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Abstract: Orientation estimation is a crucial part of robotics tasks such as motion control, autonomous
navigation, and 3D mapping. In this paper, we propose a robust visual-based method to estimate
robots’ drift-free orientation with RGB-D cameras. First, we detect and track hybrid features (i.e.,
plane, line, and point) from color and depth images, which provides reliable constraints even in
uncharacteristic environments with low texture or no consistent lines. Then, we construct a cost
function based on these features and, by minimizing this function, we obtain the accurate rotation
matrix of each captured frame with respect to its reference keyframe. Furthermore, we present a
vanishing direction-estimation method to extract the Manhattan World (MW) axes; by aligning the
current MW axes with the global MW axes, we refine the aforementioned rotation matrix of each
keyframe and achieve drift-free orientation. Experiments on public RGB-D datasets demonstrate the
robustness and accuracy of the proposed algorithm for orientation estimation. In addition, we have
applied our proposed visual compass to pose estimation, and the evaluation on public sequences
shows improved accuracy.

Keywords: visual compass; orientation estimation; hybrid features; plane tracking; vanishing
direction; Manhattan World; RGB-D camera

1. Introduction

Robust orientation estimation is of great significance in robotics tasks such as motion control,
autonomous navigation, and 3D mapping. Orientation can be obtained by utilizing carried sensors like
the wheel encoder, inertial measurement unit (IMU) [1–4], or cameras [5–7]. Among these solutions,
the visual-based method [8–11] is effective, as cameras can conveniently capture informative images to
estimate orientation and position. In the past decades, many simultaneous localization and mapping
(SLAM) systems [12,13] and visual odometry (VO) methods [14,15] have been proposed. Payá et al. [5]
proposed a global description method based on Radon Transform to estimate robots’ position and
orientation with the equipped catadioptric vision sensor. These methods show good performance in
estimating orientation from captured images. However, local and global maps’ construction or loop
detection is needed in these approaches to reduce drift error.

For most indoor environments, there exist many parallel and orthogonal lines and planes (called
the Manhattan World (MW) [16]). These structural regularities are exploited in studies to estimate
drift-free rotation without previous complex techniques (map reconstruction and loop closure) [17–19].
Since 3D geometric structures can easily be calculated by using the camera that provides both depth
information and color image with 3 channels (red, green, and blue), called the RGB-D camera. The
RGB-D camera has become a popular alternative to monocular and stereo cameras for the purpose
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of rotation estimation, and estimation accuracy has been prominently improved by using the MW
assumption with a RGB-D camera [20–23]. However, a major disadvantage of these MW-based
methods is that the number of lines and planes used for tracking the MW axes must be no less than 2,
which is the minimal sampling for 3 degrees of freedom (DoF). In practice, robots often encounter harsh
environments without lines, and only one plane can be visible, resulting in failure in tracking MW axes
to estimate the camera orientation. To address these issues, we select some frames as keyframes and
exploit hybrid features (i.e., plane, line, and point) to compute the rotation matrix of each captured
frame with respect to its reference keyframe instead of directly aligning with the global MW axes.

In this paper, we propose a robust and accurate approach for orientation estimation using RGB-D
cameras. We detected and tracked the normal vectors of multiple planes from depth images, and we
detected and matched the line and point features from color images. Then, by utilizing these hybrid
features (i.e., plane, line, and point), we constructed a cost function to solve the rotation matrix of each
captured frame. Meanwhile, we selected keyframes to reduce drift error and avoid directly aligning
each frame with the global MW. Furthermore, we extracted the MW axes based on the normal vectors
of orthogonal planes and the vanishing directions of parallel lines, and by aligning the current MW
axes with the global MW axes, we refined the aforementioned rotation matrix of each keyframe and
achieved drift-free orientation. Experiments showed that our proposed method produces lower drift
error in a variety of indoor sequences compared to other state-of-the-art methods.

Our algorithm exploits hybrid features and adds a refinement step for keyframes, which can
provide robust and accurate rotation estimation, even in harsh environments, as well as general indoor
environments. The contributions of this work are as follows:

• We exploited the hybrid features (i.e., plane, line, and point), which provides reliable constraints
in solving the rotation matrix for the majority of indoor environments.

• We refined keyframes’ rotation matrix by aligning the current extracted MW axes with the global
MW axes, which achieves drift-free orientation estimation.

• We evaluated our proposed approach on the ICL-NUIM and TUM RGB-D datasets, which showed
robust and accurate performance.

2. Related Work

Pose estimation obtained by VO or V-SLAM systems has been extensively studied for the purpose
of meaningful applications, such as autonomous robots and augmented reality. Rotation estimation
is usually considered as a subproblem of pose estimation that consists of rotational and translation
components. It has been gradually recognized by researchers that the main source of VO drift is
inaccurate rotation estimation [19,20]. In the following discussion, we focus on rotation-estimation
methods that exploit structural regularities with RGB-D cameras. These methods utilize surface
normals, vanishing points (vanishing directions), or mixed constraints to compute camera orientation.

Surface-normal vectors were exploited to estimate camera orientation because their distribution
on the unit sphere (or called Gaussian sphere) is regular and more likely around plane-normal
vectors in the current environment, as shown in Figure 1. The work of Straub et al. [21] introduced
the Manhattan-Frame model in the surface-normal space and proposed a real-time maximum a
posteriori (MAP) inference algorithm to estimate drift-free orientation. Zhou et al. [23] developed
a mean-shift paradigm to extract and track planar modes in surface-normal vector distribution on
the unit sphere, and achieved drift-free behavior by registering the bundle of planar modes. In the
work of Kim et al. [24], orthogonal planar structures were exploited and tracked with an efficient
SO(3)-constrained mean-shift algorithm to estimate drift-free rotation. These surface-normal-based
methods can provide stable and accurate rotation estimation if the number of observed orthogonal
planes is not less than two.
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(a) RGB-D image pairs (b) 3D point cloud (c) Distribution of surface normals

Figure 1. Single RGB-D frame and distribution of surface normals corresponding to its 3D point
cloud. (a) Frame 85 in ’LivingRoom0’ sequence of ICL-NUIM dataset. (b) 3D point cloud obtained by
back-projecting the depth information and coloring with aligned RGB pixels. (c) Distribution of surface
normals on the unit sphere.

A vanishing point (VP) of a line is obtained by intersecting the image plane with a ray parallel to
the world line and passing through the camera center, and it depends only on the direction of a line [25].
Two parallel lines determine a vanishing direction (VD), and the Euclidean 3D transformation of a
VD is influenced only by rotation; the geometric relationships are shown in Figure 2, so VPs and VDs
have been widely used for estimating rotation. Bazin et al. [17] proposed a three-line random-sample
consensus (RANSAC) algorithm with the VP orthogonality constraint to estimate rotation. The work of
Elloumi et al. [26] proposed a real-time pipeline for estimating camera orientation based on vanishing
points for indoor navigation assistance on a smartphone. VP-based methods need a sufficient number
of lines for estimating rotation, and accuracy performance is greatly affected by line-segment noise.

Gaussian sphere

Center of projection

Great circles of the 

two line segments

Normal vectors of the 

great circles

Two parallel line segments 

detected in RGB image

Vanishing direction

3D direction vector 

for parallel lines

Figure 2. Three-dimensional geometric relationship between parallel lines and their vanishing direction.
Gaussian sphere is a unit sphere on the center of a camera projection. Two parallel lines are projected
onto the Gaussian sphere as two great circles, and vanishing direction is obtained by the cross project of
these two great circles’ normal vectors. Two parallel lines and their corresponding vanishing direction
are drawn with red.

Hybrid approaches use both surface normals obtained in depth image and vanishing directions
extracted in the RGB image to estimate rotation, which shows more robust performance. The method
proposed by Kim et al. [22] exploited both line and plane primitives to deal with degenerate cases
in surface-normal-based methods for stable and accurate zero-drift rotation estimation. In the
work of Kim et al. [27], only a single line and a single plane in RANSAC were used to estimate
camera orientation, and refinement is performed by minimizing the average orthogonal distance
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from the endpoints of the lines parallel to the MW axes once the initial rotation estimation is
found. Bazin et al. [17] introduced a related one-line RANSAC for situations where the horizon
plane is known.

3. Proposed Method

We propose a robust visual compass that exploits hybrid features (i.e., plane, line, and point) to
estimate camera orientation with the RGB and depth-image pairs. Our proposed method has two main
steps: (1) rotation matrix is estimated by tracking the hybrid features for each frame with respect to the
reference keyframe (tracking step); and (2) refine the keyframe’s initial rotation matrix by aligning with
the global MW axes to achieve drift-free orientation (refinement step). The overview of our proposed
method is shown in Figure 3.

New Frame

Depth Image

RGB Image

Surface Normal Extraction

Line&Point Extraction

Multiple Planes Tracking

Line&Point Matching

Last Frame

Reference KeyFrame

Hybrid Features Based

Rotation Estimaiton
 Is  Keyframe?

no

Global MW Axes 

Extraction

yes

Plane Detection

Parallel Lines Cluster

Current MW Extraction

Alignment

Orientation Update

Tracking Step

Refinement Step

Current 
Orientation

Figure 3. Overview of our visual compass. We estimate camera rotation by tracking the plane, line,
and point features. We refine the keyframe orientation by aligning the current Manhattan World (MW)
axes with the global MW axes. Global MW axes is extracted from the first captured RGB-D frame.

3.1. Rotation Estimation with Hybrid Features

We simultaneously tracked multiple planes, lines, and points in the current environment, and we
utilized tracked hybrid features to construct a cost function for estimating the current rotation matrix
relative to its reference keyframe. This can provide camera rotation even in uncharacteristic scenes
where there are no rich texture or no consistent visible lines.

3.1.1. Multiple-Plane Detection and Tracking

We detected multiple planes from the depth image with a fast plane extraction algorithm [28].
The algorithm first constructs an initial graph that uniformly divides the depth image’s point cloud
into a set of nodes with size H ×W in the image space. It then performs agglomerative hierarchical
clustering on this graph to merge nodes belonging to the same plane. It final refines the extracted
planes using pixel-wise region growing. With this approach, we obtain planes Pi : (ni, di), i = 1, ..., m,
where ni is the unit normal vector of the i-th plane, and di is the distance to the origin of the camera
co-ordinate system for the current frame.

We tracked the normal vector of each detected plane with a mean shift algorithm [23] that operates
based on the density distribution of initial nodes’ normals on the Gaussian sphere, as shown in Figure 4.
We calculated the normal vector of each initial node by the least-square fitting method, and the depth
image was preprocessed by a box filter to obtain the stable vectors. We used the previous frame’s
tracked (detected) normal vectors as an initial value, and then performed the mean shift algorithm
in the tangent plane of the Gaussian sphere to obtain the tracked results. It should be noted that
the parallel planes have the same plane normal vector; we class them as the same plane cluster for
rotation estimation.
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If we only have plane primitives to estimate rotation, rotation matrix R with three degrees of
freedom can be computed from no less than two such tracked norm vectors that are not parallel
because each normal vector represents two independent constraints on R.

R = argmin ∑
i=1,...,m

∥∥∥R · nre f
i − nk

i

∥∥∥2

2
(1)

where nre f
i represents the i-th detected plane normal vector in the reference keyframe, and nk

i represents
the tracked result of the i-th plane in frame k.

(a) Depth image (b) Tracked normal vectors (c) Corresponding plane primitives

Figure 4. Result of tracking planes: (a) Depth image of Frame 741 in the ‘LivingRoom2’ sequence of
the ICL-NUIM dataset. (b) Tracked normal vectors from the Gaussian sphere; black dots represent
the normals of initial nodes. (c) Plane primitives in current frame. Tacked normal vectors and their
corresponding planes in image domain are represented with the same color.

3.1.2. Line and Point Detection and Matching

We used a linear-time Line Segment Detector (LSD) [29] to extract 2D line segments on the
color image and obtain 2D line segments set l = {li, i = 1, 2, ..., n}, where li is the i-th line segment:
y = kix + bi, with starting point usi = (usi, vsi) and ending point uei = (uei, vei). Pixels belonging to
the line segment li are: <̃ = {u|u ∈ li ∧ u ∈ Ω}, Ω is the image domain. Then, we reconstructed their
corresponding 3D points set: Pl = {p|p = π−1(u, d(u)), p ∈ R3 ∧ u ∈ <̃}, where d(u) represents the
corresponding depth value of pixel u in the color domain, and π−1(u, d(u)) = d(u)( u−cx

fx
, v−cy

fy
, 1)T is

the inverse projection function for a camera model, with fx, fy being the focal lengths on the x axis and
y axis, and (cx, cy)T is the camera’s centre co-ordinates. Finally, the RANSAC method is used to fit
3D lines LLLi : (di, pi), where di represents the i-th line’s 3D direction, and pi represents a point in this
3D line.

We match the lines that were respectively extracted from the current frame and the reference
keyframe based on the Line Band Descriptor (LBD) [30], and two pairs of matching lines that are not
parallel are needed to estimate the rotation matrix in case that there are only line primitives obtained
in the current environment.

R = argmin ∑
i=1...n

∥∥∥R · dre f
i − dk

i

∥∥∥2

2
(2)

where dre f
i represents the i-th detected 3D line direction in the reference keyframe, and dk

i represents
the matching line direction in frame k.

In addition to the plane and line features, we extracted and matched the oriented fast and rotated
brief (ORB) features for point tracking, as these features are extremely fast to compute and match, and
they present good invariance to camera autogain, autoexposure, and illumination changes. We used
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the epipolar constraint method to optimize the initial matching pairs by ORB descriptors; the optimized
results can provide reliable constraints to estimate the camera pose.

R = argmin ∑
i...N

∥∥∥(R · π−1(ure f
i , d(ure f

i )) + t)− π−1(uk
i , d(uk

i ))
∥∥∥2

2
(3)

where ure f
i represents the 2D position of i-th detected ORB point feature in the reference keyframe

and uk
i represents the 2D position of the matching point in frame k. It should be noted that translation

component t could be obtained by solving Equation (3), but we did not consider it, as our visual
compass mainly focused on camera orientation.

3.1.3. Robust Rotation Estimation

We jointly utilized the tracked planes, lines, and points in the current environment to estimate the
rotation matrix with respect to the reference keyframe. Rotation matrix R can be computed by solving:

R = argmin( ∑
i=1...m

λP
i

∥∥∥R · nre f
i − nk

i

∥∥∥2

2
+ ∑

i=1...n
λL

i

∥∥∥R · dre f
i − dk

i

∥∥∥2

2
+ ∑

i=1...N

∥∥∥(R · Pre f
i + t)− Pk

i

∥∥∥2

2
) (4)

where λP
i represents the number of pixels contained in the i-th tracked plane, and λL

i represents

the number of pixels contained in the i-th tracked line, 3D points Pre f
i = π−1(ure f

i , d(ure f
i )), and

Pk
i = π−1(uk

i , d(uk
i )).

Cost function Equation (4) contains three parts, corresponding to plane, line, and point constraints.
A stable and accurate rotation matrix can be solved by minimizing Equation (4) with line and plane
constraints jointly in the texture-less environment that few points tracked, and the point constraints
ensure that the rotation estimation is reliable in the scenes that no consistent lines or only one plane to
be visible.

Keyframe Selection: By the tracking step, we constantly know the number of the tracked planes,
lines and points for each frame. If there is only one tracked plane with the condition that the number of
normal vectors on the Gaussian sphere around this tracked normal vector is too low, and the number
of tracked points is less than a threshold, we reuse the fast plane extraction method and Line Segment
Detector (LSD) method to detect planes and lines in the current frame. If the number of redetected
orthogonal planes and lines is larger than 2, this frame is selected as a keyframe and performs the
following refinement step.

3.2. Drift-Free Orientation Estimation

The previous tracking step estimates the rotation matrix between the current frame and its
reference keyframe, and it is obvious that the accuracy of the reference keyframe’s orientation directly
affects the accuracy of the current frame’s rotation matrix. To reduce drift error, we sought global MW
axes in the first frame and refined each keyframe’s orientation by aligning the current extracted MW
axes with the global MW axes to achieve drift-free rotation in MW scenes. We sought current and
global MW axes based on the plane normal vectors, and the vanishing directions of the parallel lines.
Plane normal vectors can be directly obtained by the previous fast plane extraction method, and we
propose a novel vanishing direction extraction method as follows.

3.2.1. Vanishing Direction Extraction

To extract accurate VDs, we need to cluster lines that are parallel in the real world. We used
the simplified Expectation–Maximization (EM) clustering method to group image lines and compute
their corresponding 3D direction vectors. The original EM algorithm iterates the expectation and the
maximization steps. In our simplified algorithm, we skip the expectation phase and roughly cluster
the lines based on the K-means method [31], with the Euclidean distance of all extracted lines’ 3D
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directions that are represented as 3D points. In the maximization phase, direction vectors are estimated
by maximizing the objective function:

dv
k = argmax∏

i
p(dv

k |l
(k)
i ) (5)

where l(k)i represents the i-th 2D line segment in the k-th initial classification, dv
k represents the VD of

the k-th initial classification to be optimized, and the p(dv
k |l

(k)
i ) represents the posterior likelihood of

the VD.
Using the Bayes formula, the posterior likelihood of the VD is expressed as:

p(dv
k |l

(k)
i ) =

p(l(k)i |d
v
k)p(dv

k)

p(l(k)i )
(6)

where p(l(k)i |d
v
k) represents the prior probability of the VD, and p(dv

k) models the potential knowledge
of the VD before we obtain the measurement. If we know nothing, p(dv

k) is defined as uniform
distribution with a constant value. Therefore, the VD can be obtained by maximizing prior probability:

dv
k = argmax∏

i
p(dv

k |l
(k)
i ) = argmax∑

i
log p(l(k)i |d

v
k) (7)

Prior probability p(l(k)i |d
v
k) is defined as:

p(l(k)i |d
v
k) =

1√
2πσ2

k

(
−(l(k)Ti Kdv

k)
2

2σ2
k

) (8)

where K represents the internal camera parameters. Equation (8) reflects the fact that the vanishing
direction is perpendicular to the plane normal of a great circle that is determined by an image line l(k)i
and the center of the projection of the camera, as shown in Figure 2.

Maximizing objective function Equation (7) is equivalent to solving a weighted least-squares
problem for each dv

k :

dv
k = argmin∑

i

length(l(k)i )

max(length(l(k)))
· (l(k)Ti Kdv

k)
2 (9)

where length(l(k)i ) represents the length of the i-th line, and max(length(l(k))) represents the maximum
line length in rough cluster k. Length coefficient is considered in the term because the longer the lines
are, the more reliable they are. By solving Equation (9), we can obtain the initial vanishing direction
and the residual for each line. To obtain a more accurate vanishing direction, we discarded lines with
a larger residual than a threshold and added additional optimization. Optimized parallel lines are
used to estimate the final vanishing directions. Figure 5 shows two results of parallel-line clustering
obtained by our proposed method.
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(a) (b)

Figure 5. Results of parallel-line clustering that are used to compute vanishing directions: (a) the 120-th
image in ‘Living Room 2’ sequence. (b) the 64-th image in ‘Office Room 1’ sequence. Lines with the
same color are parallel in the real world. The vanishing directions obtained by these parallel lines can
provide accurate and reliable constraints for MW extraction.

3.2.2. Global Manhattan World Seeking

The Manhattan World assumption is suitable in human-made indoor environments, and we
sought global MW axes based on plane normal vectors and the vanishing directions from the first
frame. MW axes can be expressed as columns of a 3D rotation matrix R = [rg

1 rg
2 rg

3 ] ∈ SO(3).
We first set the the detected plane normal vectors and the vanishing directions from the parallel

lines as the candidate MW axes, which return a redundant set. In fact, most of the pixels in the frame
typically belong to the planes and lines that determine the dominant MW axes, and we sought the
plane that contained the largest pixels, and set its plane normal vector r1 as the first MW axis. The
remaining two axes r2 and r3 are determined based on the orthogonality constraint with the first axis
and the number of the pixels belonging to the detected planes or the parallel lines.

If we detect three mutually orthogonal planes in the first frame, we directly set their plane-normal
vectors as the MW axes. In the case that there are only two orthogonal planes, the third axis is
determined by the vanishing direction from the parallel lines that is orthogonal with the two previous
plane-normal vectors. Similarly, if only one plane is detected in the first frame, we sought the remaining
two MW axes by the vanishing directions from the orthogonal parallel lines.

Initial MW axes [r1 r2 r3], obtained by the previous step, are not strictly orthogonal. We maintained
orthogonality by reprojecting the MW axes onto the closest matrix on SO(3). Each axis is reweighted
by a factor λi that is determined by the number of pixels belong to this axis’ corresponding planes or
parallel lines. The final global MW axes are obtained by using singular=value decomposition (SVD):[

rg
1 rg

2 rg
3

]
= UVT (10)

where [U, D, V] = SVD([λ1r1 λ2r2 λ3r3]) and factor λi describes how certain the observation of a
direction is.

3.2.3. Keyframe Orientation Refinement

For each keyframe, we refined its rotation matrix by aligning the current extracted MW axes with
the global MW axes. We first used the fast plane-extraction algorithm and our proposed spatial-line
direction estimation method to extract plane-normal vectors and vanishing directions in the current
keyframe. We then extracted the current MW axes (rc

i , i = 1, 2, 3) by using the same method that we
used to extract global MW axes. We finally determine the corresponding pairs based on the Euclidean
distance between vector rc

i and Rrg
j , where R represents the rotation matrix obtained by tracking steps

for the current keyframe. Refined rotation matrix Rr is computed by solving:

Rr = argmin ∑
i=1,2,3

∥∥∥Rrrg
i − rc

i

∥∥∥2

2
(11)
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where rg
i and rc

i represent the i-th global MW axis and the current extracted corresponding MW axis.

4. Results

We evaluate our proposed approach on the synthetic dataset (ICL-NUIM [32]), real-world dataset
(TUM RGB-D [33]), and pose-estimation application, respectively. All experiments were run on a
desktop computer with an Intel Core i7, 16 GB memory, and Ubuntu 16.04 platform.

• The ICL-NUIM dataset is a collection of handheld RGB-D camera sequences within synthetically
generated environments. These sequences were captured in a living room and an office room with
perfect ground-truth poses to fully quantify the accuracy of a given visual odometry or SLAM
system. Depth and RGB noise models were used to alter the ground images to simulate realistic
sensor noise. There are sequences that are captured in the environment with low texture and only
one visible plane, which makes it hard to estimate rotation for whole images in this sequence.

• The TUM RGB-D dataset is a famous benchmark to evaluate the accuracy of a given visual
odometry or visual SLAM system. It contains various indoor sequences captured from the Kinect
RGB-D sensor. The sequences were recorded in real environments at a frame rate of 30 Hz with
a 640× 480 resolution, and their ground-truth trajectories were obtained from a high-accuracy
motion-capture system. The TUM dataset is more challenging than the ICL dataset because it has
some blurred images and inaccurate alignment image pairs that make it difficult to estimate the
rotation matrix.

We compared our proposed approach with two state-of-the-art MW-based methods proposed
by Zhou et al. [23] and Kim et al. [27], namely, orthogonal planes based rotation estimation (OPRE)
and 1P1L. OPRE estimates absolute and drift-free rotation by exploiting orthogonal planes from depth
images. 1P1L estimates 3DoF drift-free rotational motion with only a single line and plane in the
Manhattan world. We used the average value of the absolute rotation error (ARE) in degrees as the
performance metric for the entire sequences:

ARE.average =
1
N

N

∑
i=1

arccos(
tr(RT

i ·R
g
i )− 1

2
)× 57.3 (12)

where tr() denotes the trace of a matrix, Ri and Rg
i represent the estimated and ground rotation matrix

for the i-th frame, respectively, and N represents the number of frames in the tested sequence.

4.1. Evaluation on Synthetic Dataset

We first tested the performance of our proposed algorithm on the ICL-NUIM dataset, and
measured the average ARE in degrees for each sequence; evaluation results are shown in Table 1.
The smallest average ARE values are bolded, which reveals that our proposed method is more accurate
than the two other methods. For example, in ‘Office Room 0’, the average ARE of our proposed
method is 0.16 degrees, while that of 1P1L and OPRE is 0.37 and 0.18 degrees, respectively. Our
method outperformed the others in all cases in the ICL-NUIM benchmark. The main reason is that
we jointly exploited the plane, line, and point features to estimate camera orientation even when the
camera moves in scenes with no consistent lines, or where only one plane is visible; this is illustrated
in Figure 6. In ‘Living Room 0’, the OPRE method failed to estimate the rotation for the entire sequence
because only one plane can be visible in some frames; we marked the result as ‘×’ in Table 1. The last
column in Table 1 shows the number of frames in the current sequence.
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Figure 6. Results of camera orientation estimated by our proposed method on the ICL-NUIM dataset:
(a) ‘Living Room 0’ sequence. (b) ‘Office Room 0’ sequence. The estimated orientation of each frame
is shown in the bottom of the RGB image. Colored thick and thin lines respectively denote current
orientation and global MW axes (determined in the first frame); black lines represent ground orientation.

Table 1. Comparison of average absolute rotation error (ARE, degrees) on the ICL-NUIM dataset.

Sequence Proposed No Refinement 1P1L OPRE Frames

Living Room 0 0.22 0.53 0.31 × 1508
Living Room 1 0.25 0.55 0.38 0.97 965
Living Room 2 0.23 1.26 0.34 0.49 880
Living Room 3 0.35 1.69 0.35 1.34 1240

Office Room 0 0.16 1.32 0.37 0.18 1507
Office Room 1 0.17 0.44 0.37 0.32 965
Office Room 2 0.26 1.29 0.38 0.33 880
Office Room 3 0.14 0.43 0.38 0.21 1240

The MW assumption is sufficiently suitable for the ICL-NUIM benchmark and we used the
refinement step to achieve a drift-free rotation matrix. To clearly show the effect of the refinement
step, we measured the ARE values in degrees for all sequences by our method without a refinement
step, which corresponds to the ‘No Refinement’ column in Table 1. We recorded the values of absolute
rotation error (ARE) for each frame in the ‘Living Room 0’ sequence, and the final rotation drift
with and without refinement was 0.34 and 1.43 degrees, respectively, as shown in Figure 7. This
demonstrates that the refinement step can effectively reduce rotation drift.
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Figure 7. Performance evaluation for refinement on the ’Living Room 0’ sequence: (a–c) Roll, pitch,
and yaw angles estimated by the proposed method with and without a refinement step for each frame.
(d) Absolute rotation errors for our proposed methods with and without a refinement step. This shows
that the refinement step can effectively reduce rotation drift.

4.2. Evaluation on Real-World Data

We compared the performance of our proposed algorithm with other two methods on seven
real-world TUM RGB-D sequences that contained structural regularities. Comparison results are
shown in Table 2. We provide the average ARE for rotation estimation, and the smallest values are
indicated in bold. Our proposed method showed better performance in low-texture environments such
as ‘fr3_struc_notex’ and ‘fr3_cabinet’ because we used hybrid features to estimate orientation, as shown
in Figure 8. Our method can also provide a more accurate rotation matrix in an environment with
imperfect MW structure like ‘fr3_nostruc_tex’ and ‘fr3_nostruc_notex’, whereas OPRE fails because it
requires at least two orthogonal planes to estimate camera orientation.

Table 2. Comparison of average ARE (degrees) on TUM RGBD Dataset.

Sequence Proposed No Refinement 1P1L OPRE Frames

fr3_nostruc_notex 1.22 1.22 1.51 × 90
fr3_nostruc_tex 1.89 1.89 2.15 × 448
fr3_struc_notex 1.20 1.62 1.96 3.01 965

fr3_struc_tex 0.74 1.03 2.92 3.81 905
fr3_cabinet 1.48 2.78 2.48 2.42 926

fr3_large_cabinet 1.87 3.95 2.04 36.34 980
fr3_long_office 1.51 3.58 1.75 4.99 2486

The result of refinement performance on the ‘fr3_cabinet’ sequence is shown in Figure 9. Final
rotation drift with and without refinement was 1.30 and 1.62 degrees, respectively. It is clear that
our refinement step can effectively reduce drift error. The average ARE values computed by our
proposed algorithm with and without refinement step were the same in sequences ‘fr3_nostruc_tex’
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and ‘fr3_nostruc_notex’. The reason is that there were no perfect global MW axes extracted in the first
frame, and the refinement step was not implemented.
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Figure 8. Results of camera orientation estimated by our proposed method on the TUM RGB-D dataset:
(a) ‘fr3_cabinet’ sequence. (b) ‘fr3_struc_notex’ sequence. Estimated orientation of each frame is shown
in the bottom of the RGB image. Colored thick and thin lines respectively denote current orientation
and global MW axes (determined in the first frame); black lines represent ground orientation.
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Figure 9. Performance evaluation for refinement on the ‘fr3_cabinet’ sequence: (a–c) Roll, pitch, and
yaw angles estimated by our proposed method with and without a refinement step for each frame.
(d) Absolute rotation errors for the proposed methods with and with refinement step. This shows that
the refinement step can effectively reduce rotation drift.
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4.3. Application to Pose Estimation

To further verify the practicability of our proposed visual compass, we used it for pose-estimation
application and recorded the estimated trajectories. The three-dimensional pose has six degrees
of freedom (DoF) and it consists of 3-DoF rotation and 3-DoF translation. As our proposed visual
compass method can provide accurate rotation estimation, the key to performing pose localization is to
estimate the translation component. We first detected and tracked ORB feature points to obtain point
correspondences. Then, we recovered the 3-DoF translational motion of the images by minimizing:

t = argmin( ∑
i=1...N

∥∥∥(R f ixed · Pre f
i + t)− Pk

i

∥∥∥2

2
) (13)

where R f ixed represents the rotation matrix between the reference image and the current image, and it
is obtained by our proposed visual compass, Three-dimensional points Pre f

i and Pk
i are described in

Equation (4).
We tested pose estimation on four datasets, “Living Room 2”, “Office Room 3”, “fr3_struc_tex”,

and “fr3_nostruc_tex”. These datasets provide the ground-truth pose for each image; we measured
the root mean squared error (RMSE) of the absolute translational error (ATE) and compared it
with state-of-the-art approaches, namely, ORB_SLAM [12], dense visual odometry (DVO) [15], and
line-plane based visual odometry (LPVO) [22]. The comparison of ATE.RMSE is shown in Table 3; the
smallest error for each sequence is indicated in bold. Estimated trajectories are shown in Figure 10.
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Figure 10. Estimated trajectories with the proposed (red) and ground truth (black) on four sequences:
(a) Living Room2, (b) Office Room 3, (c) fr3_struc_tex, (d) fr3_nostruc_tex.



Electronics 2019, 8, 220 15 of 17

Table 3. Comparison of ATE.RMSE (unit: m).

Sequence Proposed ORB-SLAM2 DVO LPVO

Living Room 2 0.025 0.028 0.375 0.034
Office Room 3 0.021 0.065 0.079 0.030
fr3_struc_tex 0.017 0.024 0.048 0.174

fr3_nostruc_tex 0.046 0.052 0.073 ×

5. Conclusions

We proposed a visual-based method to estimate robot orientation with RGB-D cameras.
We exploited hybrid features providing reliable constraints to construct cost function for solving
the initial rotation matrix. We presented a vanishing direction extraction method based on parallel
lines and combined it with detected plane normals to seek global and current Manhattan World
axes. We refined the orientation matrix of the selected keyframe with respect to the global MW
axes, and achieved drift-free orientation. The proposed algorithm was tested on both synthetic as
well as real-world publicly available RGB-D datasets, and we compared it with two state-of-the-art
methods for orientation estimation. The results demonstrated the accuracy and robustness of our
proposed method. Furthermore, we applied the proposed algorithm to pose estimation and recovered
the translational motion by giving absolute camera orientation; evaluation on the public sequences
showed improved accuracy. In summary, the proposed algorithm showed good performance in
Manhattan World scenes, and it has significant applications on mobile robotics. In the future, we
will exploit hybrid features to perform pose location and 3D mapping that can provide maps with a
geometric structure and more robust pose estimation in less-textured and -structured environments,
and we will try to optimize the refinement step for not only pure Manhattan Worlds but also more
general environments like Mixtures of Manhattan Worlds [34].
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