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Abstract: Panoramic images have a wide range of applications in many fields with their ability to
perceive all-round information. Object detection based on panoramic images has certain advantages
in terms of environment perception due to the characteristics of panoramic images, e.g., lager
perspective. In recent years, deep learning methods have achieved remarkable results in image
classification and object detection. Their performance depends on the large amount of training data.
Therefore, a good training dataset is a prerequisite for the methods to achieve better recognition
results. Then, we construct a benchmark named Pano-RSOD for panoramic road scene object
detection. Pano-RSOD contains vehicles, pedestrians, traffic signs and guiding arrows. The objects of
Pano-RSOD are labelled by bounding boxes in the images. Different from traditional object detection
datasets, Pano-RSOD contains more objects in a panoramic image, and the high-resolution images
have 360-degree environmental perception, more annotations, more small objects and diverse road
scenes. The state-of-the-art deep learning algorithms are trained on Pano-RSOD for object detection,
which demonstrates that Pano-RSOD is a useful benchmark, and it provides a better panoramic
image training dataset for object detection tasks, especially for small and deformed objects.

Keywords: panoramic image dataset; road scene; object detection; deep learning; convolutional
neural network

1. Introduction

Due to the wide availability of consumer-level panoramic video capturing and imaging devices,
panoramic images are widely used in many fields [1–6]. For example, they are used in 360-degree
object tracking [1,4], equirectangular super-resolution [3], privacy protection in Google Street View [5]
and roadway inventory management about traffic signs [6]. Object detection based on panoramic
images is one of the key technologies to make panoramic images widely applied. In intelligent
transportation systems, the technology of object detection in panoramic images (with a wide field
of view) can help autonomous driving assistance systems (ADAS) and autonomous navigation for
unmanned aerial vehicles (UAV) detect the objects (e.g., vehicles, pedestrians) around the vehicle.
From a map navigation perspective, panoramic maps, e.g., Baidu and Google among others, which are
constructed by panoramic images, can express richer information such as location and scene. However,
the information of pedestrians and vehicles in the panoramic map involves personal privacy and the
speed of the private information removing or blurring based on manual methods is relatively slow.
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Efficient and automatic object detection methods can be realized by deep learning for panoramic image
object detection. Reference [5] proposed a probabilistic search algorithm to boost the efficiency of face
detection in Google Street View so as to protect personal privacy. In smart city management and virtual
reality, some object information can be retrieved and located through panoramic object detection. It can
be seen that the research on panoramic object detection has important practical significance.

All of the research of panoramic object detection relies on a large-scale, high-quality training
dataset. Although a variety of public datasets, e.g., PASCAL VOC [7], ImageNet [8] and COCO [9] are
available for the identification and segmentation of multiple objects, they aim at generic object detection,
not specific for panoramic object detection. Considering the difference between traditional images and
panoramic images, the models pre-trained on the generic datasets are unsatisfactory commonly when
directly applied in panoramic object detection. In addition, although there are also some street-view
object detection datasets (including KITTI [10], Caltech Pedestrian Dataset [11] and UA-DETRAC
Dataset [12]), these datasets mainly used for vehicle or pedestrian detection, street-view semantic
and instance segmentation (including Mapillary Vistas [13], Cityscapes [14] and Apoloscape [15]).
The publication of these datasets undoubtedly promotes the development of object detection. However,
the public datasets specific to panoramic road scene object detection are still unavailable.

Moreover, to the best of our knowledge, there is no special object detection algorithm for
panoramic images at present. The previous methods mainly use traditional hand-craft features,
e.g., the histogram of oriented gradient (HOG), scale-invariant feature transform (SIFT), or the existing
object detection methods based on transfer learning (e.g., pre-training in ImageNet [8] or COCO [9]).
For example, Reference [16] adopted the detectors based on HOG algorithm to detect traffic signs from
street-level panoramic images. Reference [17] used Faster Region-based CNN (RCNN) to detect object
from indoor-level panoramic images.

Though much exciting progress on the object detection of road scenes has been extensively
reported in recent years, there are two major issues that seriously limit the development of object
detection in panoramic road scene images:

• A lack of panoramic object detection datasets for deep learning. A panoramic image usually
contains more objects and some distorted objects due to its special imaging mechanism, which is
different from the ordinary. Therefore, an object detection task for panoramic images needs a new
panoramic dataset to train and test for the purpose of adapting the differences.

• Although the existing object detection methods of common images can be transferred to the
panoramic object detection, there is a lack of model, evaluation statistics and benchmarks
specifically for the panoramic object detection.

Aiming at the above problems, we construct a panoramic road scene object detection dataset
(Pano-RSOD) and carry out experiments based on the state-of-the-art algorithms for object detection
to construct a benchmark. The Pano-RSOD contains 9402 images and four categories objects,
i.e., vehicles, pedestrians, traffic signs and guiding arrows. The constructed dataset is quantitatively
and qualitatively compared with other datasets in several aspects, e.g., the number of object samples,
the number of images, number of categories, resolution of images, the type of images and etc. Besides,
we train five state-of-the-art detectors: faster RCNN (VGG-16) [18], faster RCNN (ResNet-101) [19],
region-based fully convolutional networks (R-FCN) [20], YOLOv3 [21], and single shot multibox
detector (SSD) [22,23]. The transfer learning method is adopted for the five detectors designed in this
paper with the pre-trained models of ImageNet [8] and COCO [9]. Furthermore, the benchmark of
Pano-RSOD is constructed.

In summary, the major contributions of this paper are as follows:

• We present a novel and promising topic for panoramic road scene object detection, which will
have potential applications in ADAS, UAV and panoramic mapping. Compared with the normal
view, a panoramic view can cover a larger perspective and contain more objects in one single
image. It could be possible to cover some complicated situations which are not covering in the
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most existing datasets. And the object detection on the online panoramic map is challenging.
Thus, a panoramic road scene dataset is needed and important. In order to provide more research
foundation for solving the object detection in panoramic image problems, related object detection
methods and datasets are compressively overviewed (Section 2).

• We construct a high-resolution, panoramic road scene object detection dataset (Pano-RSOD) with
more annotations and small object diversity. The data set is, to the best of our knowledge, the first
high-resolution panoramic road scene dataset and the images are with high intraclass diversity.
The dataset can provide a better experimental dataset for the object detection algorithm based on
the panoramic image. Besides, the dataset can also evaluate the advantages and disadvantages of
object detection algorithms, which aimed at small and deformed objects (Section 3).

• We introduce the baseline methods of the object detection (Section 4), and compare several
state-of-the-art object detection algorithms, i.e., faster RCNN [18,19], R-FCN [20], YOLOv3 [21],
SSD [22,23] trained with Pano-RSOD. These can serve as the baseline results for the future work
(Section 5).

2. Related Works

This section mainly discusses the object detection datasets of road scene and networks for object
detection. Thus, we summarized the related works from these two aspects.

2.1. Existing Object Detection Dataset of Road Scene

Usually, vehicles, pedestrians, traffic signs, etc. are the most common objects in road scenes.
The detection of these objects has very broad applications. The most common datasets including the
above objects are as follows:

• Pascal VOC Dataset [7]: This dataset is used as a standardized dataset for image detection and
classification. There are two versions of voc2007 and voc2012. voc2007 has a total of 9963 images,
and voc2012 has a total of 17,125 images. They include 20 categories to be detected, e.g., cars,
pedestrians and etc. The image size in the dataset is different, and the horizontal image size
is about 500 × 375 pixels, and the vertical image size is about 375 × 500 pixels. Each image
corresponds to an xml format label file, which records the image size, ground-truth of object
coordinates and other information. This dataset is widely used as an evaluation criterion in
various object detection algorithms [18,20–22,24,25].

• Object Detection Evaluation 2012 [10]: This is a dataset for 2D object detection and azimuth
estimation in the KITTI database. It consists of 7481 training images and 7518 test images.
A total of 80,256 objects are marked, covering the car, pedestrian and cyclist. Among them,
the precision-recall (PR) curve is used for object detection evaluation. The dataset has a wide
range of applications in vehicle detection and pedestrian detection due to a large number of car
and pedestrian samples in the dataset.

• Pedestrian Detection Dataset: Pedestrian detection is one of the important tasks in the fields
of video surveillance and automatic driving. Therefore, the pedestrian detection dataset also
plays an important role in evaluating various object detection algorithms. The INRIA person
dataset [26] was created by Daal, where the training set contains 614 positive samples (including 2416
pedestrians) and 1218 negative samples, and the test set contains 288 positive samples (including
1126 pedestrians) and 453 negative samples. The dataset is currently used widely in static pedestrian
detection. The NICTA Pedestrian Dataset [27] is a larger static pedestrian detection dataset at present.
There are 25,551 images containing single pedestrian, 5207 high-resolution images containing
non-pedestrian. The training set and test set have been divided to facilitate the comparison of
different classifiers in the database. The Caltech pedestrian dataset [11] is currently a large pedestrian
database, which is captured by a car camera in the urban traffic environment. The dataset is a video
about 10 h, and the resolution is 640 × 480, 30 frames per second. The dataset labels about 250,000
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bounding boxes (including 350,000 rectangles and 2300 pedestrians). In addition, there are other
pedestrian detection datasets, such as ETH [28] and CVC [29].

• Vehicle Detection Dataset: Vehicle detection is a key step in vehicle analysis, and it is the basis
for subsequent vehicle identification and vehicle feature recognition. Earlier, there is CBCL Car
Database [30] created by MIT, which contains 516 images in ppm format with a resolution of
128 × 128, mainly using for vehicle detection. The UA-DETRAC dataset [12] is a larger vehicle
detection and tracking dataset. It contains 10 h of video taken at different locations in Beijing
and Tianjin, China. The resolution of video is 960 × 540, and the frame ratio is 25 frames per
second. The dataset labels 8250 vehicles and 1.21 million object bounding boxes. BIT-Vehicle
Dataset [31] covers 9850 images of bus, microbus, minivan, sedan, SUV, and truck, which can be
used to evaluate the performance of multi-class vehicle detection algorithms.

However, public datasets specific for panoramic image detection remain unavailable. Therefore,
the need for panoramic image detection dataset has become more urgent.

2.2. Object Detection Methods

The field of image classification by deep learning has great breakthroughs, and it also promotes
the field of object detection to make great progress. Especially the convolutional neural network (CNN)
plays a very important role in feature extraction [32]. Girshick et al. proposed regions with CNN
features (RCNN) [33] in 2014, which applied CNN to object detection. Its extensions, fast RCNN [34]
and faster RCNN [18] further improved the detection speed. After that, R-FCN [20], PVAnet [24],
feature pyramid networks (FPN) [35], and mask R-CNN [36] have been improved and optimized on
the basis of Faster RCNN, which improves the detection speed and accuracy. In addition, in order to
meet the real-time requirements of some scenes, Redmon et al. proposed a regression-based one-stage
method YOLO [37] based on OverFeat [38] in 2015. Then they proposed its extensions YOLOv2 [39]
and the latest YOLOv3 [21]. Another branch of the one-stage methods implements the approach with
multiple feature layers to predict, such as SSD [22], Raindow SSD (R-SSD) [40], and Deconvolutional
Single Shot Detector (DSSD) [25].

At present, the object detection methods using deep learning can be mainly divided into two
major categories: two-stage detection framework and one stage detection framework [41]. The former
firstly generates the proposals in the proposal stage, and then use CNN to classify these proposals.
The latter has no proposal stage, and directly converts the problem of object positioning into regression
problem. The comparison results of typical object detection algorithms based on deep learning are
shown in Table 1.

Table 1. Comparison of typical object detection algorithms based on deep learning. The symbol *
represents the multi-feature layer fusion. Methods evaluated in this work are bold-faced.

Methods
Two-Stage One-Stage

Fast RCNN Faster RCNN PVAnet R-FCN YOLO YOLOv3 SSD DSSD

Region proposal selective
search [42] RPN [18] RPN RPN grid cells anchor

boxes
default
boxes

default
boxes

Prediction layer One one One * one one Multiple * multiple Multiple *

A. two-stage detection framework.

RCNN is the basis of most current two-stage detection framework. It firstly uses the selective
search [42] algorithm to generate candidate bounding boxes of interest. Then each proposal is sent to
the CNN network for feature extraction to generate feature vectors. Finally, support vector machine
(SVM) is used for classification. Its extension fast RCNN optimizes the runtime of the algorithm.

Faster RCNN further reduces the running time of the algorithm, and it designs the region of
proposal (RPN) [18], which directly generates proposals without increasing the computation cost.
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This way end-to-end object detection can be achieved, and computational cost is reduced. Besides,
the problem of algorithm accuracy reduction caused by excessive proposals can be avoided.

In addition, many two-stage methods have been improved based on Faster RCNN. For example,
PVANet [24] optimizes the feature extraction network and proposes a lightweight network. Besides,
R-FCN [8] introduces position-sensitive score maps on the basis of Faster R-CNN, and the feature
sharing can be realized on the whole image and the detection speed is improved.

B. one-stage detection framework

Like YOLO [37], its upgraded version of YOLOv3 [21], SSD [22], DSSD [25] and other one stage
detection frameworks have no obvious proposal stage. YOLO directly performs feature extraction,
candidate bounding boxes regression and classification in the same convolution network. This method
performs poorly for detection of small and multiple objects appearing in the same grid cell. Then,
its extension YOLOv3 proposes the Darknet53 [39] and implements a multi-scale prediction method
according to FPN [35] so as to obtain better predictions under the premise of speed increase.

SSD sets discretized and multi-scale default boxes on feature maps with different resolutions
(SSD512 uses 7 layers). Meanwhile, small convolution kernels are added to each feature map as the final
prediction layer to complete classification and the bounding box regression. DSSD changes the feature
extraction network from VGG-16 [43] to ResNet-101 [19] to enhance the network feature extraction
capability. At the same time, deconvolution is used to extract contextual semantic information so as to
improve the detection accuracy of small objects.

3. Panoramic Road Scene Object Detection Dataset

3.1. New Dataset for Object Detection of Road Scene (Pano-RSOD)

Currently, there are many public datasets used for object detection, but most of them are not
panoramic images. Besides, there are relatively few datasets of large traffic scene images. In recent
years, with the development of panoramic imaging technology, panoramic images have had obvious
advantages over traditional images in terms of overall scene perception. Then, panoramic image can
be more widely used in digital cities, intelligent transportation and automatic driving. Therefore,
we construct a panoramic road scene object detection dataset, namely, Pano-RSOD (Dataset link:
https://pan.baidu.com/s/1H9RsXfXCCfBgpF2bY2LGeA).

The Pano-RSOD is captured from the streetscape of downtown Zhongshan City, Guangdong
Province, China. It contains a total of 9402 images. The size of each image is 2048 × 1024 pixels.
The labels are produced in PASCAL VOC format, including vehicles (50,255 bounding boxes),
pedestrians (11,227), traffic signs (8622) and guiding arrows (17,438). Each image averagely contains
about nine objects. For an easier representation of our dataset, we use a car, person, sign and line to
represent vehicles, pedestrians, traffic signs and guiding arrows in the remaining of the paper.

In general, the Pano-RSOD is a multi-scale panoramic object detection dataset in road scenes,
and there are more objects in a single panoramic image. Besides, the panoramic image contains a large
number of small objects. It is also important to point out that objects in panoramic images are often
accompanied by distortion. Therefore, the Pano-RSOD provides data sources for training, test and
evaluation of object detection algorithms aimed at panoramic image, objects with distortion or small
objects in road scenes. Some example images of Pano-RSOD are shown in Figure 1.

https://pan.baidu.com/s/1H9RsXfXCCfBgpF2bY2LGeA
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Figure 1. Different road scenes of panoramic images. (a) crossroad; (b) overpass; (c) urban road;
(d) suburban road.

3.2. Dataset Construction

3.2.1. Panoramic Image Acquisition

In order to construct a road scene panoramic image dataset, a panoramic image acquisition system
is constructed. The system is composed of a multi-camera panoramic vision system (i.e., Ladybug5)
and a vehicle. The images are collected through the system by driving the vehicle in different road
scenes. The panoramic image acquisition vehicle is shown in Figure 2.

The multi-camera panoramic vision system uses multiple sub-cameras distributed in different
orientations to acquire image information that can be perceived by the current viewpoint.
The panoramic image of the Ladybug5 satisfies the spherical camera theory, which can establish
the projection relationship between each sub-image and panoramic image. As shown in Figure 3,
the right panoramic image can be acquired by the left multi-camera panoramic vision system.
The multi-camera panoramic vision system provides high-resolution, dead-band panoramic images
with the synchronization and fast speed of data acquisition.

In the process of panoramic image acquisition, we record the location of image collection,
i.e., the name of the road. The images of the training set, the validation set and the test set of
the Pano-RSOD all come from different roads of the city to avoid the repetition. In addition, in order
to avoid images having large similarities in the same set, every 15 frames of the image sequences are
firstly adopted for dataset construction, and we manually remove images with large similarities.
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3.2.2. Dataset Labeling

Making dataset labels is an important part of image classification, object detection and
segmentation results. The quality of label making is directly related to the final accuracy of the
training model. In this paper, we use an open source image annotation tool on GitHub, namely,
LabelImg (https://github.com/tzutalin/labelImg). The output is the xml file, which is the same as
PASCAL VOC [7].

In the field of intelligent transportation and panorama mapping, the detection of vehicles,
pedestrians, traffic signs and guiding arrows often plays an important role. Thus, this paper selects
those four most common objects in traffic road scenes to label. When labeling, we try to completely
cover the object with the rectangular bounding box. Besides, car class only labels vehicles with four
wheels, person class contains any people, e.g., walking, standing, sitting or riding people, sign class
includes any traffic sign in the traffic scene, line class only labels all kinds of guiding arrows on
the roads.

In order to build high quality datasets, we set strict control over the data labeling process.
Ten researchers who study the object detection are asked to process the data. These ten researchers are
divided into two groups on average. For each image, five researchers (the first group) are arranged to
manually annotate the images, including the object category label and the coordinates of the rectangular
box. After all the images have been labelled, we asked the other five researchers (the second group)
to check the labelled data. Then, the voting method determines whether to pass the verification. If
more than three persons pass the vote, the image is verified to pass. Otherwise it is relabeled until the
checking passes. In the end, we have labeled 4 categories with a total of 87,542 object bounding boxes.

3.2.3. Dataset Statistics and Analysis

Our road scene panoramic image dataset contains a large number of labeled samples. Each class
has sufficient samples (the minimum number of samples for a category is more than 8500). The sample
information of the vehicle is the most abundant, and the minimum number of traffic signs is more
than 8500. Moreover, each type of sample is acquired from different road traffic scenarios, such as a
city intersection, suburban road, and urban road, which can provide rich foreground and background
feature information for CNN feature extraction. In addition, the dataset contains a large number
of small objects and objects with occlusion and overlap. This can increase the difficulties of the
object detection task, which can also help us evaluate the advantages and disadvantages of the object
detection algorithms. Figure 4a counts the number of objects for each type of dataset. Figure 4b
counts the number of objects at different scales. Specifically: approximately 37% of objects are small
(scale ≤ 32), 56% are medium (32 < scale ≤ 128), and 7% are large (scale > 128).

https://github.com/tzutalin/labelImg
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The Pascal VOC dataset has a relatively small image size and few object types. Besides, there
are relatively few traffic scenarios and traffic objects. Compared with UA-DETRAC Dataset [12]
and BIT-Vehicle Dataset [31], the Pano-RSOD includes richer background information, and it covers
different traffic road scenes such as urban road, crossroad, overpass, and suburban road, which can
maximize the diversity of the background. In addition, most of the pedestrian and vehicle datasets are
only for a single type of object, and the number of objects in the scene is relatively small, which is not
suitable for object detection in complex traffic scenarios.

Compared with Pascal VOC Dataset which contains relatively few traffic scenarios and traffic
objects, the panoramic images in the Pano-RSOD are high-resolution, and the average number of
objects per image is up to 9, so that the object detection is not needed to use more images to train.
Compared with 10,053 labeled vehicles in BIT-Vehicle Dataset, Pano-RSOD contains up to 50,255
labeled vehicles (with wider scale), which can be used for vehicle detection and other tasks. Compared
with UA-DETRAC Dataset, the Pano-RSOD includes richer background information, and it covers
different traffic road scenes such as urban road, crossroad, overpass, and suburban road, which can
maximize the diversity of the background. In contrast with cityscapes dataset [13], mapillary vistas
(Images with strong wide-angle view or 360-degree images were removed) [14] which are both used for
semantic street-level understanding, the images in Pano-RSOD have a 360-degree angle of view instead
of single view, so that they can contain more objects with various scales and perceive the whole road
scene in single image. Of course, other datasets are not panoramic images that are essentially different
from Pano-RSOD, and we just give roughly qualitative comparison. Table 2 lists the comparison results
of the Pano-RSOD and the existing object detection datasets. Compared with other road scene object
detection datasets, the dataset of this paper has the following characteristics:

Table 2. Comparison of Statistical Results of Pano-RSOD and Other Datasets.

Dataset Pascal
VOC 2007

Object Detection
Evaluation 2012 BIT-Vehicle Pano-RSOD UA-DETRAC Cityscapes

(Semantic)

Mapillary
Vistas

(Semantic)

Panorama No No No Yes No No No

Traffic Scene No Yes Yes Yes Yes Yes Yes

Resolution ~375 × 500 1240 × 376 1600 × 1200
1920 × 1080 2048 × 1024 960 × 540 2048 × 1024 1920 × 1080

Number of
Categories 20 3 6 4 4 30 18 (object)

Number of
Cars 2500 Unknown 10,053 50,255 8250 Unknown ~200 thousand

Number of
Images 9963 14,999 9850 9402 140 thousand 25,000 25,000

Number of
Samples 24,640 80,256 10,053 87,542 1.21 million Unknown Unknown
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• Panorama: According to the information collected from the Internet, the current public object
detection datasets are basically not panoramic images, but our road scene panoramic dataset
can provide a good reference for the panoramic technology applied in the object detection.
Besides, objects in panoramic image often have distortion which provides a challenge for object
detection task.

• Large-scale and high resolution: According to the comparison results in Table 2, the Pano-RSOD
has more labeled sample sizes, especially with the most abundant vehicle information. Besides,
the Pano-RSOD has higher image resolution.

• Multi-scales and more small objects: As can be seen from Figure 4b, the Pano-RSOD has a wide range
of scales. Especially for small objects, it has as many as 31,579 samples with a scale less than 32.

• Diversity: Figure 5 lists the objects of different types of labels in the Pano-RSOD. As shown in
Figure 5, the Pano-RSOD is rich in object types. For instance, vehicle samples cover different types
(e.g., truck, sedan, bus, SUV, taxi, etc.), orientations and scales, person samples include cycling,
walking, standing, crowded people, traffic sign samples contain different shapes, sizes, colors and
contents, guide arrow samples have different shapes, colors, and directions of representation.
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4. Baseline Methods

Since the top rank methods for object detection in the PASCAL VOC or KITTI dataset has recently
adopted a convolutional neural network, we chose the baseline methods based on CNN. In this section,
we evaluate different object detection algorithms based on one stage detection framework and a
two-stage detection framework reviewed in Section 2.2. A simple algorithm flow diagram about two
kinds of methods used in this paper is shown in Figure 6.
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The difference between two kinds of methods is described in Section 2.2, and we only give a simple
and intuitive diagram.

Anchor box settings. In the training and prediction stages, the five baseline detectors in this paper
use the method of pre-setting anchor boxes, which provide the reference for final prediction (bounding
boxes). If the anchors are not set properly, it will inevitably lead to more positional regression errors.
Therefore, it is especially important to set the anchors with appropriate scales and aspect ratios. In this
paper, the data distribution of Pano-RSOD is statistically analyzed. The scale distribution is shown in
Figure 4b. The length and width of object are clustered by K-means algorithm, as illustrated in Table 3.
Since the number of objects detected in this paper is mainly divided into four categories, the number
of clusters is set to be 4.

Table 3. Different aspect ratios after clustering. The second and third column, i.e., H and W, separately
height and width of objects in Pano-RSOD after clustering. The last column, i.e., aspect ratio, is
calculated by dividing W by H.

Terms H W Aspect Ratio

Classes Car Sign Line Person Car Sign Line Person Car Sign Line Person

First 61 26 129 32 98 24 465 18 1.6 0.9 3.6 0.6

Second 118 146 81 114 211 135 239 63 1.8 0.9 1.7 0.6

Third 28 187 26 139 41 396 39 245 1.5 2.1 1.5 1.8

Fourth 182 67 68 64 435 57 114 33 2.4 0.9 1.8 0.5

Considering the scale distribution of object as shown in Figure 4b, the aspect ratio after clustering
as shown in Table 3, and the hardware conditions of the experiment, the scale of anchors in Faster
RCNN and R-FCN is {32, 64, 128, 256, 512} and the aspect ratio is {0.5, 1, 2, 3}. Figure 7 shows the
distribution of anchors in the dataset. It can be seen that the anchors with scales and aspect ratios
used can cover the entire samples to a great extent. For the SSD, an additional convolutional layer
is added on the basic feature extraction network InceptionV2 [23]. It generates a total of six feature
layers to predict. The scale and aspect ratio settings of the anchors are calculated using the method
of Ref. [22], and each prediction layer sets anchors with multiple scales and aspect ratios. YOLOv3
performed k-means clustering on the object sizes of the training set (using the IoU value as the distance
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indicator) [21] to set up 9 different anchors. Table 4 shows the detailed parameters settings for anchors
of the baseline methods in this paper.
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Better feature extraction network. Designing better feature extraction network can provide more
information for object detection task. Compared with VGG-16, ResNet-101 has characteristics of low
complexity, deeper network and higher accuracy for classification. Thus, we also use ResNet-101
instead of VGG-16 in the feature extraction network of Faster-RCNN and R-FCN to improve the feature
extraction ability.

Training strategy and model parameters. We use SGD as backpropagation algorithm for the five
detectors and stepwise reduce the learning rate. Considering the depth of the network and other
factors for each detector, the proper iteration steps and initial learning rates are set to ensure the
convergence of the network. For the relatively deep network, we set the smaller initial learning rate
to avoid gradient explosion. The iteration steps of Faster RCNN (VGG-16 based and ResNet-101
based) and R-FCN are both 100 k steps, and the initial learning rates are set to 1 × 10−2, 1 × 10−3 and
1 × 10−3, respectively. And then the learning rates are reduced to one-tenth of the original at the 80 k
steps. The iteration steps of SSD and YOLOv3 are both 150 k steps. Their initial learning rates are
4 × 10−3 and 1 × 10−3, respectively. Then the learning rates drop to one-tenth of the original at 80 k
steps. The selected hyper-parameters for the five detectors are shown in Table 5.
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Table 4. Detailed setting parameters of five detectors’ anchors. We define the type of scales as S,
the type of aspect ratios as A, so for Faster RCNN, R-FCN, and SSD, the type of anchors as S × A.
For YOLOv3, we directly list anchor’s width and height.

Methods Scale Aspect Ratio Anchor Type Number

Faster RCNN
(VGG-16) {32,64,128,256,512} {0.5,1,2,3} 20

Faster RCNN
(ResNet-101) {32,64,128,256,512} {0.5,1,2,3} 20

R-FCN
(ResNet-101) {32,64,128,256,512} {0.5,1,2,3} 20

SSD
(InceptionV2)

First layer:51.2
Second layer:102.4
Third layer:198.4

Fourth layer:294.4
Fifth layer:390.4
Sixth layer:486.4

{0.5,1,1,2}
{0.5,0.333,1,1,2,3}
{0.5,0.333,1,1,2,3}
{0.5,0.333,1,1,2,3}

{0.5,1,1,2}
{0.5,1,1,2}

30

YOLOv3
(DarkNet53)

{[14.96,13], [27.04,17], [21.1,32.06], [39.94,23.96],
[38.1,51], [64.10,32.06], [80.08,52.02], [128,82.02],

[291.02,142.04]}
9

Table 5. Hyper-parameters used in training process.

Hyper-Parameters Faster RCNN
(VGG-16)

Faster RCNN
(ResNet-101)

R-FCN
(ResNet-101)

SSD
(InceptionV2)

YOLOv3
(Darknet53)

Steps 100 k 100 k 100 k 150 k 150 k

Initial learning rate 0.01 0.001 0.001 0.004 0.001

Batch size 1 1 1 4 4

Momentum 0.9 0.9 0.9 0.9 0.9

IoU threshold 0.5 0.5 0.5 0.5 0.5

5. Experiments and Benchmark Statistics

In order to test the dataset and build a benchmark for the Pano-RSOD, we train and test the
state-of-the-art algorithms (Faster-RCNN, R-FCN, SSD and YOLOv3) on the Pano-RSOD. Among the
9402 images of the datasets, 7000 images are manually selected as training set, 1000 images selected as
test set, and 1402 images are used as validation set to detect four classes of objects, i.e., car, person, sign
and line. The images of training set, validation set and test set are collected from different roads of the
city, and they all cover urban and suburban scenes. In the experiment, the transfer learning method is
implemented, and the network is fine-tuning with the pre-training model [44]. Faster RCNN(VGG-16)
and YOLOv3 used the pre-training model based on ImageNet [8], and the other three detectors use
the pre-training model based on COCO [9]. Besides, the training and testing images are resized to the
fixed size 1024 × 512 pixels for all the detectors.

All evaluations are done on Intel Core i7-3930 k (3.80 GHz) CPU (24 GB memory), a single TESLA
P100 GPU (16 G memory). YOLOv3 is carried out experiment based on Darknet framework while the
other detectors based on Tensorflow framework.

5.1. Evaluation Metrics

Currently, the values of average precision (AP) and mean average precision (mAP) are used to
evaluate the performance of the object detection algorithms [33–40]. In order to compare performance
of the state-of-the-art object detection algorithms on the Pano-RSOD, we use AP and mAP to evaluate
the detection results of each category and all categories for every learned model, respectively.
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If intersection-over-union (IoU) of the detection result and ground truth bounding box is larger
than the given threshold, the object can be detected, namely, true positive (tp). If multiple detection
results matching with ground truth, the one with largest IoU is the tp, and others are false positives
(fp). After matching all the detection results, all the ground-truth without detection results matched
are false negatives (fn). All the detection results without ground-truth matched are false positives (fp).
The equation of the AP calculation is as follow:

AP =
1

11 ∑
r∈{0,0.1,...,1}

maxR(c):R(c)≥rP(R(c)) (1)

where the recall R(c) = tp(c)/(tp(c) + fn(c)), P(R(c)) = tp(c)/(tp(c) + fp(c)), both for a given confidence
threshold c, i.e., IoU.

mAP is calculated according to the AP of each category, and the calculation equation is as follows:

mAP =
1
n

n

∑
i=1

AP(i) (2)

where n is the number of object classes.
We use two metrics in the next evaluation, i.e., AP@0.5(PASCAL VOC’s metric [7]) and

AP@0.5:0.95 (COCO’s metric [9]). While the former is computed at a single IoU of 0.5, the latter
are averaged over multiple IoU values, i.e., ten IoU thresholds from 0.5 to 0.95 with equal difference
0.5. All the abbreviated forms of AP and mAP refer to AP@0.5 and the mean of each AP@0.5 in the
remaining of the paper.

5.2. Benchmark Statistics

5.2.1. Qualitative Evaluation

In order to give a qualitative analysis of the performance of different detectors, we show the object
detection results of the five baseline methods in four road scenes. As shown in Figure 8, the detection
results for small objects are not performed well by the baselines methods. Besides, there are some
missing and false detection results. For example, as shown in Figure 8a, some vehicles with larger size
are not detected by faster RCNN(VGG-16) and R-FCN. The advertising board is mistakenly detected
as traffic sign by faster RCNN(VGG-16), as shown in Figure 8c. This also reflects the diversity of
background information in Pano-RSOD, which poses a severe challenge to object detection in large
scene. Thus, how to correct the background and foreground is still the key task to improve the detection
performance of our dataset.
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Figure 8. The detection results of five algorithms in different road scenes. (a) crossroad; (b) overpasses;
(c) crowded urban road; (d) suburban road. The text in the upper left corner of each image represents
the algorithm adopted in the paper. The magenta box, red box, green box and cyan box separately
represent car, person, sign and line.

5.2.2. Quantitative Evaluation

In order to quantitatively analyze the performance of various algorithms, we evaluate and
compare the performance of five detectors through mAP metric, and analyze the difficulty of the object
detection of different categories by AP metric. In addition, we count the time required for the detector
to test each image to measure the speed of the algorithm. Table 6 shows the specific performance
statistics for different detectors. For a more direct comparison of the detection performance of the
detectors, we plot the precision-recall curve per category of each detector with the IoU threshold 0.5.
The specific results are shown in Figure 9.

Table 6. Performance Statistics of Object Detection Using Different Algorithms. The best results
are bold-faced.

Method Car Person Sign Line mAP Speed(ms)

Faster RCNN
(VGG-16) 81.17 52.02 58.46 73.52 66.29 ~58

Faster RCNN
(ResNet-101) 82.56 58.93 63.59 77.15 70.56 31.58

R-FCN
(ResNet-101) 81.22 55.46 61.96 74.79 68.36 25.41

SSD
(InceptionV2) 77.36 48.96 51.82 69.00 61.79 16.38

YOLOv3
(Darknet53) 83.60 65.06 61.53 77.13 71.83 ~13

As shown in Figure 9 and Table 6, from the overall mAP, YOLOv3 has achieved top performance,
which is mainly due to its reference to the structure of FPN [10] feature pyramids. That structure
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combines low-resolution, semantically strong features with high-resolution, semantically weak features.
It shows that the detection of a person has a large advantage. It can be seen that the AP of the person is
6.13 percentage points higher than the second best Faster RCNN (ResNet-101). From the performances
of the detectors for each category, the car category gets the best performance, and the person category
gets the worst performance (YOLOv3 is a counter-example). This is mainly because the car category
has more training samples than the person category, and can provide more feature information. What’s
more, there is also a considerable relationship with almost small objects of the person category in
the images (as shown in Figure 4b, its scale is almost less than 64). In addition, the mAP of Faster
RCNN (ResNet-101) is 4.27 higher than Faster RCNN (VGG-16). It can be seen that a better feature
extraction network is very helpful for object detection tasks. On the whole, SSD gains slightly weaker
performance. We assume that it can be a lack of higher-quality proposals compared to faster RCNN
or R-FCN and not added to semantic information in context compared to YOLOv3. To sum up,
these elements, i.e., better feature extraction network, higher-quality proposals and richer semantic
information, all contribute to the promotion of detection performance in Pano-RSOD.
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In terms of the speed of the algorithms, YOLOv3 also achieves top performance. On the one hand,
YOLOv3 uses the Darknet deep learning framework, which is written in C language, to improve the
running time of the program. On the other hand, it mainly benefits from its network structure and
matching mechanism optimization between anchor and the ground-truth, such as the plenty of 1 × 1
convolution and shortcut structures in Darknet53, each ground-truth only matches one a priori box,
which greatly reduces the complexity of the model.

SSD, which is an end-to-end detection method, also achieves good performance. In addition,
R-FCN replaces the RoI pooling layer and the fully connected layer of faster RCNN with
position-sensitive score maps composed of full convolutional layers, which reduces the computational
complexity of the head and increases the prediction speed by 6.17 ms.

For a more intuitive analysis of the five detectors, we have drawn their speed versus accuracy
diagram, as shown in Figure 10. It can be seen that Faster RCNN and R-FCN are significantly better
than SSD in terms of detection accuracy. With regard to speed, the result is the opposite. For example,
the mAP of Faster RCNN (ResNet-101) as the second-best result, is 8.77 percentage points higher than
SSD, and the speed of faster RCNN (ResNet-101) is slower than the SSD. Besides, YOLOv3 has a good
trade-off in terms of speed and accuracy, and achieved the best performance.
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5.2.3. Comparisons with a General Dataset

To demonstrate the differences between the models trained on conventional non-panoramic
datasets and the model trained on the Pano-RSOD, we compare its performance with other object
detection datasets, i.e., COCO, KITTI and UA-DETRAC. Based on the experimental results of the five
baseline detectors in Table 6, we find the YOLOv3 has a good trade-off in terms of detection accuracy
and speed. Therefore, we choose the YOLOv3 (with pre-trained model) as the baseline method in
the following comparative experiments. We totally set up five comparative experiments: COCO as
training set and Pano-RSOD as test set, KITTI as training set and Pano-RSOD as test set, Pano-RSOD as
training set and KITTI as test set, Pano-RSOD as training set and UA-DETRAC as test set, Pano-RSOD
as training set and test set. Since common categories between Pano-RSOD and COCO, KITTI are
vehicle and pedestrian, we used these two categories for experiments for fair comparisons.

Table 7 shows the experimental results of different training set in terms of AP, on conditions that
IoU threshold is set 0.5. It is obvious that the model trained on COCO has a poor performance in
panoramic dataset, i.e., Pano-RSOD. The reasons can be summarized in two aspects: (1) the traffic
scenes in COCO are relatively few. (2) the images in Pano-RSOD are different from the COCO
because Pano-RSOD’s panorama attribute will bring some optical distortions. Although the KITTI is a
large-scale street-level object detection dataset whose scene is the same with Pano-RSOD, the AP of
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model trained on KITTI is still about 20% lower than the model trained on Pano-RSOD. This is good
evidence that models trained on conventional non-panoramic imagery perform worse than trained
on panoramic images. In contrast, when testing on KITTI and UA-DETRAC, the models trained on
Pano-RSOD can achieve relatively good results due to the diversities of object scales of Pano-RSOD.

Table 7. Detection Results of Different Training Set.

Training Test Vehicle (AP) Pedestrian (AP)

COCO Pano-RSOD 40.75 28.92

KITTI Pano-RSOD 62.18 47.53

Pano-RSOD KITTI 64.46 39.25

Pano-RSOD UA-DETRAC 57.21 -

Pano-RSOD Pano-RSOD 83.60 65.06

5.2.4. About Robustness of Detectors for Small Object

To evaluate the robustness of these detectors against varying IoU threshold, we evaluate five
detectors with AP@0.5:0.95(COCO’s metric).

From Table 8, we know that the accuracy of each algorithm is significantly reduced when the
COCO evaluation metric is adopted, which indicates that the object detection algorithm is particularly
sensitive to the selection of IoU threshold.

Table 8. AP@0.5:0. 95 of five detectors.

Method Faster RCNN
(VGG-16)

Faster RCNN
(ResNet-101)

R-FCN
(ResNet-101)

SSD
(InceptionV2)

YOLOv3
(Darknet53)

AP@0.5:0.95 35.70 38.80 37.00 26.10 29.48

Then we increase the threshold from 0.4 to 0.8 by 0.1 increments and calculate AP regarding
to each IoU threshold for each detector and plot IoU versus AP curve. The results are shown in
Figure 11. As we can be seen from Figure 11, when the matching IoU value increases, the person
category for every detector has a much sharper drop in the AP value than the car category, and falls to
the worst result when IoU = 0.8. Such case implies that the detected bounding boxes do not have a
high overlap ratio with the ground-truth and detection of small objects is more sensitive to IoU values.
Therefore, more effort should be put into developing detectors that can better handle small objects
for Pano-RSOD.
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6. Conclusions

Pano-RSOD is a panoramic road scene dataset for object detection. It has distinctive characteristics:
high-resolution, panorama, the richness of annotations and small objects, and diversity. Experiments
have been conducted with different object detection algorithms based on deep neural networks.
From the experimental results, we can conclude that Pano-RSOD can be used as a benchmark for
performance evaluations of object detection. In that benchmark, YOLOv3 (Darknet53) has achieved
the best results of AP (Car and Person), mAP and speed. While, the best results of AP (sign and line)
and AP@0.5:0.95(COCO’s metric) have been achieved by Faster RCNN(ResNet-101).

However, there are still challenges, such as the detection of small and hidden objects, and the
panoramic view distortion. In future work, the method of dealing with the panoramic view distortion
or directly converting from the panoramic view to normal view can be added to the new object
detection algorithm. Further, object detection using new structures, like spherical CNN, which can
directly process from the panoramic view, can be proposed. Besides, we also plan to extend Pano-RSOD
and apply the dataset to other tasks such as semantic or instance segmentation in panoramic scene.
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