic block.

5.5. Target Binary Code Generator

The target binary code generator module generates binary code according to the architecture of
the system in which the application runs. This module mainly consists of LLVM llc.

6. Performance Evaluation

In this section, we propose the feasibility of performance improvements with the proposed
SSCFM scheme compared to one representative non-SSCFM scheme in multi-threaded and multi-core
environments.

6.1. Evaluation Environments and Benchmarks

To verify the validity of the proposed SSCFM scheme, its performance evaluation was performed
in Ubuntu 16.04.5 Linux, x86-64 architecture with 4 cores and 4 GB RAM memory. Table 1 shows the
benchmarks used for performance evaluation and their characteristics. The fast Fourier transform
(FFT), Dijkstra (DJ), Patricia (PT), secure hash algorithm (SHA), basic math (BM), stringsearch (SS),
and cyclic redundancy check (CRC) provided by Mibench 1.1 [29] were selected as the benchmarks for
the performance evaluation, as well as the Whetstone (WS) [30] and Dhrystone (DS) [31].

Electronics 2019, 8, 166 15 of 20

Table 1. Benchmarks: Whetstone (WS), Dhrystone (DS), fast Fourier transform (FFT), Dijkstra (DJ),
Patricia (PT), secure hash algorithm (SHA), basicmath (BM), stringsearch (SS), cyclic redundancy
check (CRC).

No. Name Total Number
of Functions

Total
Number of
Basic Block

Number of
Instruction Per

Basic Block

Total Number of
Executed

Function Call (k)

Total Number of
Executed Basic

Block (k)

1 WS 4 77 8.08 152.9 1103
2 DS 12 91 6.66 15.0 84
3 FFT 7 107 6.69 32.7 4669
4 DJ 6 29 5.50 44.9 14,447
5 PT 6 212 5.40 21.7 348
6 SHA 8 66 9.46 9.7 2558
7 BM 5 110 5.98 121.4 11,962
8 SS 10 166 5.10 2.6 10,837
9 CRC 4 29 6.89 0.1 41,066

6.2. Performance Evaluation Criteria and Comparison Target

In the performance evaluation, we tried to compare execution time overhead and CFE detection
rate between the proposed SSCFM scheme and the typical non-SSCFM scheme. We selected the
SEDSR [14] scheme on behalf of non-SSCFM schemes. The main reasons for selecting the SEDSR
scheme as comparison target were as follows. First, we wanted to compare the signature-based CFE
monitoring scheme that has the same granularity of CFE detection with our proposed SSCFM scheme.
Both our SSCFM scheme and the SEDSR scheme are based on fine-grained CFE detection that performs
CFE detection for connectivity of all basic blocks. Second, the SEDSR scheme has the lowest execution
time overhead among the fine-grained CFE detection schemes proposed so far. Vankeirsbilck [12]
discussed performance comparisons in the same environments for eight representative fine-grained
CFE detection schemes, and found the SEDSR scheme had the lowest execution time overhead. Third,
the SEDSR scheme is very similar to the proposed SSCFM scheme in terms of operations that deal
with signature variables. Most signature-based CFE detection schemes use XOR or AND operations
on the signature update routine for signature variables. However, the SEDSR performs the signature
update routine by assigning the value of compile-time signatures to run-time signatures. Therefore,
it has very low execution time overhead, but low CFE detection rate. The proposed SSCFM in this
paper also performs the signature update routine through assignment without any operations such as
XOR or AND operations. However, in the SSCFM scheme, the CFE detection rate can be improved by
using the signature queue to remove the shared characteristics of the run-time signatures and by fully
covering the inter-procedural CFE with the inter-procedural CFG and the function stack. We looked
forward to our proposed SSCFM scheme having lower execution time overhead though with quite
higher CFE detection rate than SEDSR in multi-threaded and multi-core environments.

6.3. Execution Time Overhead

Figure 9 shows the execution time overhead for both the proposed SSCFM scheme and SEDSR
scheme when they were applied to each benchmark. Compared with SEDSR, the execution time
overhead with the proposed SSCFM scheme was reduced by 6.79%, 14.71%, 37.67%, 36.88%, 22.01%,
33.34%, 26.00%, 31.06%, and 31.55% of performance improvements for WS, DS, FFT, DJ, PT, SHA,
BM, SS, and CRC, respectively. The average execution time overhead was approximately 26.67%.
This performance improvement in execution time overhead reduction came from both multi-core and
multi-threading techniques.

Electronics 2019, 8, 166 16 of 20

WS DS FFT DJ PT SHA BM SS CRC

Benchmarks

0

100

200

300

400

500

600

E
xe

cu
tio

n
tim

e
ov

er
he

ad
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
ts

 (
%

)

SEDSR (Non-SSCFM)
SSCFM
Performance improvements

Figure 9. Execution time overhead.

6.4. Execution Time Overhead Analysis

We analyzed how the execution time overhead was reduced compared to the non-SSCFM schemes.
Figure 10 describes the percentage of execution time overhead for four monitoring routines: signature
enqueue, function stack routine, monitor initialization, and thread generator. The average executive
time overheads were 91.126%, 7.932%, 0.577%, and 0.368% for signature enqueue, function stack
routine, monitor initialization, and thread generator, respectively. In the SSCFM scheme, signature
update is replaced by signature enqueue, and there are additional routines, such as function stack
routine, monitor initialization, and thread generator. However, with the exception of signature
enqueue, the total execution time overhead only took 8.87% on average. Given that no execution time
overhead is required for signature verification in the SSCFM scheme, this naturally led to an overall
reduction in execution time overhead therein.

WS DS FFT DJ PT SHA BM SS CRC

Benchmarks

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
ea

ch
ex

ec
ut

in
e

tim
e

ov
er

he
ad

 (
%

)

signature_enqueue
function_stack_routine
monitor_initialization
thread_generator

Figure 10. Percentage of each execution time overhead.

In Figure 9, the benchmarks are divided into two groups. The first group is comprised of FFT, DJ,
SHA, BM, SS, and CRC, with performance improvements in execution time overhead of 37.67%, 36.88%,
33.34%, 26.00%, 31.06%, and 31.55%, respectively. The second group is WS, DS, and PT, showing
performance improvements in execution time overhead of 6.79%, 14.71%, and 2.01%, respectively.

Electronics 2019, 8, 166 17 of 20

The major reason behind the performance differences can be found in Figure 10. In the first group,
the percentage of execution time overhead for the function stack routine is as high as 21.48% on
average. However, in the second group, the percentage of execution time overhead for the function
stack routine is very low, only 1.15% on average. The execution time overhead for the function stack
routine increased with the percentage of the total number of executed function calls in the total number
of executed basic blocks. These data can be also found in Table 1.

6.5. CFE Detection Rate

Figure 11 shows the CFE detection rate with the proposed SSCFM scheme and SEDSR scheme
applied to each benchmark. The average CFE detection rate of SEDSR was approximately 49.97%.
The undetected case of CFEs in SEDSR scheme was caused by the shared characteristics of run-time
signature, as noted in Section 3.2. The multi-staged signature update or signature verification proposed
in the non-SSCFM schemes could solve this problem, but this approach increased the execution time
overhead. The SSCFM scheme solved the problem with the signature queue, improving the CFE
detection rate to 91.18%, 89.67%, 96.45%, 90.96%, 89.44%, 87.60%, 97.52%, 97.63%, and 96.77% for WS,
DS, FFT, DJ, PT, SHA, BM, SS, and CRC, respectively, without increasing execution time overhead.
The average CFE detection rate of SSCFM was approximately 93.69%.

WS DS FFT DJ PT SHA BM SS CRC

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

C
FE

 d
et

ec
tio

n
ra

te
 (

%
) SEDSR (Non-SSCFM)

SSCFM

Figure 11. CFE detection rate.

7. Conclusions

Multi-threading techniques and multi-core environments have made overall improvements to
computing systems and are now widely used in almost all computer systems. However, considering
previously proposed several schemes, there is still a part that cannot improve performance in
multi-threaded and multi-core environments. Rather, performance is degraded in multi-threaded
and multi-core environments in some case. In this paper, we introduce the SSCFM scheme that
enables performance enhancement in multi-threaded and multi-core environments by modifying
the previously proposed signature-based CFE monitoring schemes. By separating signature update
routines and signature verification routines into thread levels in the signature-based CFE monitoring
scheme, we look forward to reducing the execution time overhead of the SSCFM scheme. Compared
with SEDSR, a very similar type of scheme that operates on a single thread, the execution time
overhead with the proposed SSCFM scheme is reduced to approximately 26.67% on average of that
of SEDSR. Additionally, by using a signature queue that removes the shared characteristics of the
run-time signature and by fully covering the inter-procedural CFE with the inter-procedural CFG and
the function stack, the average CFE detection rate of the SSCFM scheme can be increased to 93.69%.
In addition, this paper introduces SSCFM generator, which can automatically apply SSCFM scheme

Electronics 2019, 8, 166 18 of 20

to compiler base. Due to the nature of software-based CFE monitoring, the monitoring code must be
inserted into each basic block. Even if it has a good performance scheme, it would be difficult to apply
it if it is applied by hand. In future work, we will try to optimize the proposed SSCFM scheme to have
lower execution time overhead.

Author Contributions: K.C. designed the entire core architecture and performed the hardware/software
implementation and experiments; J.C. proposed key concept and algorithm of the proposed architecture as
the first corresponding author; and D.P. has responsibility as the second corresponding author.

Funding: This study was supported by the BK21 Plus project funded by the Ministry of Education, Korea
(21A20131600011). This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A3A04059410 and
2016R1D1A1B03934343).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CFE Control Flow Error
CFG Control Flow Graph
SSCFM Separate Signature-based Control Flow Error Monitoring
LLVM Low Level Virtual Machine
LLVM IR LLVM Intermediate Representation
FFT Fast Fourier Transform
DJ Dijkstra
PT Patricia
SHA Secure Hash Algorithm
BM Basic Math
SS String Search
CRC Cyclic Redundancy Check
WS Whetstone
DS Dhrystone

References

1. Baumann, R. Soft errors in advanced computer systems. IEEE Des. Test Comput. 2005, 22, 258–266. [CrossRef]
2. Baffreau, S.; Bendhia, S.; Ramdani, M.; Sicard, E. Characterisation of microcontroller susceptibility to radio

frequency interference. In Proceedings of the Fourth IEEE International Caracas Conference on Devices,
Circuits and Systems (Cat. No.02TH8611), Aruba, Dutch Caribbean, 17–19 April 2002; p. I031.[CrossRef]

3. Hu, T.; Guo, Z.; Yi, P.; Baker, T.; Lan, J. Multi-controller Based Software-Defined Networking: A Survey.
IEEE Access 2018, 6, 15980–15996. [CrossRef]

4. Feng, C.; Lu, Z.; Jantsch, A.; Zhang, M.; Xing, Z. Addressing Transient and Permanent Faults in NoC with
Efficient Fault-Tolerant Deflection Router. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 21, 1053–1066.
[CrossRef]

5. Raha, P.; Vinodhini, M.; Murty, N.S. Horizontal-vertical parity and diagonal hamming based soft error
detection and correction for memories. In Proceedings of the 2017 International Conference on Computer
Communication and Informatics (ICCCI), Nicosia, Cyprus, 27–29 September 2017; pp. 1–5. [CrossRef]

6. Liu, S.; Reviriego, P.; Xiao, L. Evaluating Direct Compare for Double Error-Correction Codes. IEEE Trans.
Device Mater. Reliab. 2017, 17, 802–804. [CrossRef]

7. Li, T.; Ambrose, J.A.; Ragel, R.; Parameswaran, S. Processor Design for Soft Errors: Challenges and State of
the Art. ACM Comput. Surv. 2016, 49. [CrossRef]

8. Didehban, M.; Shrivastava, A.; Lokam, S.R.D. NEMESIS: A software approach for computing in presence of
soft errors. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 297–304. [CrossRef]

http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/ICCDCS.2002.1004088
http://dx.doi.org/10.1109/ACCESS.2018.2814738
http://dx.doi.org/10.1109/TVLSI.2012.2204909
http://dx.doi.org/10.1109/ICCCI.2017.8117768
http://dx.doi.org/10.1109/TDMR.2017.2756853
http://dx.doi.org/10.1145/2996357
http://dx.doi.org/10.1109/ICCAD.2017.8203792

Electronics 2019, 8, 166 19 of 20

9. Mitropoulou, K.; Porpodas, V.; Jones, T.M. COMET: Communication-optimised Multi-threaded
Error-detection Technique. In Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, Pittsburgh, PA, USA, 1–7 October 2016. [CrossRef]

10. Chen, Z.; Nicolau, A.; Veidenbaum, A.V. SIMD-based Soft Error Detection. In Proceedings of the ACM
International Conference on Computing Frontiers, Sardinia, Italy, 30 April–2 May 2016; pp. 45–54. [CrossRef]

11. Nicolescu, B.; Velazco, R. Detecting soft errors by a purely software approach: Method, tools and
experimental results. In Proceedings of the 2003 Design, Automation and Test in Europe Conference
and Exhibition, Munich, Germany, 3–7 March 2003; pp. 57–62. [CrossRef]

12. Vankeirsbilck, J.; Penneman, N.; Hallez, H.; Boydens, J. Random Additive Signature Monitoring for Control
Flow Error Detection. IEEE Trans. Reliab. 2017, 66, 1178–1192. [CrossRef]

13. Asghari, S.A.; Taheri, H.; Pedram, H.; Kaynak, O. Software-Based Control Flow Checking Against Transient
Faults in Industrial Environments. IEEE Trans. Ind. Inform. 2014, 10, 481–490. [CrossRef]

14. Asghari, S.A.; Abdi, H.T.A.; Pedram, H.; Pourmozaffari, S. SEDSR: Soft Error Detection Using Software
Redundancy. Sci. Res. 2012, 5, 664–670. [CrossRef]

15. Li, A.; Hong, B. Software implemented transient fault detection in space computer. Aerosp. Sci. Technol. 2007,
11, 245–252. [CrossRef]

16. Oh, N.; Shirvani, P.P.; McCluskey, E.J. Control-flow checking by software signatures. IEEE Trans. Reliab.
2002, 51, 111–122. [CrossRef]

17. Goloubeva, O.; Rebaudengo, M.; Reorda, M.S.; Violante, M. Soft-error detection using control flow assertions.
In Proceedings of the 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, Boston, MA,
USA, 3–5 November 2003; pp. 581–588. [CrossRef]

18. Alkhalifa, Z.; Nair, V.S.S.; Krishnamurthy, N.; Abraham, J.A. Design and evaluation of system-level checks
for on-line control flow error detection. IEEE Trans. Parallel Distrib. Syst. 1999, 10, 627–641. [CrossRef]

19. Bondy, J.; Murty, U. Graph Theory, 1st ed.; Springer Publishing Company: New York, NY, USA, 2008.
20. Vemu, R.; Gurumurthy, S.; Abraham, J.A. ACCE: Automatic correction of control-flow errors. In Proceedings

of the 2007 IEEE International Test Conference, Santa Clara, CA, USA, 21–26 October 2007; pp. 1–10.
[CrossRef]

21. Khudia, D.S.; Mahlke, S. Low Cost Control Flow Protection Using Abstract Control Signatures. SIGPLAN Not.
2013, 48, 3–12. [CrossRef]

22. Dietrich, C.; Hoffmann, M.; Lohmann, D. Global Optimization of Fixed-Priority Real-Time Systems by
RTOS-Aware Control-Flow Analysis. ACM Trans. Embed. Comput. Syst. 2017, 16. [CrossRef]

23. Zhang, M.; Gu, Z.; Li, H.; Zheng, N. WCET-Aware Control Flow Checking with Super-Nodes for
Resource-Constrained Embedded Systems. IEEE Access 2018, 6, 42394–42406. [CrossRef]

24. Tullsen, D.M.; Eggers, S.J.; Levy, H.M. Simultaneous multithreading: Maximizing on-chip parallelism.
In Proceedings of the 22nd Annual International Symposium on Computer Architecture, Ligure, Italy,
22–24 June 1995; pp. 392–403.

25. Blake, G.; Dreslinski, R.G.; Mudge, T. A survey of multicore processors. IEEE Signal Process. Mag. 2009,
26, 26–37. [CrossRef]

26. Khoshavi, N.; Zarandi, H.R.; Maghsoudloo, M. Two control-flow error recovery methods for multithreaded
programs running on multi-core processors. In Proceedings of the 2012 28th International Conference on
Microelectronics Proceedings, Nis, Serbia, 13–16 May 2012; pp. 371–374. [CrossRef]

27. Zhu, Z.; Callenes-Sloan, J. Towards low overhead control flow checking using regular structured control.
In Proceedings of the 2016 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden,
Germany, 14–18 March 2016; pp. 826–829.

28. Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis amp; transformation.
In Proceedings of the International Symposium on Code Generation and Optimization, CGO 2004, San Jose,
CA, USA, 20–24 March 2004; pp. 75–86. [CrossRef]

29. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A free,
commercially representative embedded benchmark suite. In Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization, Austin, TX, USA, 2 December 2001; pp. 3–14.
[CrossRef]

http://dx.doi.org/10.1145/2968455.2968508
http://dx.doi.org/10.1145/2903150.2903170
http://dx.doi.org/10.1109/DATE.2003.1253806
http://dx.doi.org/10.1109/TR.2017.2754548
http://dx.doi.org/10.1109/TII.2013.2248373
http://dx.doi.org/10.4236/jsea.2012.59078
http://dx.doi.org/10.1016/j.ast.2006.06.006
http://dx.doi.org/10.1109/24.994926
http://dx.doi.org/10.1109/DFTVS.2003.1250158
http://dx.doi.org/10.1109/71.774911
http://dx.doi.org/10.1109/TEST.2007.4437639
http://dx.doi.org/10.1145/2499369.2465568
http://dx.doi.org/10.1145/2950053
http://dx.doi.org/10.1109/ACCESS.2018.2852805
http://dx.doi.org/10.1109/MSP.2009.934110
http://dx.doi.org/10.1109/MIEL.2012.6222877
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/WWC.2001.990739

Electronics 2019, 8, 166 20 of 20

30. Curnow, H.J.; Wichmann, B.A. A synthetic benchmark. Comput. J. 1976, 19, 43–49. [CrossRef]
31. Weicker, R.P. Dhrystone: A synthetic systems programming benchmark. Commun. ACM 1984, 27, 1013–1030.

[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/comjnl/19.1.43
http://dx.doi.org/10.1145/358274.358283
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Signature-Based CFE Monitoring Schemes
	Coverage of CFE Detection
	Granularity of CFE Detection
	Multi-Threading Technique and Multi-Core Environments

	Separate Signature-Based CFE Monitoring Scheme
	Separation of Signature Update and Signature Verification
	Signature Queue
	Signature Enqueue
	Monitor Routine and Signature Verification
	Inter-Procedural CFG
	Function Stack Routine and Function Stack
	Monitor Initialization
	Overall Operation Sequence in SSCFM Scheme

	Monitoring Scenario with SSCFM Scheme
	Performance Improvements in Multi-Core Environments
	Performance Improvements in Multi-Core Environments and Blocking I/O
	Performance Improvements in Multi-Threaded Environments and Blocking I/O
	Delayed Monitoring

	Code-Generation Framework for SSCFM
	Clang and LLVM Parser
	Control Flow Static Analyzer
	Monitoring Code Generator
	Signature Code Implanter
	Target Binary Code Generator

	Performance Evaluation
	Evaluation Environments and Benchmarks
	Performance Evaluation Criteria and Comparison Target
	Execution Time Overhead
	Execution Time Overhead Analysis
	CFE Detection Rate

	Conclusions
	References

