
electronics

Article

A High-Speed Division Algorithm for Modular
Numbers Based on the Chinese Remainder Theorem
with Fractions and Its Hardware Implementation

Nikolai Chervyakov, Pavel Lyakhov , Mikhail Babenko, Anton Nazarov, Maxim Deryabin *,
Irina Lavrinenko and Anton Lavrinenko

Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University,
Stavropol 355009, Russia; ncherviakov@ncfu.ru (N.C.); ljahov@mail.ru (P.L.); mgbabenko@ncfu.ru (M.B.);
kapitoshking@mail.ru (A.N.); lavrinenko_ir1@mail.ru (I.L.); k-fmf-primath@stavsu.ru (A.L.)
* Correspondence: maderiabin@ncfu.ru; Tel.: +7-919-734-8307

Received: 29 January 2019; Accepted: 21 February 2019; Published: 27 February 2019
����������
�������

Abstract: In this paper, a new simplified iterative division algorithm for modular numbers that
is optimized on the basis of the Chinese remainder theorem (CRT) with fractions is developed.
It requires less computational resources than the CRT with integers and mixed radix number systems
(MRNS). The main idea of the algorithm is (a) to transform the residual representation of the dividend
and divisor into a weighted fixed-point code and (b) to find the higher power of 2 in the divisor written
in a residue number system (RNS). This information is acquired using the CRT with fractions: higher
power is defined by the number of zeros standing before the first significant digit. All intermediate
calculations of the algorithm involve the operations of right shift and subtraction, which explains
its good performance. Due to the abovementioned techniques, the algorithm has higher speed and
consumes less computational resources, thereby being more appropriate for the multidigit division
of modular numbers than the algorithms described earlier. The new algorithm suggested in this
paper has O (log2 Q) iterations, where Q is the quotient. For multidigit numbers, its modular division
complexity is Q(N), where N denotes the number of bits in a certain fraction required to restore the
number by remainders. Since the number N is written in a weighed system, the subtraction-based
comparison runs very fast. Hence, this algorithm might be the best currently available.

Keywords: division algorithm; residue number system; modular arithmetic

1. Introduction

The development of an informational society poses new challenges connected with the problem
of multidigit numbers transmission and processing. Important mathematical problems that require
such calculations and also considerable computational resources, both in terms of theory and practice,
arise in the applied and computational theory of numbers [1,2]. Most of such problems involve integer
calculations with the numbers belonging to the large and super large computer ranges, while the
results of calculations must be precise without rounding.

A feature of conventional computing devices is limited bit grid, which causes computational
complexity for the operations over multidigit numbers.

For calculations with multidigit numbers or calculations with large-range numbers, the residue
number systems (RNSs) have clear advantages over the radix number systems. Modern research is
focused on the processing of multidigit data in which the values of integer variables considerably
exceed the dynamic range of the serially produced computing devices (by 103–106 times and even
more); see Molahosseini et al. [2].

Electronics 2019, 8, 261; doi:10.3390/electronics8030261 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0487-4779
http://www.mdpi.com/2079-9292/8/3/261?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8030261
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 261 2 of 17

Modular calculations are crucial for applications with multidigit numbers, e.g., cryptography,
digital signature, and others [3,4].

For instance, the numbers used in cryptographic systems vary between 2600 and 2700 to guarantee
the high-level security of protected information [5]. During modular processing these numbers are
partitioned into small formats (several bits or several tens of bits), which appreciably speeds up
their implementation.

Residue number systems attract many researchers as a base for computing devices, and the recent
decade has been remarkable for the growing interest in these systems. This fact follows from numerous
publications dedicated to RNS usage in digital signal processing, image processing, antinoise coding,
cryptographic systems, quantum automata, neurocomputers, systems with the massive parallelism of
operations, cloud computing, DNA computing, etc. [1–13].

Residue number systems are remarkable for fast summation, subtraction, and multiplication,
which explains major interest in these systems for the applications requiring large volumes of
calculations. However, some operations (modulo reduction, comparison and division of numbers) are
very complicated in RNSs [14,15]. The development of more efficient algorithms for comparison, sign
detection, and division would open up new applications of RNSs [16].

The existing division algorithms for RNSs [17–19] can be classified as the ones based on number
comparison and the ones based on number subtraction.

In the comparison-based algorithms [18–24], the quotient is found using the iteration:

a′ = a− 2i qi b

where a′ and a denote the current and next dividends, respectively; b is the divisor; finally, qi gives the
digit of the quotient. For obtaining qi , the quotient a has to be compared with 2i b.

In the second class of the algorithms [21,25–27], the quotient is calculated using the iterations
a′ = a−Qi b. The quotient Qi is generated at each iteration from the complete RNS range, instead of
being chosen from a small set.

The integer division algorithm [1] is similar to standard binary division. Yet, the main drawback
of this algorithm and its modifications is that each iteration requires numbers comparison.

The algorithm without such drawbacks that was suggested in Szabó and Tanaka [1] replaces
the real divisor with the approximate one (an RNS module or the product of several RNS moduli).
The algorithm yields correct results under the condition b ≤ b < 2b, where b and b are the real and
approximate divisors, respectively. Clearly, this condition may be violated for some sets of moduli
(e.g., p1 = 9, p2 = 11, b = 4, where p1 and p2 are the RNS moduli).

Among the shortcomings of the above algorithm, note the need for using mixed radix number
systems (MRNSs), scale operation, special logic and approximate divisor calculation tables. As a
matter of fact, a series of approaches were proposed for solving the division problem based on the
numbers comparison and sign detection methods, which can be classified in the following way:
the algorithms [18,19,23] employ the conversions of MRNSs; the algorithms [18,22] formulate the
problem in terms of even numbers detection (parity check); and the algorithms [20] involve the base
extension method for iterations. However, the proposed algorithms suffer from high execution time
and considerable hardware cost due to the usage of MRNS, the Chinese remainder theorem (CRT),
and other time-consuming operations.

In Hiasat et al. [27] and Hiasat [24] it introduced a high-speed division algorithm in which the
MRNS and CRT in modular numbers division were replaced by the comparison of the high powers
of the dividend and divisor. The execution time and hardware cost of this algorithm are smaller in
comparison with the other algorithms; nevertheless, it contains redundant stages. In order to speed up
current quotient calculation, J.H. Yang [28] suggested a division algorithm based on parity check that
finds the quotient twice as fast as the algorithms [24,27]. But the calculations of the high powers of
2 still require much time in RNSs, and these operations are performed at each iteration. In Chung [29]
the original algorithm [27] was simplified using division by 2 and efficient quotient search within

Electronics 2019, 8, 261 3 of 17

a probable range. At each round, this algorithm adopts hard-to-implement parity check, which is
its disadvantage.

Most of the listed algorithms contain hard-to-implement operations such as the CRT, scale
operation, extension, sign detection, and comparison, which reduce their speed and cause considerable
hardware cost of modular numbers division.

There exists a division algorithm in the RNS format that uses the basic set of RNS moduli in
combination with an auxiliary module system for storing the remainders of the dividend and divisor.
The dividend and divisor in the RNS representation are converted into different RNS representations
with different module systems [29]. The usage of two RNS sets leads to higher redundancy, making
it necessary to perform direct and inverse transitions from the basic module set to the auxiliary one
and back during division. This feature dramatically reduces the speed of calculations. Talahmeh
at al. [30] introduced a fast division algorithm based on index transformations over the Galois field
G F(p), which is easily implemented using tabular search. However, this algorithm guarantees efficient
processing for the data of 6–10 bits and prime moduli only. In the case of larger ranges, the algorithm
has low performance because the generator of prime p must be very large to represent integers over
the Galois field.

Most of the suggested iterative algorithms involve very many operations at each iteration. As was
declared by the authors, the algorithm based on the CRT with fractions [22,26,31] might appear to
be best because its time complexity is O (n b), where n denotes the number of RNS moduli and b the
number of bits in each module under the assumption that the moduli are more or less the same. But this
algorithm has some disadvantages as follows: (a) the divisor D is limited by P

16 < D ≤ 3P
16 , where

P is an RNS representation range; (b) each iteration includes several operations such as summation,
multiplication, comparison, and parity check; (c) in the end of the algorithm, the quotient has to be
converted from the system {−1, 0, 1} to the system {0, 1}, which gives extra computation load during
modular numbers division.

In this paper, an alternative modular division algorithm with efficient quotient calculation
using the relative values of the dividend and divisor in the fractional representation is introduced.
Each iteration of the new algorithm involves the shift and subtraction of the successive intermediate
results, which makes hardware implementation more efficient.

2. Approximate Positional Characteristic Calculation for Modular Numbers Based on the CRT
with Fractions and Its Application to Modular Division

An RNS is a set of positive and pairwise relatively prime numbers {p1, p2, . . . , pn}, which are
called moduli or bases. The dynamic range is given by P = p1 p2 . . . pn. For an unsigned number kh,
the additional RNS range has the form 0 ≤ kh ≤ R− 1. For the signed numbers, the additional range
is defined by −

[
R
2

]
< x ≤

[
R−1

2

]
. In this system, any integer a belonging to the range [0, P− 1] can

be uniquely described by an ordered set of remainders (α1, α2, . . . , αn). Each remainder αi has the
modulo pi representation

αi = a modpi = |a|pi
, 0 ≤ αi < pi, i = 1, 2, . . . , n. (1)

Let operation ∗ be arithmetic summation, subtraction or multiplication. The most interesting
property of an RNS is that these operations can be converted from the integer representation into the
modular operations with different moduli pi, i.e.,

Z = a ∗ b RNS→


|z|p1

= |α1 ∗ β1|p1

|z|p2
= |α2 ∗ β2|p2

. . .
|z|pn

= |αn ∗ βn|pn

 . (2)

Electronics 2019, 8, 261 4 of 17

Using model Equation (2), the dynamic range is decomposed into parts with a narrower data
format so that within them all calculations are performed in parallel. As a result, the complexity of the
arithmetic structures decreases accordingly.

The number a in the RNS representation can be restored using the Chinese Remainder
Theorem [1,2], i.e.,

a =

∣∣∣∣∣ n

∑
i=1

P
pi

∣∣∣P−1
i

∣∣∣
pi

αi

∣∣∣∣∣
P

, (3)

where P =
n
∏
i=1

pi; pi, i = 1, 2, . . . , n, denote the RNS moduli;
∣∣∣P−1

i

∣∣∣
pi

is the multiplicative inversion of

Pi on pi, Pi =
P
pi
= p1 p2 . . . pi−1 pi+1 . . . pn.

As is well-known, among their drawbacks the RNSs have the implementation complexity of
non-modular operations (comparison, division) that are based on given positional characteristics.

The analysis of positional characteristics shows that they can be calculated precisely or
approximately. Therefore, the calculation methods of positional characteristics consist of two groups
as follows:

• precise calculation methods;
• approximate calculation methods.

The precise calculation methods of positional characteristics were considered in [1,2]. In this
paper, an approximate calculation method with appreciably smaller hardware cost and execution time
for the operations over the positional codes of decreased digit capacity will be employed.

The approximate calculation method of positional characteristics uses the relative values of
modular numbers with respect to the complete range defined by the Chinese Remainder Theorem [2].
This theorem associates with a positional number a its remainder representation (α1, α2, . . . , αn),
where αi, i = 1, 2, . . . , n, are the least non-negative residues of this number on the RNS moduli
p1, p2, . . . , pn.

Assume that the number a has the RNS representation with residues {α1, α2, . . . , αn}. Dividing
the left- and right-hand sides of Equation (3) by the constant P (the dynamic range) yields the
approximate value ∣∣∣ a

P

∣∣∣
1
=

∣∣∣∣∣∣∣
n

∑
i=1

∣∣∣P−1
i

∣∣∣
pi

pi
αi

∣∣∣∣∣∣∣
1

≈
∣∣∣∣∣ n

∑
i=1

kiαi

∣∣∣∣∣
1

. (4)

Here ki =
|P−1

i |pi
pi

are the constants of the chosen system; αi, i = 1, 2, . . . , n, denote the digits of
the number in the RNS representation on the moduli pi. Note that Equation (4) takes values within
the interval [0, 1). The final value is obtained by summation and integer part truncation, with the
fractional part being retained. The fractional value F(a) =

∣∣ a
P

∣∣
1 ∈ [0, 1) contains information about

the value of the number and its sign. If
∣∣ a

P

∣∣
1 ∈

[
0, 1

2

)
, then the number a is positive, and F(a) gives its

value divided by P. Otherwise, a is a negative number, and 1− F(a) gives its relative value. Denote
by [F(a)]2−t the value of F(a) rounded to 2−t bits. The exact value of F(a) satisfies the inequalities
[F(a)]2−t < F(a) < [F(a)]2−t + 2−t. The integer part of the number yielded by summing up ki is
neglected, i.e., discarded.

The rounding of F(a) causes inevitable errors. Introduce the notation ρ = −n +
n
∑

i=1
pi. As was

demonstrated in [32], N = dlog2(Pρ)e bits after the decimal point have to be used for rounding F(a)
without considerable errors that would affect calculation accuracy. In other words, there exists a
bijection between the set of numbers in the RNS representation and the set of numbers rounded to the
Nth bit, i.e., [F(a)]2−N .

Electronics 2019, 8, 261 5 of 17

Taking into account the function [F(a)]2−N , the sign detection conditions can be written as follows:

1. If a = [F(a)]2−N <
1
2

, then the number a is positive.

2. If
1
2
≤ [F(a)]2−N < 1, then the number a is negative.

(5)

Consider the approximate calculation method for comparing numbers in the RNS representation.
Example. Let p1 = 2, p2 = 3, p3 = 5, and p4 = 7 be the system of RNS moduli. Then

P = 2 · 3 · 5 · 7 = 210, ρ = 2 + 3 + 5 + 7− 4 = 13, P1 = P
p1

= 105, P2 = P
p2

= 70, P3 = P
p3

= 42, and

P4 = P
p4

= 30.
The constants ki for calculating the relative values are

k1 =

∣∣∣ 1
105

∣∣∣
2

2
=

1
2

, k2 =

∣∣∣ 1
70

∣∣∣
3

3
=

1
3

, k3 =

∣∣∣ 1
42

∣∣∣
5

5
=

3
5

, k4 =

∣∣∣ 1
30

∣∣∣
7

7
=

4
7

The constants ki rounded to 12 decimal places are

k1 = 0.100000000000, k2 = 0.010101010101,

k3 = 0.100110011001, k4 = 0.100100100100

Compare the two numbers a = 97 and b = 96 in the RNS representation with the moduli p1,
p2, p3, and p4. Note that, for numbers comparison, the critical case is the numbers differing by 1.
The RNS representations of the numbers a and b are a = (1, 1, 2, 6) and b = (0, 0, 1, 5), respectively.
Their difference is a− b = (1, 1, 2, 6)− (0, 0, 1, 5) = (1, 1, 1, 1). Now, detect the sign of a− b. First,
find [F(a− b)]2−12 = 0.000000010010; this value satisfies the first condition of model Equation (5), i.e.,
0 < 0.000000010010 < 0.1. Hence, the natural conclusion is that a− b > 0, meaning a > b.

3. New Division Algorithm Based on the CRT with Fractions

Consider two numbers—-a dividend a = (α1, α2, . . . , αn) and a divisor b = (β1, β2, . . . , βn).
Let both numbers be represented within the range [0, P), where P = p1 · p2 · . . . · pn and pi,
i = 1, 2, . . . , n, denote the RNS moduli. For the sake of simplicity, assume that a and b are positive
numbers. (The case of negative numbers can be considered by analogy using simple modifications.)
The division algorithm calculates the quotient Q and the remainder R so that a = Q · b + R, where
0 ≤ R < b. The detailed description of this algorithm is given in Appendix A.

Modular division includes two stages. At the first stage, the high power of 2j is obtained using
the binary series approximation of the quotient; at the second stage, the approximation series is refined

accordingly. The algorithm yields Q = (Q1, Q2, . . . , Qn), where Qi =

∣∣∣∣∣ ∑
j∈L

qj2j

∣∣∣∣∣
pi

; L denotes the set of

powers j in the refined quotient approximation series; pi, i = 1, 2, . . . , n, are the RNS moduli.
For modular division optimization, the classical CRT will be replaced by the CRT with fractions.

In this case, following model Equation (4), the dividend, divisor, and remainder can be written as
the fractions

F(a) =
∣∣∣ a
P

∣∣∣
1
, F(b) =

∣∣∣∣ b
P

∣∣∣∣
1
, F(R) =

∣∣∣∣RP
∣∣∣∣
1
.

Using the approximate values, consider the modular division algorithm based on the CRT
with fractions.

The algorithm consists of two stages. The first stage is to find the high power j of the divisor by
the left shift of F(b) to the zero digits standing before the first significant digit. At the second stage,
the general quotient is generated by selecting the powers of 2 that form the partial quotients to be
included in the general quotient approximation series. The analysis procedure starts from the highest

Electronics 2019, 8, 261 6 of 17

power j and ends with the zeroth power of 2, thereby reading out the necessary powers of 2 in the
RNS representation. The modular division algorithm based on the CRT with fractions works in the
following way. The residues table for the 0(log2 P− 1) integer powers of 2 is put into memory, and the
representations a = (α1, α2, . . . , αn) and b = (β1, β2, . . . , βn), (αi, βi)modpi, i = 1, 2, . . . , n, are obtained
at the input. Then the quotient is calculated so that F(a) = (Qmodp1, Qmodp2, . . . , Qmodpn)F(R) +
F(b), where 0 ≤ F(R) < F(b).

The quotient Q =
⌊ a

b
⌋

is generated at each iteration from the powers of 2 in the RNS representation
that are included or excluded depending on the sign of the subtraction chain ∆i − ∆i−1 − ∆i−2 − . . .−
∆m, ∆i = ∆i−1 − 2j−iqj−iF(b). The notations in this formula are the following: j as the highest power
of the quotient; qj as the highest digit of the quotient; i as current iteration; ∆1 = F(a)− F(b) qj 2j ≈

[F(a)]2−t − [F(b)] 2−t qj 2j; 1 ≤ i, j < blog2 Pc; F(a) =
∣∣ a

P

∣∣
1 and F(b) =

∣∣∣ b
P

∣∣∣
1

as the fractions; P =
n
∏
i=1

pi

as the complete range; pi, i = 1, 2, . . . , n, as the RNS moduli; [F(a, b)]2−t < F(a, b) < [F(a, b)]2−t +

2−t; [F(a)]2−t and [F(b)]2−t as the values of F(a) and F(b), respectively, rounded to the 2−tth bit (note
that the resulting errors do not affect calculation accuracy); ∆i as the current value and ∆i−1 as the
successive value, which is defined by the one-position right shift of the divisor multiplied by the
corresponding power of 2 (actually, this is equivalent to division by 2 and the subtraction ∆i − ∆i−1).
Each ith iteration is associated with the ith binary digit in the RNS representation, which are put into
memory as the residuals table for the integer powers of 2.

The well-known algorithm needs the dividend and divisor at each iteration. For the new algorithm,
the dividend F(a) and the divisor F(b) are required only at the first iteration; all subsequent iterations
involve the difference ∆i − ∆i−1 because these values contain information about the dividend and
divisor. With this method, all quotient approximation iterations are reduced to the subtraction
∆i−∆i−1, and the sign of this difference is used to find the desired partial quotient as the corresponding
power of 2 in the RNS representation. As a result, the computational complexity of modular division
considerably decreases.

The digits of the quotient are obtained by the modpi summation of the partial quotients using
the sign of the subtraction result. If the sign is positive, the quotient is included (otherwise excluded).
In contrast to the well-known algorithms, the new one allows for easy implementation: the time
complexity of the iterations is defined by the execution time of shift, subtraction, and summation.

Concerning the advantages of the new algorithm, note that the division procedure does not
involve (a) intermediate numeric data in the MRNS representation and (b) difficult-to-implement RNS
operations such as comparison, scaling, base extension, and sign detection. These features contribute
to higher efficiency of modular division.

The new modular division algorithm for integer numbers
[a

b
]

has the scheme presented in
Appendix B. The hardware implementation of this algorithm is described in detail below.

4. Hardware Implementation of New Modular Division Algorithm

The new modular division algorithm for multidigit numbers includes the following basic
parts: quotient sign detection, quotient approximation, and further refinement of the quotient
approximation series.

Figure 1 illustrates the hardware implementation of the modular division algorithm, which
consists of several units such as converters, summers (summators), multipliers and others. The issues
of their optimization were studied in the papers [33–36].

Assume that an RNS contains n moduli and n modular processors. Let m be the number of
bits required for the representation of each remainder. For making the hardware implementation
complexity analysis of this algorithm simpler, consider the case in which the moduli are more or less
the same. Under this hypothesis, the total length of the modular processor bus is M = n ·m bits.

Electronics 2019, 8, 261 7 of 17

Electronics 2019, 8, x FOR PEER REVIEW 7 of 19

The new modular division algorithm for integer numbers 





b
a has the scheme presented in

Appendix B. The hardware implementation of this algorithm is described in detail below.

4. Hardware Implementation of New Modular Division Algorithm

The new modular division algorithm for multidigit numbers includes the following basic parts:
quotient sign detection, quotient approximation, and further refinement of the quotient
approximation series.

Figure 1 illustrates the hardware implementation of the modular division algorithm, which
consists of several units such as converters, summers (summators), multipliers and others. The
issues of their optimization were studied in the papers [33–36].

Assume that an RNS contains n moduli and n modular processors. Let m be the number of
bits required for the representation of each remainder. For making the hardware implementation
complexity analysis of this algorithm simpler, consider the case in which the moduli are more or less
the same. Under this hypothesis, the total length of the modular processor bus is mnM ⋅= bits.

Figure 1. Hardware implementation of new algorithm.

Let the dividend and divisor be arbitrary integers and also let the divisor be not reducible to a
pairwise relatively prime number on the RNS moduli.

The hardware implementation scheme in Figure 1 includes buses a and b supplying the
dividend and divisor, respectively, and quotient bus Q . Each of buses ba , , and Q has M bits.
For division, the one-bit signal is supplied through «Division» bus. Upon receipt of the inputs a
and b , the system calculates Q so that RbQa +⋅= , where bR <≤0 .

At the initial state, the control unit (CU) receives the “Division” signal and then forms the
following signals through the one-bit buses (see Fig. 1):
• “Adj. 0,” for adjusting the zero states of the functional units;
• timing pulses («TP»), for performing control of the registers and counters;
• “Adj. MS,” for adjusting the address code of multiplexer («MS») 2:1;

Figure 1. Hardware implementation of new algorithm.

Let the dividend and divisor be arbitrary integers and also let the divisor be not reducible to a
pairwise relatively prime number on the RNS moduli.

The hardware implementation scheme in Figure 1 includes buses a and b supplying the dividend
and divisor, respectively, and quotient bus Q. Each of buses a , b, and Q has M bits. For division,
the one-bit signal is supplied through «Division» bus. Upon receipt of the inputs a and b, the system
calculates Q so that a = Q · b + R, where 0 ≤ R < b.

At the initial state, the control unit (CU) receives the “Division” signal and then forms the
following signals through the one-bit buses (see Figure 1):

• “Adj. 0,” for adjusting the zero states of the functional units;
• timing pulses («TP»), for performing control of the registers and counters;
• “Adj. MS,” for adjusting the address code of multiplexer («MS») 2:1;
• “Adj. DMS,” for adjusting the address code of demultiplexer («DMS») 1:2. Depending on the

address code, demultiplexer «DMS»switches the highest power of 2, either simultaneously to
multiplier «MTP» and element «OR» or to element «OR» only, whose output is connected to
the input of inhibit element I1. Depending on the address code, multiplexer MS switches to the
output of the comparison and sign detection unit (CSDU), or directly to the divisor b, or to the
divisor b multiplied by the highest power of 2k;

• “Adj. RG1,” for adjusting the right shift of reversible register RG1;
• “Adj. CSDU,” for adjusting the blocking of the comparison and sign detection unit (CSDU).

The dividend a and the divisor b in the RNS representation on the chosen moduli are supplied
through the M-bit buses to the input of CSDU. And this unit calculates the relative values of the
dividend and divisor ([F(a)]2−N and [F(b)]2−N) as well as detects their signs and performs their
comparison. Through element I3 the dividend directly comes to the input of CSDU. And the divisor
is supplied to the input of CSDU through multiplexer MS, which has the corresponding address at
the address input. The CSDU is implemented by Equations (4) and (5) and the model of Example 1.
If [F(a)]2−N =

∣∣ a
P

∣∣
1 < [F(b)]2−N =

∣∣∣ b
P

∣∣∣
1
, then CSDU forms the signal b > a (the divisor is greater than

the dividend), which comes to the input of the control unit. Next, the division unit is adjusted to the
initial state, and the quotient Q = 0. If [F(a)]2−N =

∣∣ a
P

∣∣
1 = [F(b)]2−N =

∣∣∣ b
P

∣∣∣
1
, then CSDU generates the

Electronics 2019, 8, 261 8 of 17

equality signal of the dividend and divisor (“a = b”). This signal is supplied to the input of summer
SM3, where the constant 1 = (1, 1, 1, 1)RNS is written. If [F(a)]2−N =

∣∣ a
P

∣∣
1 > [F(b)]2−N =

∣∣∣ b
P

∣∣∣
1
, then

CSDU forms the signal “a > b,” and the control unit switches the division unit into the partial quotient
approximation mode.

Next, the signs of the dividend a and divisor b are analyzed. The sign of the quotient Q is defined
by sign Q = sign a⊕ sign b = sign a sign b + sign a sign b. From the output of CSDU the sign signals of
the dividend and divisor (“sign a” and “sign b”) are supplied through the one-bit buses to the input
of element exclusive or «XOR» (addition modulo 2). Using the truth table, this circuit generates the
signal “a = 0” or “a = 1,” which is supplied to the input of quotient summer SM3. If the output signal
of element XOR is 0, then the quotient is assigned the positive sign (0); if it is 1, then the quotient is
assigned the negative sign (1). Then, through the N-bit buses the values [F(a)]2−N and [F(b)]2−N come
to the input of summer SM1 and the shift register RG1, respectively.

The value F(a) is converted by SM1 into the additional code, and the result is supplied to the
input of subtractor SM2 through the N-bit bus. The value [F(b)]2−N comes to the input of reversible
shift register RG1 through the N-bit bus. Using the timing pulses of the control unit, the content of
register RG1 (the value [F(b)]2−N) is shifted to the right to the number of zero digits standing before the
first significant digit; this number is registered by counter 2 «CNT2». The resulting number of shifts
corresponds to the highest power j of 2 in the divisor. The relative values are used to find the highest
power of 2 in the quotient approximation series, which is registered by counter CNT2 without iterative
calculations. As soon as the high significant digit of the divisor [F(b)]2−N becomes 1 during the shift
procedure (similar to number normalization), register RG1 fixes the state of counter CNT2 through the
one-bit bus and enables information read-out from RAM (similarly to stack pointer). Counter CNT2
activates the RAM memory address defining the highest power of 2j in the quotient approximation
series that must be in the quotient Q =

[a
b
]
. In the initial state, buffer register RG2 has zero value.

The quotient approximation mode is completed, and at the RAM output the memory cell is activated
that stores the highest power of 2j in the quotient approximation series. Thus, for approximating the
quotient b, the CSDU performs one comparison and one operation [log n] for obtaining the sum of
N-bit numbers, while register RG1 performs one shift operation to j digits.

Let [F(b)]2−t = 0.000010100001; in this case, after shifting the content of register RG1 the state

of counter CNT2 is 0011. This counter activates the memory cell containing the power of 23 RNS→(∣∣ 23
∣∣

p1
,
∣∣ 23

∣∣
p2

, . . . ,
∣∣ 23

∣∣
pn

)
.

4.1. Refinement Mode for Quotient Approximation Series with Dividend a and Divisor b

Recall that the highest power of 2j is obtained in the approximation mode and stored by RAM in
the RNS representation. Using the one-bit signal “Adj. DMS,” this power comes through the M-bit
memory bus to the input of summer SM3 via elements OR and I1. After that, through the one-bit bus
“Adj. MS” the address code of multiplexer MS is adjusted to the next state; the value b 2j is switched at
the output of multiplexer MS and then supplied to the input of CSDU through the M-bit bus. This
unit calculates

[
F
(
b 2j)]

2−N and sends the result to the input of shift register RG1 through the N-bit
bus F(b). The old information in RG1 is removed. The buses of the dividend a and divisor b are
disconnected from CSDU by the signal “Adj. CSDU” coming to the inputs of I3 and I4. Using the
control signals of the control unit, the content of RG1 is supplied to an input of SM2 through the N-bit
bus. From the output of summer SM1 the value F(a) is supplied to the second input of summer SM2

through the N-bit bus. Next, the signal “Adj. RG1” switches register RG1 into the right shift mode.
The divisor multiplied by the highest power of 2 is subtracted from the content of summer SM2,

and the value [F(a)]2−N −
[

F
(

b 2k
)]

2−N
is calculated for detecting the sign of the result. If the sign

digit of the subtraction result in summer SM2 is 0, i.e., [F (a)]2−N >
[

F
(

b 2k
)]

2−N
, then 0s are supplied

to the inhibit inputs of inhibit elements I1 and I2. Through elements OR the inhibit elements I1 and I2

Electronics 2019, 8, 261 9 of 17

pass the highest power of the quotient from the second output of DMS to the input of summer SM3.
The subtraction result in summer SM2 (i.e., the remainder of the dividend that corresponds to the
rest powers of 2) is supplied, through the N-bit bus and inhibit element I2, first to the input of buffer
register RG2 and then to the input of summer SM1. The old content of this summer is removed, and
the new value is written. Next, the content of register RG1 is shifted to the right, and the process is
repeated as described above. If the sign digit of the subtraction result in summer SM2 is 1 (i.e., the
relative value of the divisor is greater than the dividend), then this 1 comes to the inhibit inputs of
elements I1 and I2 that inhibit the supply of the corresponding power to summer SM3 and also the
supply of the subtraction result of summer SM2 to the input of buffer register RG2. In other words,
the register saves the previous value of the subtraction result. At its input summer SM3 receives
only the refined powers of 2 that are the terms of the quotient series. The conversion process ends
after analyzing the power of 20. Thus, in the refinement mode all redundant terms of the quotient
approximation series are iteratively eliminated using uncomplicated transformations.

The approximate quotient is sequentially refined by the subtraction of the divisor first multiplied
by the highest power of 2 from the dividend and its further shift and subtraction from the resulting
partial remainders during quotient calculation. In comparison with the well-known algorithms, a
distinctive feature of the quotient approximation refinement procedure suggested in the new algorithm
is the usage of the dividend a and the product b 2j (the divisor and the highest power of 2) only at
the first iteration. The subsequent iterations are based on an original principle of this paper, namely,
on the one-position right shift of b 2j at each iteration; in fact, this is equivalent to division by 2
and the subtraction of the results obtained at successive iterations, i.e., ∆j − ∆j−1. The principle is
unique because each iteration contains two operations—-one-position right shift and subtraction with
further sign detection. As a result, the speed of division considerably increases. Each iteration of the
well-known algorithms involves multiplication, summation, comparison, and parity check. Assume
that each iteration requires t time units; then the total time of each iteration is 4 t. Each iteration of
the new algorithm consists of one subtraction and one shift, consuming 2 t time units. Thus, the
efficiency gain is about 2. The performance analysis of the new algorithm (quotient approximation
and refinement) has demonstrated its considerable advantage over the well-known counterparts in
terms of modular division time.

4.2. Experimental Performance Analysis: New Modular Division Algorithm Versus Well-Known Algorithms

As is indicated by experiments, the algorithm developed in this paper strongly depends on initial
data (the number of RNS moduli and their values) and also on input data (the values of dividend and
divisors). Hence, this algorithm is difficult for analytical study.

The new modular division algorithm is similar to the algorithm presented in Hung [25]. However,
in comparison with the optimization methods used therein, the operations of multiplication and
summation have been replaced by the less demanding shift operations of partial quotients based on
comparison. As a result, hardware cost and execution time have been considerably reduced. Besides,
the Lu–Chiang algorithm involves the quotient correction operator with sign detection using MRNS,
which dramatically decreases its speed.

In this section, the algorithm [25] will be compared with the new modular division algorithm on
the same numerical data. For comparison, choose the example considered in Hung [25].

Let the RNS moduli be 5, 7, 9, and 11.
For example, take the dividend a = 125 = (0, 6, 8, 4) and the divisor b = 14 = (4, 0, 5, 3). It is

required to obtain the quotient a = 8 = (3, 1, 8, 8) and the remainder r = 13 = (3, 6, 4, 2).
For the sake of illustrative and complete analysis, Tables 1 and 2 provide intermediate data yielded

by the algorithm [25] and the new algorithm, respectively, in the course of calculating a
b = 125

14 .
The new modular division algorithm is attractive owing to less operations (see Table 3). Table 3

shows how many operations of different types are consumed by the well-known algorithms and the
new algorithm for the example [25] (these data were obtained by experimental study).

Electronics 2019, 8, 261 10 of 17

Table 1. Calculation of 125
14 by algorithm [25].

Iteration Variable Value RNS Moduli
{5,7,9,11} Notes

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

D
[P/8]

[P/8]− 2D
D = 2D

[P/8]− 2D
D = 2D

[P/8]− 2D
D = 2D

[P/8]− 2D
D = 2D

[P/8]− 2D
D = 2D

[P/8]− 2D

14
433
405
28

377
56

321
112
209
224
−15
448
−463

(4, 0, 5, 3)
(3, 6, 1, 4)
(0, 6, 0, 9)
(3, 0, 1, 6)
(2, 6, 8, 3)
(1, 0, 2, 1)
(1, 6, 6, 2)
(2, 0, 4, 2)
(4, 6, 2, 0)
(4, 0, 8, 4)
(0, 6, 3, 7)
(3, 0, 7, 8)
(2, 6, 5, 10)

P = 3465

EFα = 6/64, ESα = +

EFα = 5/64, ESα = +

EFα = 4/64, ESα = +

EFα = 2/64, ESα = +

EFα = 62/64, ESα = ±

EFα = 54/64, ESα = −

Line 3 A
A− D

125
−323

(0, 6, 8, 4)
(2, 6, 1, 7) EFα = 56/64, ESα = −

i = 1

i = 2

i = 3

i = 4

i = 5

A
A = 2(A− D)
Q = 2(Q + 1)
A = 2(A + D)
Q = 2(Q− 1)
A = 2(A + D)
Q = 2(Q− 1)
A = 2(A− D)
Q = 2(Q + 1)
A = 2(A + D)
Q = 2(Q− 1)

125
−646

2
−396

2
104
2
−688

6
−480

10

(0, 6, 8, 4)
(4, 5, 2, 3)
(2, 2, 2, 2)
(4, 3, 0, 0)
(2, 2, 2, 2)
(4, 6, 5, 5)
(2, 2, 2, 2)
(2, 5, 5, 5)
(1, 6, 6, 6)
(0, 3, 6, 4)
(0, 3, 1, 10)

EFα = 1/64, ESα = +
EFα = 50/64, ESα = −

EFα = 56/64, ESα = −

EFα = 0/64, ESα = +

EFα = 50/64, ESα = −

EFα = 54/64, ESα = −

Line 11

Line 15

Line 16

A = A + D
Q = Q− 1
A = A + D
Q = Q− 1

2j

2−j

R = 2−j A

32
9

416
8

32
758
13

(3, 3, 4, 1)
(4, 2, 0, 9)
(1, 3, 2, 9)
(3, 1, 8, 8)
(2, 4, 5, 10)
(3, 2, 2, 10)
(3, 6, 4, 2)

EFα = 61/64, ESα = ±, S = −

Quotient = 8

Remainder = 13

Table 2. Calculation of 125
14 by new algorithm.

Iteration Variable Value RNS Moduli
{5,7,9,11} Notes

Line 1

a 125 (0,6,8,4) P = 3465

F_a = F(b) 1,210,464 × 2−25 - -

b 14 (4,0,5,3) -

F_b = F(b) 135,565 × 2−25 - F_a − F_b = 1074899 × 2−25, “+”

j = 0 F_b = 2F_b 271,130 × 2−25 - F_a – F_b = 939,334 × 2−25, “+”

j = 1 F_b = 2F_b 542,260 × 2−25 - F_a – F_b = 668,204 × 2−25, “+”

j = 2 F_b = 2F_b 1,084,520 × 2−25 - F_a – F_b = 125,944 × 2−25, “+”

j =3 F_b = 2F_b 2,169,040 × 2−25 - F_a – F_b = –958,576 × 2−25, “–”

Line 6 F_b = F_b/2 1,084,520 × 2−25 - -

Line 7 ∆1 = F_a – F_b 125,944 × 2−25 - -

Line 8 Q = 2j 8 (3,1,8,8) -

j = 2 F_b = F_b/2 1,084,520 × 2−25 - ∆1 – F_b = –958,576 × 2−25, “–”

- Q 8 (3,1,8,8) -

j = 1 F_b = F_b/2 542,260 × 2−25 - ∆1 – F_b = –416316 × 2−25, “–”

- Q 8 (3,1,8,8) -

j = 0 F_b = F_b/2 271,130 × 2−25 - ∆1 – F_b = –145,186 × 2−25, “–”

- Q Quotient = 8 Quotient = (3,1,8,8) -

Line 14 R = a – b·Q Remainder = 13

Electronics 2019, 8, 261 11 of 17

Table 3. Comparison of Hung-Parhami algorithms with new algorithm.

Operations First Hung–Parhami
Algorithm

Second Hung–Parhami
Algorithm

New
Algorithm

Operations in radix number system
(summation, subtraction, multiplication) 54 71 18

Modular operations in RNS (modular
summation, subtraction, multiplication) 45 53 5

Bit shift operations (left shift, right shift) 6 16 8

Nonmodular operations in RNS
(sign detection) 1 1 0

While using the new modular division algorithm, the division specifics of fractions must be
considered for avoiding rounding errors.

Actually, the function [F(a)]2−N is an approximate variation of the function F(a). When RNS
numbers are replaced by their approximate characteristics, an important issue is the accuracy of the
representation [F(a)]2−N that guarantees correct results of the division operation. In accordance with
the experimental studies [30,32,37], the values of N that are used for rounding and also for restoring the
positional representation of numbers can be insufficient in several cases. This aspect may considerably
restrict the performance of the device.

Consider the error of the division operation. For given numbers a and b in the RNS representation,
the exact quotient Q = a/b is approximated by the partial quotient

Q∗ = [F(a)]2−N

[F(b)]2−N
.

In the quotient calculation problem, the algorithm outputs the integer part of the number Q∗,
which corresponds to the integer part of the exact quotient Q. The absolute error of the quotient is
bounded by

∆Q∗ ≤ [F(a)]2−N · ∆F(a) + [F(b)]2−N · ∆F(b)

([F(b)]2−N)
2 , (6)

where ∆F(a) and ∆F(b) denote the calculation errors of the functions [F(a)]2−N and [F(b)]2−N ,
respectively. Clearly, the absolute error of the quotient is growing as the dividend increases. However,
special role is played by the divisor. In the current problem, the inequality [F(a)]2−N < 1 always holds;
hence, the denominator of the right-hand side of Equation (6) decreases faster than the numerator, and
the error is rapidly growing for sufficiently small b (see the graph in Figure 2). The relative error is
demonstrated in Figure 3.

Electronics 2019, 8, x FOR PEER REVIEW 12 of 19

always holds; hence, the denominator of the right-hand side of Equation (6) decreases faster than the
numerator, and the error is rapidly growing for sufficiently small b (see the graph in Figure 2). The
relative error is demonstrated in Figure 3.

Figure 2. Absolute error for approximate division of 1−P by b with RNS moduli set {5, 7, 9, 11}
and 17=N .

Figure 3. Relative error for approximate division of 1−P by b with RNS moduli set {5, 7, 9, 11} and

17=N .

Table 2. Calculation of
14
125 by new algorithm.

Iteration Variable Value
RNS Moduli

{5,7,9,11} Notes

Line 1

a 125 (0,6,8,4) P = 3465
F_a = F(b) 1,210,464 × 2−25 - -

b 14 (4,0,5,3) -

F_b = F(b) 135,565 × 2−25 - F_a − F_b = 1074899 × 2−25, “+”

j = 0 F_b = 2F_b 271,130 × 2−25 - F_a – F_b = 939,334 × 2−25, “+”
j = 1 F_b = 2F_b 542,260 × 2−25 - F_a – F_b = 668,204 × 2−25, “+”
j = 2 F_b = 2F_b 1,084,520 × 2−25 - F_a – F_b = 125,944 × 2−25, “+”

Figure 2. Absolute error for approximate division of P− 1 by b with RNS moduli set {5, 7, 9, 11} and
N = 17.

Electronics 2019, 8, 261 12 of 17

Electronics 2019, 8, x FOR PEER REVIEW 12 of 19

always holds; hence, the denominator of the right-hand side of Equation (6) decreases faster than the
numerator, and the error is rapidly growing for sufficiently small b (see the graph in Figure 2). The
relative error is demonstrated in Figure 3.

Figure 2. Absolute error for approximate division of 1−P by b with RNS moduli set {5, 7, 9, 11}
and 17=N .

Figure 3. Relative error for approximate division of 1−P by b with RNS moduli set {5, 7, 9, 11} and

17=N .

Table 2. Calculation of
14
125 by new algorithm.

Iteration Variable Value
RNS Moduli

{5,7,9,11} Notes

Line 1

a 125 (0,6,8,4) P = 3465
F_a = F(b) 1,210,464 × 2−25 - -

b 14 (4,0,5,3) -

F_b = F(b) 135,565 × 2−25 - F_a − F_b = 1074899 × 2−25, “+”

j = 0 F_b = 2F_b 271,130 × 2−25 - F_a – F_b = 939,334 × 2−25, “+”
j = 1 F_b = 2F_b 542,260 × 2−25 - F_a – F_b = 668,204 × 2−25, “+”
j = 2 F_b = 2F_b 1,084,520 × 2−25 - F_a – F_b = 125,944 × 2−25, “+”

Figure 3. Relative error for approximate division of P− 1 by b with RNS moduli set {5, 7, 9, 11} and
N = 17.

Using Equation (6), estimate the value of N that guarantees exact division. Note that the function
F(a) can be calculated by the equation

F(a) =
a
P
=

∣∣∣∣∣ n

∑
i=1

kiαi

∣∣∣∣∣
1

=
n

∑
i=1

kiαi − ra,

where ra gives the rank of number a. By analogy with this formula, the rounded value of the function
[F(a)]2−N is obtained using the constants k∗i rounded to N decimal points, i.e.,

[F(a)]2−N =

∣∣∣∣∣ n

∑
i=1

k∗i αi

∣∣∣∣∣
1

=
n

∑
i=1

k∗i αi − ra.

For each k∗i , the inequality ∆k∗i ≤ 2−N holds. This yields the following estimate for the calculation
error of [F(a)]2−N :

∆F(a) ≤ 2−N
n

∑
i=1

αi ≤ 2−Nρ,

where ρ = p1 + p2 + . . . + pn − n.
Furthermore, the value [F(a)]2−N converges to the exact value F(a) as N is increased. If the

constants ki are rounded down, then the relationship

[F(a)]2−N ≤ F(a)

holds for all a from the RNS range.
Taking this inequality into account, Equation (1) can be rewritten as

∆Q∗ ≤ [F(a)]2−N · ∆F(a) + [F(b)]2−N · ∆F(b)

([F(b)]2−N)
2 ≤ 2−Nρ

F(a) + F(b)

([F(b)]2−N)
2 ≈

≈ 2−Nρ
F(a) + F(b)

(F(b))2 = 2−nρP
a + b

b2 .
(7)

In view of the earlier notes, consider the worst case causing the largest error of calculations.
Choose a = P− 1 as the largest possible dividend and a = 1 as the smallest possible divisor. Using
Equation (7),

∆Q∗ ≤ 2−NρP
P− 1 + 1

1
= 2−NρP2

Now, require that the error ∆Q∗ does not exceed a given threshold ε < 1. Then

Electronics 2019, 8, 261 13 of 17

∆Q∗ ≤ 2−NρP2 ≤ ε.

Solving this inequality in N yields

N ≥ log2
ρP2

ε

The integer parts of the approximate and exact quotients coincide if ε = 0.005. Using experimental
studies, it was established that the threshold ε = 0.5 is sufficient for exact calculations. As a result, the
final bound takes the form

N ≥ log2 2ρP2 (8)

The right-hand side of Equation (8) is greater than the lower bound in the inequality

N ≥ log2 ρP (9)

which is required for the exact number restoration in the algorithm. Table 4 shows the distribution of
modular division errors with this bound for different RNS moduli. In addition to the general-form
moduli, some sets of special form are also considered. Note that the share of faulty divisions varies from
0.5% to 14.3%. In accordance with Table 4, bound Equation (8) can be applied for exact division in RNS
without any restrictions. Note that this approach and division in RNSs are difficult for theoretical study.

Table 4. Distribution of division errors with insufficient rounding accuracy of N for different sets of
RNS moduli.

Set of RNS
Moduli

Number of Digits for
Exact Restoration N, Bits

(Equation (9))

Range of
Inadmissible

Divisors

Share of Faulty
Divisions, %

Number of Digits for
Exact Division N, Bits

(Equation (8))

Amount of
Wrong

Divisions, %

2, 3, 5, 7 12 1–14 6.67 19 0

2, 3, 5, 7, 11 16 1–154 6.71 26 0

5, 7, 9, 11 17 1–165 4.76 27 0

2, 3, 5, 7, 11, 13 21 1–858 2.86 34 0

2, 3, 5, 7, 11, 13, 17 25 1–31,907 6.25 42 0

2, 3, 5, 7, 11, 13,
17, 19 30 1–510,510 5.26 51 0

2, 3, 5, 7, 11, 13, 17,
19, 23 35 1–8,262,699 3.70 60 0

Moduli 2n − 1, 2n,
2n + 1, 22n+1 − 1

n = 2 17 1–81 4.41 25 0

n = 3 24 1–5819 9.09 35 0

n = 4 31 1–297,840 14.29 45 0

n = 5 38 1–779,193 1.16 55 0

Moduli 2n − 1,
2n + 1, 22n, 22n + 1

n = 2 18 1–80 1.99 27 0

n = 3 26 1–3360 1.28 39 0

n = 4 34 1–82,240 0.49 51 0

n = 5 42 1–4,364,800 0.41 63 0

In their paper, Hung and Parhami [25] imposed a strict constraint on the choice of the divisor:
it was recommended to use any divisors from the range P

16 < b < 3P
16 , which considerably restricts the

method’s applicability. The new approach suggested in this paper adopts bound Equation (8) for the
number of digits without any constraints on the divisor.

On the other hand, the algorithms [25] and the new algorithm are comparable in terms of hardware
cost and execution time for the MRNS operations (summation, subtraction, multiplication) and bit

Electronics 2019, 8, 261 14 of 17

shift operations (right and left shifts). Really, the new algorithm requires less operations of these types,
but the operands have higher digit capacity.

5. Conclusions

The new algorithm described in this paper speeds up the modular division procedure in the RNS
representation in comparison with the well-known counterparts. This fact can be explained by the
rather simple structure of the algorithm containing uncomplicated operations, namely, summation
and shift (for quotient approximation) as well as shift and subtraction (for quotient refinement). Being
based on the CRT with fractions, the new algorithm does not include such operations as modular
remainder calculation and number conversion into the MRNS representation. In comparison with the
well-known RNS division algorithms, the new modular division algorithm has several considerable
advantages. First, the division procedure involves no additional constraints on the dividend and
divisor, such as representation range constraints. The only requirement of the new algorithm is
that both parameters belong to the RNS range. Second, the new algorithm does not include any
non-modular operation. Furthermore, the new algorithm uses less modular operations (modular
summation, subtraction, multiplication) than some other RNS division algorithms. The new algorithm
considerably differs from the abovementioned ones. It is unique in the sense that iterations contain
shifts and subtractions. In comparison with the existing analogs, this algorithm appreciably decreases
hardware cost and execution time for modular division.

The developed division algorithm can be used to design arithmetic-logic RNS devices and also to
design problem-oriented RNS processors for digital signal processing, cryptography, etc. These new
RNS applications will promote further development of this field of computational mathematics.

Author Contributions: Conceptualization, N.C. and P.L.; methodology, N.C. and P.L.; software, A.N.; validation,
P.L. and M.D.; formal analysis, P.L., A.N. and M.D.; investigation, N.C.; resources, I.L.; data curation, A.L.;
writing—original draft preparation, N.C. and P.L; writing—review and editing, M.B. and M.D.; visualization, P.L.,
A.N. and M.D.; supervision, N.C.; project administration, M.B.; funding acquisition, N.C., P.L., M.B. and M.D.

Funding: This research was funded by Russian Federation State task No. 2.6035.2017, the Russian Foundation
for Basic Research (RFBR), grants numbers 18-07-00109 A and 19-07-00130 A, and the Council on grants of the
President of the Russian Federation, grants numbers SP-2245.2018.5 and MK-6294.2018.9.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix presents the modular integer division algorithm of a number a by a number b,
which yields the quotient Q and also the remainder R.

The algorithm is as follows.

1. F_a = F(a), F_b = F(b)
2. Set j = 0, Q = 0
3. If (F_b ≤ F_a) then
4. F_b = 2F_b
5. While (F_b ≤ F_a) do j = j + 1, F_b = 2F_b
6. F_b = F_b/2
7. ∆1 = F_a − F_b
8. Q = 2j

9. For I = j − 1, j – 2, . . . , 0 do begin
10. F_b = F_b/2
11. If (∆ − F_b ≥ 0) then Q = Q + 2i, ∆ = ∆ − F_b
12. end
13. end if
14. R = a − b·Q.

Electronics 2019, 8, 261 15 of 17

The detailed description of this algorithm is given below.
Line 1. Calculate the positional characteristics F(a) and F(b) of the dividend and divisor,

respectively, with required accuracy.
Line 2. Initialize the index of iterations j = 0 and the quotient Q = 0.
Line 3. Check the condition F_b ≤ F_a: if it holds, continue the division algorithm; otherwise go

to line 14.
Line 4. Perform the left shift of the positional characteristic of the divisor to one binary digit.
Line 5. While F_b ≤ F_a, increase j = j + 1 and perform the left shift of the positional characteristic

of the divisor.
Line 6. Perform the right shift of the positional characteristic of the divisor to one binary digit.
Line 7. Calculate ∆ as the difference between the positional characteristic F_a of the dividend and

the positional characteristic F_b of the divisor that is shifted by j binary digits to the left.
Line 8. Increase the quotient Q by 2j.
Line 9. Start the refinement procedure of the approximation series. For each i from j − 1 to 0,

do the following operations:
Line 10. Perform the right shift of the positional characteristic of the divisor to one binary digit.
Line 11. If ∆ − F_b ≥ 0, then increase the quotient by 2i and calculate the next value ∆ = ∆ − F_b.
Line 12. Finish the refinement procedure of the approximation series.
Line 13. Close the condition checked in line 3.
Line 14. Calculate the remainder R.

Appendix B

This appendix presents the new algorithm for modular division of numbers
[a

b
]

that involves the
relative values F(a) and F(b) in the CRT representation with fractions. A certain rule ψ is constructed
to reduce each pair of numbers a, b to the fractions F(a), F(b), F(b) 6= 0; then there exists a collection Q,
∆ = F(R) such that F(a) = F(b) ·Q+ F(R) and 0 ≤ F(R) < F(b). The correctness of this algorithm can
be argued as follows. Using the operation ψ, a pair of numbers F(a), F(b) is assigned the highest power
j in qj2j extracted from memory such that, if F(a)− F(b)qj2j > 0, then ∆j → F(a)− F(b)qj2j . If ∆j < 0,
then division ends because F(a) < F(b). If ∆j ≥ 0, then qj = 1 and qj2j is the desired partial quotient
to be included in the general quotient. The highest power of 2j =

(
2jmodp1, 2jmodp2, . . . , 2jmodpn

)
is a summand of the general quotient. The analysis process starts from the highest power of 2 and
ends with zero power. Next, in accordance with the operation ψ, the pair of numbers

(
∆j, ∆j−1

)
is assigned qj−12j−1 by the right shift of ∆j (which is equivalent to division by 2). As a result,

∆j−1 = F(a) −
(
qj2j + qj−12j−1)F(b) and qj−1 =

{
0 for ∆j−1 < 0,
1 for ∆j−1 ≥ 0.

Depending on the value of qj−1, the second summand is included (if qj−1 = 1) or excluded from
further analysis (otherwise, as a redundant term for the quotient approximation series).

The subsequent iterations take into account only the necessary powers of 2 in parentheses.
Therefore, the partial quotient is included or excluded from the general quotient using the above
condition. The iterative process continues until the zero power of 2 is reached at step 0.

Consequently, the quotient is formed from the set of the partial powers of 2 that satisfy qj = 1 in
the RNS representation on module pi. Let the inequality 0 ≤ F(a)−

(
qj2j + . . . + q020) = F(R) < F(b)

hold at step 0. In this case, the final result is F(a) =

(
∑

j∈L
qj2j

)
F(b) + F(R), where L denotes the set of

the necessary powers j of 2 in the general quotient.
At each iteration, the corresponding power of 2 is either eliminated or used as the partial quotient

that must be in the general quotient. Since qj2j is described by the residues table for the integer powers

of 2, the partial quotient has the form Q = (Q1, Q2, . . . , Qn), where Qi =

∣∣∣∣∣ ∑
j∈L

qj2j

∣∣∣∣∣
pi

, i = 1, 2, . . . , n;

L = 1, 2, . . . , [log2 Q].

Electronics 2019, 8, 261 16 of 17

To summarize, the algorithm consists of two stages as follows. At the first stage, the left
shift of F(b) is used to find the high power of 2. The second stage is intended to analyze the
successive iterations:

1. ∆1 = F(a)− qj2j · F(b); if ∆1 > 0, then 2j =
(∣∣2j

∣∣
p1

,
∣∣2j
∣∣

p2
, . . . ,

∣∣2j
∣∣

pn

)
is included in the general

quotient; if ∆1 < 0, then 2j is excluded.
2. ∆2 = ∆1 − qj−12j−1 · F(b); if ∆2 > 0, then qj−1 = 1; otherwise qj−1 = 0.

3. . . .
4. ∆m = ∆m−1 − q020 · F(b); if ∆m > 0, then qm = 1; otherwise qm = 0.

The correctness of this method is verified by trivial transformations. Then ∆m = F(a)− F(b) ·(
2j + 2j−1 + . . . + 20), and hence F(a) = F(b) ·

(
2j + 2j−1 + . . . + 20)+ ∆m. Here 0 ≤ ∆m < F(R) and

j denotes each of the powers of 2 that are included in the quotient approximation series.

References

1. Szabó, N.S.; Tanaka, R.I. Residue arithmetic and its applications to computer technology. SIAM Rev. 1967, 11,
103–104.

2. Molahosseini, A.; Sousa, L.D.; Chang, C. Embedded Systems DESIGN with Special Arithmetic and Number
Systems; Springer International Publishing: Cham, Switzerland, 2017.

3. Asif, S.; Andersson, O.; Rodrigues, J.; Kong, Y. 65-nm CMOS low-energy RNS modular multiplier for
elliptic-curve cryptography. IET Comput. Digit. Tech. 2018, 12, 62–67. [CrossRef]

4. Vayalil, N.C.; Paul, M.; Kong, Y. A residue number system hardware design of fast-search variable-motion-
estimation accelerator for HEVC/H.265. IEEE Trans. Circuits Syst. Video Technol. 2017, 29. [CrossRef]

5. Alia, G.; Martinelli, E. NEUROM: A ROM based RNS digital neuron. Neural Netw. 2005, 18, 179–189.
[CrossRef] [PubMed]

6. Gomathisankaran, M.; Tyagi, A.; Namuduri, K. HORNS: A homomorphic encryption scheme for Cloud
Computing using Residue Number System. In Proceedings of the 2011 45th Annual Conference on
Information Sciences and Systems, Baltimore, MD, USA, 23–25 March 2011; pp. 1–5. [CrossRef]

7. Zheng, X.; Xu, J.; Li, W. Parallel DNA arithmetic operation based on n-moduli set. Appl. Math. Comput. 2009,
212, 177–184. [CrossRef]

8. Jun, S.; Hu, Z. Method and dedicated processor for image coding based on residue number system.
In Proceedings of the Modern Problems of Radio Engineering Telecommunications and Computer Science
(TCSET), Lviv-Slavske, Ukraine, 21–24 February 2012; pp. 406–407.

9. Mohan, P.V.A. Residue Number Systems; Springer International Publishing: Cham, Switzerland, 2016.
10. Molahosseini, A.S.; Sorouri, S.; Zarandi, A.A.E. Research challenges in next-generation residue number

system architectures. In Proceedings of the ICCSE 2012—Proceedings of 2012 7th International Conference
on Computer Science and Education, Melbourne, VIC, Australia, 14–17 July 2012; pp. 1658–1661. [CrossRef]

11. Chervyakov, N.I.; Lyakhov, P.A.; Babenko, M.G.; Garyanina, A.I.; Lavrinenko, I.N.; Lavrinenko, A.V.;
Deryabin, M.A. An efficient method of error correction in fault-tolerant modular neurocomputers.
Neurocomputing 2016, 205, 32–44. [CrossRef]

12. Chervyakov, N.I.; Molahosseini, A.S.; Lyakhov, P.A.; Babenko, M.G.; Deryabin, M.A. Residue-to-binary
conversion for general moduli sets based on approximate Chinese remainder theorem. Int. J. Comput. Math.
2017, 94, 1833–1849. [CrossRef]

13. Kaplun, D.; Butusov, D.; Ostrovskii, V.; Veligosha, A.; Gulvanskii, V.; Kaplun, D.; Butusov, D.; Ostrovskii, V.;
Veligosha, A.; Gulvanskii, V. Optimization of the FIR filter structure in finite residue field algebra. Electronics
2018, 7, 372. [CrossRef]

14. Hiasat, A. Efficient RNS scalers for the extended three-moduli set $(2ˆ{n}-1, 2ˆ{n+p}, 2ˆ{n}+1) $.
IEEE Trans. Comput. 2017, 66, 1253–1260. [CrossRef]

15. Kumar, S.; Chang, C.-H.; Tay, T.F. New algorithm for signed integer comparison in
$\{2ˆ{n+k},2ˆ{n}-1,2ˆ{n}+1,2ˆ{n\pm 1}-1\}$ and its efficient hardware implementation. IEEE Trans.
Circuits Syst. I Regul. Pap. 2017, 64, 1481–1493. [CrossRef]

http://dx.doi.org/10.1049/iet-cdt.2017.0017
http://dx.doi.org/10.1109/TCSVT.2017.2787194
http://dx.doi.org/10.1016/j.neunet.2004.11.006
http://www.ncbi.nlm.nih.gov/pubmed/15795115
http://dx.doi.org/10.1109/CISS.2011.5766176
http://dx.doi.org/10.1016/j.amc.2009.02.011
http://dx.doi.org/10.1109/ICCSE.2012.6295382
http://dx.doi.org/10.1016/j.neucom.2016.03.041
http://dx.doi.org/10.1080/00207160.2016.1247439
http://dx.doi.org/10.3390/electronics7120372
http://dx.doi.org/10.1109/TC.2017.2652474
http://dx.doi.org/10.1109/TCSI.2016.2561718

Electronics 2019, 8, 261 17 of 17

16. Nakahara, H.; Nakanishi, H.; Iwai, K.; Sasao, T. An FFT circuit for a spectrometer of a radio telescope using the
nested RNS including the constant division. ACM SIGARCH Comput. Archit. News 2017, 44, 44–49. [CrossRef]

17. Mrabet, A.; El-Mrabet, N.; Bouallegue, B.; Mesnager, S.; Machhout, M. An efficient and scalable modular
inversion/division for public key cryptosystems. In Proceedings of the 2017 International Conference on
Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–6. [CrossRef]

18. Chren, W.A. A new residue number system division algorithm. Comput. Math. Appl. 1990, 19, 13–29. [CrossRef]
19. Bajard, J.-C.; Didier, L.-S.; Muller, J.-M. A new Euclidean division algorithm for residue number systems.

In Proceedings of the International Conference on Application Specific Systems, Architectures and Processors:
ASAP’96, Chicago, IL, USA, 19–21 August 1996; pp. 45–54. [CrossRef]

20. Chiang, J.-S.; Lu, M. A general division algorithm for residue number systems. In Proceedings of the 10th
IEEE Symposium on Computer Arithmetic, Grenoble, France, 26–28 June 1991; pp. 76–83. [CrossRef]

21. Gamberger, D. New approach to integer division in residue number systems. In Proceedings of the 10th
IEEE Symposium on Computer Arithmetic, Grenoble, France, 26–28 June 1991; pp. 84–91. [CrossRef]

22. Lu, M.; Chiang, J.-S. A novel division algorithm for the residue number system. IEEE Trans. Comput. 1992,
41, 1026–1032. [CrossRef]

23. Bajard, J.; Rico, F. How to improve division in residue number systems. In Proceedings of the 16th IMACS
World Congress, Lausanne, Switzerland, 21–25 August 2000; pp. 110–121.

24. Hiasat, A.A. Semi-Custom VLSI Design and Implementation of a New Efficient RNS Division Algorithm.
Comput. J. 1999, 42, 232–240. [CrossRef]

25. Hung, C.Y.; Parhami, B. Fast RNS division algorithms for fixed divisors with application to RSA encryption.
Inf. Process. Lett. 1994, 51, 163–169. [CrossRef]

26. Hung, C.Y.; Parhami, B. An approximate sign detection method for residue numbers and its application to
RNS division. Comput. Math. Appl. 1994, 27, 23–35. [CrossRef]

27. Hiasat, A.A.; Abdel-Aty-Zohdy, H.S. Design and implementation of an RNS division algorithm.
In Proceedings of the Proceedings 13th IEEE Sympsoium on Computer Arithmetic, Asilomar, CA, USA,
6–9 July 1997; pp. 240–249. [CrossRef]

28. Yang, J.-H.; Chang, C.-C.; Chen, C.-Y. A high-speed division algorithm in residue number system using
parity-checking technique. Int. J. Comput. Math. 2004, 81, 775–780. [CrossRef]

29. Chang, C.-C.; Yang, J.-H. A Division algorithm using bisection method in Residue Number System. Int. J.
Comput. 2013, 2, 59–66.

30. Talahmeh, S.; Siy, P. Arithmetic division in RNS using Galois Field GF(p). Comput. Math. Appl. 2000, 39,
227–238. [CrossRef]

31. Chang, C.-C.; Lai, Y.-P. A division algorithm for residue numbers. Appl. Math. Comput. 2006, 172, 368–378. [CrossRef]
32. Chervyakov, N.I.; Babenko, M.G.; Lyakhov, P.A.; Lavrinenko, I.N. An Approximate method for comparing

modular numbers and its application to the division of numbers in Residue Number Systems. Cybern. Syst.
Anal. 2014, 50, 977–984. [CrossRef]

33. Patronik, P.; Piestrak, S.J. Design of reverse converters for the new RNS moduli set {2n+1,2n–1,2n,2n-1+1}
(n odd). IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3436–3449. [CrossRef]

34. Tay, T.F.; Chang, C.-H.; Sousa, L. Base transformation with injective residue mapping for dynamic range
reduction in RNS. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2248–2259. [CrossRef]

35. Vun, C.H.; Premkumar, A.B.; Zhang, W. A new RNS based DA approach for inner product computation.
IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 2139–2152. [CrossRef]

36. Kouretas, I.; Paliouras, V. A low-complexity high-radix RNS multiplier. IEEE Trans. Circuits Syst. I Regul. Pap.
2009, 56, 2449–2462. [CrossRef]

37. Younes, D.; Steffan, P. A comparative study on different moduli sets in residue number system.
In Proceedings of the 2012 International Conference on Computer Systems and Industrial Informatics,
Sharjah, UAE, 18–20 December 2012; pp. 1–6. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3039902.3039911
http://dx.doi.org/10.1109/ICEMIS.2017.8272995
http://dx.doi.org/10.1016/0898-1221(90)90190-U
http://dx.doi.org/10.1109/ASAP.1996.542800
http://dx.doi.org/10.1109/ARITH.1991.145537
http://dx.doi.org/10.1109/ARITH.1991.145538
http://dx.doi.org/10.1109/12.156545
http://dx.doi.org/10.1093/comjnl/42.3.232
http://dx.doi.org/10.1016/0020-0190(94)00099-9
http://dx.doi.org/10.1016/0898-1221(94)90052-3
http://dx.doi.org/10.1109/ARITH.1997.614901
http://dx.doi.org/10.1080/00207160410001708805
http://dx.doi.org/10.1016/S0898-1221(00)00056-0
http://dx.doi.org/10.1016/j.amc.2005.02.008
http://dx.doi.org/10.1007/s10559-014-9689-2
http://dx.doi.org/10.1109/TCSI.2014.2337237
http://dx.doi.org/10.1109/TCSI.2015.2451871
http://dx.doi.org/10.1109/TCSI.2013.2239164
http://dx.doi.org/10.1109/TCSI.2009.2015548
http://dx.doi.org/10.1109/ICCSII.2012.6454344
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Approximate Positional Characteristic Calculation for Modular Numbers Based on the CRT with Fractions and Its Application to Modular Division
	New Division Algorithm Based on the CRT with Fractions
	Hardware Implementation of New Modular Division Algorithm
	Refinement Mode for Quotient Approximation Series with Dividend a and Divisor b
	Experimental Performance Analysis: New Modular Division Algorithm Versus Well-Known Algorithms

	Conclusions
	
	
	References

