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Abstract: Cyber-physical systems (CPS) are envisioned to change the whole of society.
New engineered systems joining physical and digital solutions are being employed in industry,
education, etc. These new systems are networked by default, and private information is shared
among the different components related to users, critical infrastructures, or business operations.
In this context, it is essential to encrypt those communication links to protect such information.
However, even most complicated schemes based on hybrid (asymmetric and symmetric) solutions,
finally require physical devices to store a secret key. This approach is cryptographically weak, as any
person with physical access to the device could obtain that key. Therefore, in this paper we propose
the use of physical unclonable functions (PUF) to generate secret keys for lightweight encryption
schemes. Using PUFs, any attempt to capture the key is changing the original secret stream, and
even manufacturers are not able to build two identical PUFs. The proposed key generator is based
on magnetic materials and lightweight pseudorandom number generators to meet the low-cost and
small size requirements of CPS. In particular, materials with an activated exchange-bias effect are
employed, together with simple copper coils. The encryption process can be based on a simple XOR
gate because of the robustness of the proposed key generator. In order to evaluate the performance of
the proposed technology, an experimental validation based on simulation scenarios is also provided.

Keywords: cyber-physical systems; physical unclonable functions; streaming communications;
security; encryption

1. Introduction

Cyber-physical systems (CPS) [1] are defined as unions between physical and computational
processes. This new approach has opened a new era in industry (Industry 4.0) [2], education, and
engineering. In CPS, feedback control loops [3] are employed to make physical and cybernetic processes
evolve together. Several heterogenous components are interconnected to create pervasive systems
supporting these mechanisms. This new paradigm is particularly interesting to support real-time
control systems, fed by an information stream (biological signals, data from sensors, etc.) [4].

However, these new systems are also vulnerable to new, innovative, and more aggressive attacks,
known as ‘cyber-physical attacks’ [5]. In fact, as CPS are made of many interconnected components,
attacks may affect a critical component when non-relevant (and often less secure) elements fail and
the failure propagates due to a cascade effect. Besides, CPS are vulnerable not only to cybercrimes,
but also to physical attacks. Thus, in these new systems, not only must attackers accessing to the
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system through the communication networks be considered, but also people physically accessing and
manipulating any device [6].

In this context, security for CPS is a critical issue. Many different schemes and solutions, then,
have been proposed. Symmetric and asymmetric encryption schemes [7] or certificateless public key
infrastructures [8] are probably some of the most common proposals. Nevertheless, those solutions
and any other previously reported, finally require physical devices to store a secret key.

Software components can protect secret keys through cyber-protection technologies, as they have
no physical existence, only logical. However, hardware devices must include memory (ROM memory)
to store permanent information such as secret keys [9]. This configuration is vulnerable to physical
attacks (i.e., people physically manipulating the device), as the key could be read from the memory
by unauthorized people. This risk, moreover, is especially relevant in CPS, as many deployments are
isolated, unmanaged, and unattended [10]. New mechanisms to create or protect keys against any
cyber or physical attacker are, then, required.

Therefore, in this paper we propose a novel solution to protect communication links in CPS.
The proposed encryption scheme is based on symmetric keys generated through physical unclonable
functions (PUF) [11]. PUFs are systems whose response is unclonable, even if the manufacturing
method of the system is known. They take advantage of certain naturally occurring physical properties
(such as imperfections in dielectric materials) to create systems which are totally unrepeatable even
by the original creator. In this paper, we are defining a new PUF based on magnetic materials which
can suffer a spontaneous and unclonable modification of their properties thanks to the exchange-bias
effect. This effect only needs an activation process that is done immediately after manufacturing the
material. Modifications will depend on the room temperature and, probably (there is no conclusive
evidence) on other environmental factors. Besides the activation process, the atomic structure of the
material greatly affects the final behavior of this PUF. A unique sample of an activated material should
be, then, divided into two elements to create the cipher and the receiver.

The objective of this paper is to provide a mathematical and engineering framework for this
novel encryption scheme and key generator system. It is described the proposed architecture and the
physical foundations of the electronic device supporting the designed PUF. Moreover, using simulation
techniques, the performance of the proposed solution is evaluated.

The rest of the paper is organized as follows: Section 2 describes the state of the art on PUF and
security techniques for CPS; Section 3 presents the proposed encryption solution, including the key
generator and its mathematical foundations; Section 4 describes the proposed performance evaluation
and experimental validation; and Section 5 concludes the paper.

2. State of the Art: Physical Unclonable Functions and Encryption in CPS

Although security and CPS is one of the most interesting and popular research topics nowadays,
encryption and security schemes for CPS are pretty standard. In particular, as in most application
scenarios, these solutions can be classified into two groups: symmetric and asymmetric key schemes.

Cyber-physical systems, in particular, are usually solutions exchanging information packets,
not information streams. Thus, symmetric key schemes in CPS are usually focused on block ciphers [12]
of cyclic redundancy checks (CRC) [13] which can detect and/or correct transmission errors caused
by natural or intentional causes. This solution, nevertheless, is very inefficient as the amount of
information to be exchanged grows. Nowadays, very large amounts of information need to be shared.

In order to improve efficiency in these symmetric key solutions, hardware-supported schemes
have been reported [14]. Different sequential circuits focused on encryption may be also found.
Nevertheless, in real-time applications, even hardware-based block ciphers are not enough, and stream
ciphers are required. Different proposals may be found, although most authors agree the encryption
system must be as simple as possible, and the engineering cost must be put on key generation. In this
sense, different techniques and pseudo-random number generators (PRNG) [15] for key creation have
been described.



Electronics 2019, 8, 390 30f 22

These symmetric solutions, however, present a very well-known problem: key distribution.
Although this is a problem in any system, in CPS where sparse and resource constrained devices must
communication through very unsecure links and networks it is more critical if possible. To address
this problem, asymmetric key solutions have been investigated.

Different proposals to adapt cryptography based on elliptic curves to cyber-physical systems may
be found [16]. In some occasions, even these mathematical procedures are mixed with nondeterministic
effects such as temperature measures to improve the encryption entropy [17]. Employed algorithms are
standard solutions such as ElGamal encryption [18,19], although innovative public key infrastructure
has also been reported to enable, for example, the transmission of signed information (using high-level
data format as JSON) [20].

As a general problem of any of the previously described solutions, all of them require from devices
to store a secret key in a ROM or non-volatile memory. A very risky situation in CPS.

Other works have considered a totally new approach based on innovative characteristics of CPS.
In particular, taxonomies to classify and analyze the attacks to be suffered by CPS [21] have been
proposed. Based on these taxonomies, some intelligent solutions to detect and react to cyber-physical
attacks in the most appropriate manner have been studied [5]. Besides, some domain-specific solutions
may be also found, especially in the area of Smart Grids [22], industrial control systems [23], or feedback
control loops [24].

Nevertheless, these approaches are totally reactive, and only valid to detect and react to attacks
that are already running. Although these solutions are needed, schemes to prevent those attacks and
keep the private information as a secret are even more important.

In this work, we combine both approaches and define a preventive security scheme (a symmetric
key encryption scheme), but which does not require to store a secret key in memory. This objective is
reached thanks to physical unclonable functions (PUF).

PUFs [25] formalize the idea of one-way functions, later named ‘physical random functions’, which
consist of the use of systems’ random nature properties to identify them [26,27]. In particular, PUFs
benefit from all these effects that are non-controllable or non-repeatable to create unique responses
from systems to common excitations or challenges. Up to three different types of PUF have been
reported: non-electric, electric, and intrinsic.

e  Non-electronic PUFs [28] include all functions based on non-electric phenomena, although some
electrical components are employed to create challenges or collect responses. These technologies
are the oldest techniques in PUFs and are usually based on optical effects. Optical fibers,
lasers, etc., present random and uncontrollable behaviors that may be employed to create a PUE.
However, these mechanisms are expensive, complex, and require a very precise manipulation.
These conditions do not fit CPS requirements, in general.

e  Electronic PUFs [29] are those based on electric analog signals suffering random effects.
For example, random and unclonable changes in the voltage threshold of solid-state devices such
as diodes or transistors. These changes create a personal behavior for each device. The main
problem of these PUFs is they may be difficult to measure.

e Intrinsic PUFs [25] are those that naturally arise when manufacturing a system, whose main
function is usually different. For example, in logic circuits, time required by signals to go through
different paths is slightly different and depends on the manufacturing conditions of each specific
circuit (a type of PUF known as an ‘arbitrary PUF’). ‘Ring oscillator PUF’ is also another example
of intrinsic PUF.

Different applications for PUFs have been described, including security applications. PUFs have
been employed into two basic schemes: key generators and authentication mechanisms. The oldest
PUF proposals are related to RFID systems, which include key generators based on PUFs [30].
Some hardware-supported algorithms also include PUFs to increase its entropy [31,32]; and
PUF-based random number generators with high randomness levels have been also reported [33,34].
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Authorization mechanisms [35] are based on challenge-response tables, which are employed to
compare responses to authorization queries.

The proposed encryption mechanism in this work considers an encryption scheme with an
electronic PUF embedded in a key generator, because of its low-cost character and reduced dimensions.
Besides, only simple manufacturing processes are required to implement the proposed solution, which
perfectly fits the characteristics of CPS.

3. Proposed Encryption Scheme

In this section, we described the proposed encryption scheme for CPS. The proposed scheme
includes a simple encryption mechanism based on a XOR logic gate, and the PUF-based key generator.

3.1. Proposed Architecture and Global Overview

Figure 1 shows the proposed security solution for cyber-physical systems. In this figure, two
different modules are presented: a transmitter and a receiver. In the transmitter, a certain discrete-time
digital information m[n] is collected to be transmitted. This information is injected in a symmetric
encryption module, represented by ¢[-] operator, together with a key stream k[n]. As a result, an
encrypted message e[n] is obtained (1).

e[n] = e(m[n], k[n]) (1)
- Key
s[n] generation
Key
generation Synchronization |gf k*[n]
module
k[n]
m(n] - Jepy [ MRS Lo, | [ WEEE _ -
Encryption communication L= communication Decryption >
module module e[n] m*[n]
Transmitter Receptor

Figure 1. Global overview of the proposed solution.

This message is then transmitted through a wireless communication module. This module may
be based on any existing technology such as Bluetooth, WiFi, or ZigBee. Hereinafter, we are assuming
no errors are produced during the wireless transmission or, if produced, they are corrected by the
native mechanisms considered by these technologies. For this analysis, thus, we are considering this
module as a transparent component. The same solution could be applied to more complex scenarios,
but additional mechanisms to manage data transmission should be considered (that are not the focus
of this article).

Information is, then, recovered by the receiver. As a symmetric encryption scheme is being
employed, the same encryption function may be employed to decrypt the original information (2).
To this function, in this case, it is injected the encrypted message e[n] and the key stream generated by
the receiver k*[n]. A clear information m*[n] is then obtained.

m*[n] = e(e[n], k*[n]) @

The recovered information m*[n] is only equivalent to the original information m[n] only if
encryption key k[n] and decryption key k*[n] are equal. To guarantee both key streams have exactly the
same sequence, a synchronization signal s[n] is calculated and injected into the receiver’s key generator.
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This assumption may be hard to fulfill but different schemes have implemented this mechanism
successfully [15,36]. In particular, in our work, we are employing physical unclonable functions.
The key generator design based on PUF (see Section 3.3) guarantees the same sequence is generated in
both the transmitter and the receiver (Sections 3.3 and 4 will provide evidence about this requirement).
The described synchronization signal ensures, besides, both sequences present the same time base (as
seen below).

This synchronization signal is calculated through a correlation algorithm in the synchronization
module (3). In this algorithm, a simple correlation estimator c[r| between both key streams is obtained.
As the key generator guarantees both key streams (N bits length sequences in the transmitter and
the receiver) are the same sequence, it is only necessary to analyze the delay r between both keys.
The delay to be corrected in the receiver’s key is the value for which c[r] is maximum.

N-1

W= Y Kn+rK 3
n=0

With this synchronization correction, both stream keys are exactly the same sequence [37], and
the symmetric encryption algorithm in the receiver may recover the original information.

3.2. Encryption Mechanism

Any existing or new symmetric encryption algorithm could be integrated in the proposed
architecture. However, devices in CPSs tend to be resource constrained and, then, computationally
low-cost algorithms are preferred. Thus, in this work we propose the use of the XOR (Exclusive
OR) encryption. The XOR operation is also employed in some existing encryption solutions such as
the Vernam cipher [37] or the one-time pad [38]. However, these mechanisms include some other
configurations (such as the key structure or the data format) which are not valid in our proposal. Thus,
we are referring the basic encryption technology supporting all these schemes: XOR operation.

This encryption scheme may be easily implemented using a logic gate, and the obtained
security level is sufficiently high. Mathematical evaluations can prove this result depends on the
randomness of the key stream. In fact, XOR-based encryption presents some vulnerabilities (such as
the known-plaintext attack), but most of them are addressed below with the appropriate key generator
and, in any case, the balance between the reached security level and the lightweight implementation
in XOR encryption is adequate for CPSs [39].

Mathematically, the XOR encryption process may be represented by a simple binary operation (4).
The XOR gate receives two data streams to perform the encryption. For this model, information
signal m[n] is composed of N bit samples. In that way, m[n] takes values in the range {0,...,2N —1}.
Figure 2 represents the encryption scheme.

e[n] = m[n] & kin] (4)

Then, if the employed key stream k[n]| is a flow of random numbers, the resulting encrypted
signal e[n] has a discrete probability density function equal to the probability function describing the
behavior of the key stream k[n]. In particular, all possible values have the same probability. Hereinafter,
P(-) is the probability operator and P(- | -) the conditional probability operator.

P(k[n] = ¢;) = P(e[n] = &) = ¢1 = Ve 5)

2N
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Figure 2. Encryption scheme.

Then, because of the structure of the XOR truth table, a known value from the encrypted signal
e[n] of all possible values in the range of the information signal m[n] have the same probability of
having generated that encrypted sample (6).

P(mln) =& | el] = &) = 92 = 5y VGG ©

In order to determine how secure the proposed XOR encryption is, we employ Shannon’s
information theory. The mutual information between the encrypted and the original information flow
I(m;e) represents the residual information that remains in the encrypted signal about the original one
(7). Considering expressions (5) and (6), it is easy to obtain this amount is zero; i.e., the encrypted
signal does not provide any information about the original signal m[n].

oN_12N_1

I(m;e) = Z Z Pm=¢j, e= gi).log<1’(mp—(e§j:‘ e,): (fi)) —0 @)
i=0 j=0 i

This mathematical demonstration is only valid for continuous random key streams. However,
random numerical flows are impossible to generate in practice. Then, only pseudorandom number
sequences are possible to obtain. Experiments show that a pseudorandom sequence may replace a
random flow with some considerations:

o  REQ#1: The pseudorandom sequence (which is periodical) must present a long period; enough to
encrypt each information message using only one key period

e  REQ#2: The same sequence cannot be employed to encrypt an undefined number of messages.
The pseudorandom sequences must be changed each certain operation time.

e  REQ#3: The algorithm generating the number sequence must be secret.

If these conditions are not fulfilled, then, simple cryptanalysis may break the encryption.

The proposed key generator in the next subsection employs a lightweight PRNG connected to a
PUF in order to create pseudorandom sequences with a very large period, including also a dynamic
mechanism to dynamically modify this sequence in a secret manner.

This encryption scheme also enables us to easily calculate the synchronization signal through the
proposed correlation algorithm. As key streams have a random behavior, their correlation with any
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other signal tends to be negligible (8). To prove that, we are obtaining a correlation estimator c*[r|
between the receiver key stream k*[n] and the encrypted signal e[n].

N—-1-r N—-1-r
C*[r} = Y e[n+r}.k*[n] = Y (m[n+r] D k[ﬂ+1’])~k*[n] _
N1 =0 N-1-r 8
= go (m[n+r]-k*[n]) & (k[n+r]-k*[n]) = ngo K[ + r]-k*[n] = c[r]

3.3. Key Generator

As said before, in order to guarantee a total protection level, the proposed key generator must
generate a random key stream. Figure 3 shows the proposed design to reach that objective. In order to
create a number sequence meeting the three basic requirements described in Section 3.2, in this key
generator a simple lightweight pseudorandom number generator (PRNG) is considered to ensure a
behavior as random as possible at low computational cost.

Challenge
generator

chit)

! ' !

Exchange-bias Exchange-bias Exchange-bias
magnetic device magnetic device magnetic device
rpit) :
v Physical Unclonable Function

Post-processing

Dynamic configuration manager

seed

PRNG

Private key
stream | k[n]

Figure 3. PUF-based key generator.

In particular, we propose the use of the Trifork PRNG [15,40]. This PRNG is based on three
perturbed lagged Fibonacci generators (PLFGs), interconnected in such a manner that only using shift
registers and OR logic gates make it possible to create a number sequence with a very long period (very
random) and totally protected against cyberattacks (as proved by the NIST tests [40]). Then REQ#1
is met.

In order to create the key stream, Trifork must be configured with a secret seed SEED[n]. This seed
includes three N-bit length values (9), xo[n], yo[n], and zg[n]. This collection is employed by a
seeding module to create the initial sequence (not included in the secret key stream) to trigger the key
generation process.

SEED[n] = {xoln], yoln], zoln]} ©)

This secret seed SEED[n] also changes with time, in order to guarantee the same secret key stream
is not used indefinitely. However, as the period of the sequences generated by Trifork is very long,
the secret seed may change quite slowly.
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This secret seed is usually stored in a ROM memory, calculated through a certain algorithm or
received from remote servers, but all these options have been proven to be unsecure. Thus, in this
work this secret seed is calculated using PUF. Figure 4 shows the proposed PUF for seed generation.

Physical Unclonable
Function

Challenge
generator

Excitation

EBi ni
H—> Lock-in

Amplifier

Post-Process
unit

&

Signal Generator :

Non-EB magnetic
device

........................................

Figure 4. PUF schematics.

As can be seen, the proposed PUF is based on the parallel connection of N; exchange-bias
magnetic elemental devices; and one additional non-EB magnetic device. All these elemental devices
are challenged using the same analog excitation. In order to get all magnetic materials (devices) to
respond to the excitation (challenge) with an unclonable signal changing with time, we propose the
material is activated to suffer the exchange-bias effect (EB).

3.3.1. Exchange-Bias Effect: Overview

Discovered by Meiklejohn and Bean [41] in 1956, they describe the EB as a process that occurs as
a result of the interaction between two layers of magnetic material composing the magnetic device: a
ferromagnetic (FM) and an antiferromagnetic (AFM) layer. The first (and simplest) consequence of
this phenomenon is a displacement of the hysteresis cycle showed by magnetic materials affected by a
magnetic field (because of the influence of the atomic spins of the FM on the AFM ions in the contact
zone of the two materials, or interface). In a physical sense, an EB device is seen as a united set of
magnetic domains that do not interact with each other but have an interface with a ferromagnetic layer,
so that each one of the domains in the AFM has a magnetic moment [42].

However, in a more practical context, this effect causes the material magnetization to evolve and
change when the material is left at room temperature after activation. It is then when the dependence
of the (exchange-bias) magnetic field with In(t) (logarithm of time instant) becomes noticeable, as
stated by O’Grady et al. [43] and Paetzold and Réll [44]. The importance of these results lies in the
demonstration that a magnetic device composed of a FM and AFM bilayer behaves depending on the
logarithm of time instant and without the intervention of any other variable.

In order to cause a magnetic bilayer to behave in that way, the material must be activated according
to a specific process. The manufacturing methods of exchange-bias materials are not a subject of study
in this work, but it is important to mention that the activation requires a distribution of the AF material
in grains suitable to achieve this activation and thermal stability [43]. This manufacturing process,
which will be called “activation’, consists of converting the behavior of the AFM from antiferromagnetic
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to paramagnetic in such a way that the spins are oriented in a random manner. This is achieved by
heating the material in a temperature range that is between the Néel temperature, Ty (above which
an antiferromagnetic material becomes paramagnetic), and the Curie temperature, T¢ (above which
certain magnetic materials undergo a sharp change in their magnetic properties). This heating is done
in the presence of a magnetic field He,; high enough to saturate the ferromagnetic layer, as shown
in Figure 5. Once the antiferromagnetic spins are aligned in a random manner, the sample is cooled
below the Néel temperature, in what is called the alignment temperature, T4y . If the presence of the
saturation field is maintained, not only the spins of the ferromagnetic will be aligned but also those of
the interface of the AFM, due to the influence of the spins of the interface of the FM, as seen in Figure 5.

Hext HEXt

> —>—>—> ->—=>—>—>—>

>>>>> >>>>>

>>>>> >>>>>

e > | > ::) P B
T<T<T, [ 2o/ AN T<Ty  |22222

= U

) (b)

Figure 5. (a) Paramagnetic behavior of the AFM. (b) Reaching the alignment temperature.

Then, as a conclusion, an EB magnetic device presents a behavior that varies with time.
This phenomenon enables us to create seeds also varying with time, so the entire secret key stream
will dynamically and automatically change with time, as required (see Section 3.2). This dynamic
evolution, besides, does not require any key distribution or communication; benefits from a natural
phenomenon. Thus, the proposed scheme is more secure than any other previous proposal. REQ#2 is,
therefore, fulfilled.

Although the evolution speed may be quite slow, a Trifork generator can produce very long-period
number sequences, fulfilling REQ#1.

Any case, if any manufacturer or attacker could create an EB material behaving in the same
manner as those materials employed in our PUF, no security will be provided by this mechanism
(REQ#3 will not be met). Nevertheless, the next section describes how unclonable the behavior of these
EB materials is; and how impossible it is in practice to either manufacture two identical or similar EB
devices or to manipulate an existing EB-based PUF to be employed by cybercriminals.

3.3.2. Unclonable Behavior in EB devices

Only one last requirement (REQ#3) must be fulfilled. It must be guaranteed that the proposed
PUF is secret; i.e., the PUF is unclonable and nobody could extract a magnetic device from a hardware
node and employ it with unethical objectives.

Figure 6a shows a graphic schematic of an EB device. To create an elemental EB -PUEF, two copper
coils are associated to the EB material (bilayer). The first coil is a magnetic field generator, wound
directly on top of the material. The second copper winding or sensing coil is also on top, to collect
the response from the EB material. With this configuration, the proposed device presents a very
reduced size.

To perform an electromagnetic analysis, this compact configuration may be expanded (see
Figure 6b). In fact, at a short distance, the generator or field source, the magnetic material, and
the signal receiving coil operate as if all them are put together.
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FEM( V

FM
AFM

FM
AFM
(b)

Figure 6. (a) Elemental EB device; (b) EB device with magnetic core (bilayer material) and separate
field sensor.

In order to challenge (excite) the EB material, the field-generator coil produces a magnetic field H
with two components: a great continuous component H, and a variable field with time (10). The great
continuous component is required by EB devices to operate, and the variable field is the challenge to
the PUF.

H=H,+) he (10)
k

Generating controlled magnetic fields is quite complicated, especially in resource constrained
nodes, but using an electrical (current) signal I (11) and the field-generator coil, the required magnetic
field (10) may be produced.

[=1I+)Y i (11)
k

The field that is generated in the coil will have a frequential composition that will be equal, as is
evident, to the frequential composition of the signal in the excitation current. Thus, the material is
subjected to a variable magnetic field and a variable magnetic flux will pass through it. This flow will
induce an electromotive force in the sensing coil that will be measured and acquired to create the PUF
response, as seen later.

This excitation will generate a magnetization (12) in the material, M, where M, is the saturation
magnetization at room temperature and 7 is the corresponding RF component. Hereinafter, in order
to mathematically demonstrate the unclonable behavior of these EB devices, we are considering the
superposition theorem to study each one of the frequential components wy in the magnetization and
magnetic fields separately (13).

M= M, + Y m e (12)
k

M = M, + 7t el (13)

The relation between the magnetic field and the magnetization may take different forms (14).
However, in EB devices (see Section 3.3.1), the magnetic material (analyzed on a macroscopic scale) is
divided around domains with a magnetization M when an external continuous magnetic field H, is
applied in such a way that it can be said that each domain precesses inside the material around the
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axis of application of the magnetic field. Using the equation describing this movement, a new relation
between the magnetic field and magnetization is deducted (15).

M= (” — 1>H (14)
Ho
dM —
i — YoM X H, (15)

Where y is the magnetic permeability in the material (considered isotropic), y is the magnetic
permeability of free space, and 1 is a gyromagnetic ratio. This ratio describes the relation between the
spin magnetic moment in the material, i, which is the moment that an electron spinning has on itself;
and the kinetic moment that the electron has in the opposite direction, that will be named p (16).

M
7 p

In all of these expressions, the permeability and gyromagnetic parameters depend on the electronic
configuration of the constituent atoms of the magnetic material, as well as on the interaction that
exists between them. Both parameters are then, in practice, unclonable and are the basis for the
proposed PUF.

In order to create a PUF, the EB devices must respond to the applied challenge or excitation.
In magnetic material, this response is the magnetic induction (17); where y is a tensor describing the
magnetic permeability in the EB device (which is an anisotropic device, composed by two layers).

B=uH (17)

=

In order to determine how variable the behavior of an EB device is, the value of this tensor must
be studied. In particular, considering a second definition of the magnetic induction depending on the
magnetic field and the magnetization vector (18), it can be deducted this tensor is the Polder tensor
(19) and (20).

B = uo(H + M) (18)
_ pp —JK 0
H=po| jK pp 0 (19)
0 0 1
14 WM W WM
””_ng—wz K T (20)

The Polder tensor describes, in general, the magnetic permeability of ferrites, but in this case,
it may be also employed for EB devices. Two relevant parameters are identified (21): the Larmor
frequency w, and a new parameter wy; dependent on the atomic structure of the material (i.e.,
the magnetization vector).

YHoHo = wo

21
THoM = wpm @

Although the Lamor frequency may be controlled through the excitation current generating
the excitation magnetic field Hy; the ‘natural frequency’ wy (in fact, a resonance frequency, see
Section 3.3.3) is uncontrollable and unclonable [45]. Besides, because of the EB effect (see Section 3.3.1)
the magnetization vector induced in the device varies with time (depending on the logarithm
of the time instant). Then, wys will also evolve with time in an autonomous, independent, and
uncontrollable manner.

Nowadays, however, there are no instruments or procedures to predict, manipulate, or clone the
behavior of this ‘natural frequency’ wy or the EB devices (as it depends on atomic structures) [45].
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In fact, in order to create two identical EB devices, a unique magnetic material must be firstly activated
and, later, divided into two samples. Besides, any attempt to extract or manipulate the PUF from its
casing and operation conditions will modify the magnetization vector and, in consequence, the system
behavior, the generated seed and, finally, the secret key stream.

However, before ensuring REQ#3 is fulfilled, it must be evaluated how variations in wy, affect
the PUF responses. Figure 7 shows the evolution in p, and K depending on the excitation frequency
for different possible values of wyy.

Il.,K N : — Wy
I | mMZ
1 Wy
I
A
1 w
1 1 - -
> I
Aw, I
I
I
I
I
L}

2

Figure 7. Schematic representation of two possible work zones for the presented EB device.

As can be seen, the response of i, and K is similar for all material around the Larmor frequency
w,, regardless of the value of wy;. Besides, the same situation occurs for very high or very low
frequencies. Then, we will configure the device to work around high frequencies relatively far from
the Larmor pulsation. This means that none of the previous terms tend to infinity and, in addition,
the term w) influences the frequency behavior of the material (see Figure 7).

Finally, it is necessary to acquire or sense the magnetic induction to generate an analog electrical
signal. As variable components are always considered in the fields, it is easy to generate that electrical
(voltage) signal through an induced electromotive force in a second copper coil (22).

¢ = 7§ E-di :/NB-ﬁdA :/NBndA _ (22)
C S S dt
With the previous expressions and discussions, it is demonstrated that there is a direct relationship
between the magnetization of the material and its behavior as a transmission line for radio frequency
signals. Then, as (nowadays) magnetization in EB devices is uncontrollable and unclonable (no work
has reported a method to control the natural frequency wy) [45], the response of these devices as a
transmission line to the applied excitation (challenge) will also be unclonable. REQ#3 is then met.
Then, to create a cipher and decipher pair, an EB material must be generated, divided into two
identical samples; and using these samples, two EB devices are constructed. The same process must be
repeated to build all required EB devices for both the cipher and the decipher.

3.3.3. Global Behavior and Seed Obtention

Previous equations establish a clear relationship between the components of the permeability
tensor and the resonance frequencies of EB devices. In fact, a simple analysis shows that the EB
device’s resonance frequency (that for which all reactive or imaginary components in 1 are vanish) is
the natural frequency’, wy,.

As in any other resonant system, at this resonance frequency, an EB device stores (or consumes)
all received energy, so no signal or magnetic induction is transmitted. Then, each one of the EB devices
will have the resonance at f); = 5 (the particular value will depend of the atomic structure of the
material) and will filter any signal within this bandwidth, known as notch band (see Figure 8).
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Figure 8. Frequential response of an EB device.

On the other hand, this resonance frequency will vary with time (as already said), with a speed v.
Experimental studies [45], besides, prove this frequency evolves in downward direction (see Figure 8).

Then, the global PUF proposed in Figure 4 will present a global frequential response calculated
as the superposition of Ny notch filters, one for each EB device (see Figure 9). Mathematically, then,
when applying a challenge ch(t), a response rp(t) is obtained whose frequential structure is variable
and unclonable (23), as the natural frequency w; cannot be controlled [45].

ch(t) = ¥ C ¥kt
k

Ny . (23)
rp(t) = PUF{ch(t)} = L. Y As(t)Cy &K
s=1k

Figure 9. Operation of the complete PUF.

However, to maintain EB devices in the operation conditions, challenges must be mixed with great
continuous signals, to create the required continuous magnetic fields. Then, the obtained response will
also be mixed with the great signal which must be removed to extract the real PUF response. To perform
this operation, in the proposed PUF (see Figure 4) a non-EB device and a lock-in are included.

The non-EB device has the two windings described above and the core is composed of either a
bilayer material where the exchange-bias has not been activated and has the initial permeability value)
or is an air core (vacuum). The objective of using this core is to isolate the effect on the phase shift of
the signal due to the effect of the couplings that may exist in the windings and which, being identical
to those that are mounted in the devices with the activated bilayer core, introduce a similar phase shift.
In this way, the two signals that enter the lock-in are differentiated only due to the effect generated by
the exchange-bias phenomenon.

The lock-in amplifier is often a device that returns a DC signal proportional to the phase shift
between two signals and to the amplitude of both signals. Therefore, if the same signal flows through
two different paths, the differences in the circuitry of these paths will be what cause the changes in the
signal and the difference that the lock-in will measure.

At this point, then, an unclonable and dynamic PUF response to the applied challenge is obtained.
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The output signal of the lock-in goes through a post-processing system that measures it and
converts it into a valid seed. The output seed of that unit will be the result of a mathematical operation
that relates the amplitude of the received signal and its frequency; and therefore, will depend as much
on the state of the cores of material bilayer with the effect of exchange-bias developing over time,
as the set of signal frequencies that will be introduced into the material (challenge).

Complex algorithms to control the challenge to be applied or the seed calculation could be
employed in order to increase the global entropy of the key generator. However, for this initial work
presenting the solution, we are considering as challenge a simple composition of N; harmonics; and the
seed calculation was based on a sampling scheme (a sigma-delta modulator) to extract from the analog
signal three digital words with the appropriate length. Besides, in order to remove transitory responses
and other exogenous effects affecting the seed calculation, the post-processing module was configured
to only respond to long-term changes in PUF response. Moving average filters are implemented to
perform this function. This technological feature might limit the randomness of the generated keys,
but the use of PRNG prevents this problem.

4. Performance Evaluation and Results

In relation to the proposed solution, an evaluation focused on security analyses has no sense,
as the final obtained security level is directly dependent on the Trifork PRNG, a technology that has
already been validated [40]. On the other hand, a qualitative risk analysis is not relevant at this point,
as previous discussions have already proved that most relevant security risks have been addressed.
Therefore, for this work, we are proposing an experimental validation based on a performance
evaluation and key performance indicators (KPI).

4.1. Experiment Description

Five different experiments were carried out in order to evaluate five basic indicators:
(1) randomness level; (2) the bit error rate depending on the accumulated operation time; (3) the
distance between key streams generated by a similar PUF; (4) the malfunction probability depending
on the number of EB devices in the PUF; and (5) the resource consumption caused by the proposed
encryption scheme.

The first four parameters are going to be evaluated with experiments based on simulation
scenarios and tools. The last and fifth KPI is evaluated using a real implementation.

Simulation scenarios were built using the MATLAB and SimuLink software tools, which also
include mechanisms for electromagnetic and engineering simulations. It is a proprietary suite that
employs a specific programming language based on C syntaxis. However, libraries based on other
technologies such as C or Java may be employed. This suite was deployed in a Linux (Ubuntu 16.04)
machine with 8GB of RAM memory and an Intel i7 processor.

The simulation scenario consisted of two nodes creating a bidirectional communication link
between them (see Figure 1). Models for magnetic materials, radio channels, magnetization vectors, etc.,
were taken from standard existing libraries. The simulation model for the EB devices was configured
and characterized through numerical functions fitted to follow and behave as the measures obtained
by Migliorini and other authors [45] indicate. Apart from the magnetic components, each node was
constructed with a relatively small amount of hardware: a general-purpose embedded processor with
analog-digital converters, 5 kilobits of SRAM and 32 kilobytes of DRAM.

In order to pack and assign the described resources to the nodes, virtual containers were employed.
In particular, Kernel-based Virtual Machine (KVM) technologies were employed with the libVirt
Application Programming Interface (API). In that way, a simple C++ program may be employed to
control virtual instances and they may be managed from the MATLAB suite.

With the objective of connecting the virtual instances and the MATLAB suite where the simulation
scenario runs, the bridges provided by the MATLAB and Simulink libraries are deployed and executed.
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These bridges forward the input traffic in the simulated nodes to the external virtual machine, so real
algorithms, solutions, and protocols may be easily tested.

In the first four experiments, simulation tools are adequate to provide relevant results as the
limitations due to hardware issues are not evaluated (we are considering nodes can easily implement
the proposed cipher). In the last experiment, hardware limitations were considered and real devices
were employed.

For the first experiment, the NIST SP 800-22 test suite [46] was considered. This suite includes
15 tests that are usually employed to evaluate the randomness of key generators, PUFs, and other
similar proposals. These tests consider two parameters (usually known as « and p) to determine if the
evaluated number sequence is random. Basically, the tests evaluate if a sequence is random with a
confidence equal to (1 — «). Tests obtain the p-value and they are successful (the sequence is random)
if it is greater than a. In our experiment we are considering & = 0.01. The simulation scenario consisted
of the proposed key generator where 64 different EB devices where integrated.

For the second experiment, a collection of different simulations was carried out. For each different
simulation, the number of EB devices in the proposed PUF was increased. A bidirectional secure
communication link is stablished between both the transmitter and the receiver for each configuration.
As a supporting wireless communication module, we have selected a Bluetooth 4.0 technology solution
(available in the NS3 libraries). Communication links were configured to be 10Mbps links (Bluetooth
4.0 enables up to 32 Mbps connections). Using these links, 100 information packets per second were
transmitted. Each packet was configured to have 100 information bits. Time was divided into 5-h slots.
In this time period, Npgckets = 1.8 X 10° packets (or Nyj;s = 1.8 x 107 information bits) are transmitted.
Then, the resulting amounts are enough to evaluate the bit error rate (BER). Thus, the BER in the
stablished communication link was evaluated and measured for each different slot.

The third experiment was performed using a simulation scenario similar to the previous one.
Nevertheless, in this case, for each PUF configuration, cipher and decipher were built using ‘cloned’
PUF. The similarity level between PUF and the resulting key streams are measured and evaluated.

For these three initial experiments, simulations considering PRNG were configured as follows:
N = 16 to represent a common current situation; and the applied excitation (challenge) to the PUF
consisted of a composition of 100 harmonics whose frequencies were calculated using an automatic
algorithm (24).

2k

fie = 1000-7 (24)

Later, in the fourth experiment, some modifications in the scenario were applied. The cipher
and decipher were reconsidered to implement two identical PUF (two samples from a unique EB
activated material). The probability of the cipher and decipher not being able to operate correctly due
to malfunctions in the PUF is then evaluated. Different configurations and numbers of EB devices in
the PUF were considered. With this experiment, the probability of a magnetic material so anisotropic
that two samples from the same material do not behave in the same manner is analyzed. The same
configuration parameters were employed in this fourth experiment for the cipher and the decipher.

Simulations for these fourth initial experiments were repeated 12 times for each case.
Each simulation was configured to represent 360 h of operation.

The fifth and last experiment was completely different from all already described. With the
objective of evaluating the effect of hardware limitations, especially in the context of CPS where
resource constrained devices are usually employed, in the proposed architecture; a real implementation
of the proposed solution was executed. We evaluated the consumption in terms of RAM memory,
program space, and computational time. The experiment was repeated for different values of N (the
bit-length of number in the PRNG).

As a hardware platform, we employed an Arduino Nano board. It includes an AVR
microcontroller, the ATmega328 microcontroller. It also has 32 KB of flash memory, 2 KB of SRAM
memory, and 1 KB of EEPROM (which is rarely employed).
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The implemented PUF for this experiment was manufactured as indicated by Migliorini [45].
Four different EB devices were employed in the designed PUF.

4.2. Results

In this section, results of the described experiments in the previous section are presented
and discussed.

In order to remove from the simulation results (as much as possible) fluctuations in the simulation
execution process caused by exogenous variables (e.g., delays operations performed by the operating
systems), the average of all obtained results from the 12 performed simulation repetitions are employed
to calculate the final results.

Table 1 shows the result from the first experiment.

Table 1. NIST test results. First experiment.

Test p-Value Result
Runs 0.973 Successful
Frequency Monobit 0.974 Successful
Overlapping Template Matching 0.319 Successful
Frequency Test within a Block 0.654 Successful
Longest Run of Ones in a Block 0.807 Successful
Universal 0.388 Successful
Linear Complexity 0.309 Successful
Binary Matrix Rank 0.419 Successful
Serial 0.999 Successful
Discrete Fourier Transform 0.215 Successful
Random Excursions Test * 0.461 Successful
Random Excursions Variant Test * 0.399 Successful
Approximate Entropy 0.921 Successful
Non-Overlapping Template Matching 0.979 Successful
Cumulative Sums 0.955 Successful

* Several different values for p-value where obtained. Result is the mean value.

As can be seen, all tests were successful guaranteeing the randomness of the proposal. Besides,
obtained p-values are very high (in several tests around the unit), so the randomness level of the
evaluated key generator output is also very high.

Figure 10 shows the results from the second experiment. The Bit Error Rate (BER) is evaluated
according to the standard expression (25), being Nerror the number of bit errors in each time period.

(25)

As can be seen, the bit error rate (BER) is always below 0.01%. BER evolution follows a sigmoid
curve, where there is an initial period (around 150 h) when BER is stable. Later, BER starts going down
until it reaches the value 5 x 10~%% (approximately) and gets stable another time. This behavior is
coherent with the PUF behavior. In fact, as the proposed PUF is not generating directly the key stream,
but a seed for a PNRG (which only changes when long-term changes in the PUF response are detected),
and as PUF evolves and changes quite slowly, BER may present very low values.

At first, PUF starts generating signals which may still present some very small fluctuations caused
by the transitory period in the magnetic field and induction and PUF response. As time passes, and EB
effect starts making the resonance frequency evolve, the small fluctuations tend to disappear and BER
goes down. However, there is a minimum value for BER due to numerical processing, etc. This also
explains why obtained values are very low, as only errors caused by the encryption mechanism are
considered. Besides, only a few bits in packets are corrupted, when fluctuations in the magnetic fields
caused very fast and transitory drifts in the PUF behavior. No structural errors are detected.
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Figure 10. Results from the second experiment.

On the other hand, it can be also seen, as the number of EB devices in the PUF is increased,
the initial BER is also higher. In fact, as more different magnetic materials are considered, the power
and energy associated to fluctuations in magnetic materials are also higher. Consequently, more
errors are induced. In any case, the obtained BER values are similar to those associated to traditional
encryption and communication systems [47].

It is important to note that, contrary to other works where real implementations are employed
to evaluate BER [34], in this case we are using a simulation scenario where only some effects
are considered (in particular, only effects related to EB phenomenon are analyzed). For example,
fluctuations in the electrical challenges are not considered. Thus, results with real devices might
strongly change (BER may go up several magnitude orders) and advanced techniques, such as error
correction modules, could be necessary.

Figure 11 shows the results of the third experiment. Distances between key streams are calculated
using a statistical expression. In particular, this distance is defined as the mutual information between
both key streams (a similar understating to which employed in context-tree weighting method [48]).
Mutual information is null when both streams are statistically independent and equal to N (the number
of bits per sample, see Section 3), when they are statistically equivalent. To normalize the mutual
information, ranging between zero and N, and turn this function into a distance function a simple
algebraic expression is employed (26). This definition guarantees two streams that are 100% different
are statistically independent, contrary to traditional (Euclidean) distance definitions.

N — I(k;k*)

d(k;k*) = N

(26)

Distance between the manufacturing conditions of two PUF is evaluated using a Euclidean
distance and the notion of mean square error. Being C; and C, vectors describing the manufacturing
conditions (M variables), the distance between the two corresponding PUF may be directly
obtained (27).

M
A Cr) = o L(Cil) ~Cal0)? 27)
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Figure 11. Results from the third experiment.

As can be seen, even two PUFs manufactured as ‘clones’ generate key streams that are 50%
different. In other words, and considering the distance between key streams is evaluated using the
mutual information, only half of bits per sample in the key streams are statistically independent.
For configurations including more than two EB devices, even PUFs manufactured with only 10%
difference generate statistically independent key streams (distance 100%). Configurations including
only one or two EB devices also generate independent key streams and secure encryptions (as only
identical key streams may grant access to the private information).

However, similar PUFs generate dependent key streams if fewer EB devices are included.
Even if as more different PUFs are manufactured the distance between key streams also increases,
one-device configurations only produce totally independent key streams for totally different PUFs;
while two-device configuration required materials with at least 50% differences.

Any case, this experiment validates the unclonable behavior of the proposed PUF and
encryption solution.

Figure 12 shows the results of the fourth experiment.

102 - r r r T .

103

Malfunction probability (%)

Nd= 1 Nd=2 Nd=4 Nd=8 Nd=16 Nd=32 Nd=64
Nd

Figure 12. Results from the fourth experiment.

As Figure 12 shows, the malfunction probability is also higher as more EB devices are employed to
build the PUF. In fact, as more identical EB devices must be manufactured, the malfunction probability
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grows up. In any case, above N; = 16, configurations present a stable malfunction probability around
0.01%. Between N; = 1 and N, = 16, the malfunction probability goes up exponentially, being 10~6%
the minimum probability (for a one EB device configuration).

With the four previously described experiments, the performance of the PUF is evaluated.
However, one final experiment is required to evaluate indicators related to hardware nodes
and limitations.

Table 2 shows the obtained results from the fifth experiment.

Table 2. Resource consumption. Results from the fifth experiment.

N Use of RAM Use of Program Space Processing Time to Generate the First Key Sample

4 12% 65% 120 ps
8 14% 67% 3.9 ms
10 14% 67% 5 ms
12 14% 67% 5ms
16 14% 67% 5ms

As can be seen, results are almost independent from the sample length (N). In general, the
proposed solution consumes around 70% of available program space in resource constrained nodes.
Although this amount may seem too high, the remaining 30% is enough to implement sensing
algorithms and other similar small software solutions.

On the other hand, the consumed processing time is quite low, so sampling algorithms can be
easily implemented. Considering the required time to encrypt one sample, the fastest signal our nodes
could sample is 200 KHz. Traditionally, an Arduino board may consider an analog signal with a
maximum bandwidth up to 4.5 MHz. When using our cipher, this quantity is reduced to 200 KHz,
but this speed is still enough for most applications.

Once the proposed solution is proven to be adequate for implementation in resource constrained
nodes, we can compare resource consumption in our proposal to previously reported solutions. Table 3
shows that comparison.

Table 3. Resource consumption. Comparison to previous works.

Proposal Memory Usage (ROM and RAM) Processing Time
PUFKY [34] 3KB 5.62 ms
ROPUF [49] 2KB 4.6 ms

EB PUF (our proposal) 22KB 5ms

As can be seen, required processing time is similar in all proposals (around 5 ms). However,
hardware-supported algorithms present a much lower memory consumption, as they are totally
optimized to perform a specific calculation, while implementations based on general purpose
microcontrollers need more memory resources. In particular, bootloader, auxiliary variables, sampling
routine, etc. mean our proposal consumes 22 KB in memory.

Any case, the proposed solution in this paper may be also implemented using simple logic gates
and hardware technologies, so the memory consumption could be also reduced.

5. Conclusions

Cyber-physical systems (CPS) are networked by default, and private information is shared among
the different components related to users, critical infrastructure, or business operations. In this context,
it is essential to encrypt those communication links to protect such information. However, most
solutions require physical devices to store a secret key, which is a very unsecure approach.

Therefore, in this paper, an encryption scheme based on keys generated through physical
unclonable functions (PUFs). Using PUFs, any attempt to access to the key will immediately and
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irreversibly change the key, and given one PUF, even the manufacturer cannot clone it into an identical
one. The proposed key generator is based on magnetic materials to meet the low-cost and small size
requirements of CPS. In particular, materials with an activated exchange-bias effect are employed,
together with simple copper coils. The encryption process can be based on a simple XOR gate because
of the robustness of the proposed key generator.

Results prove the unclonable behavior of the proposed PUF and the security level of the described
encryption scheme. On the other hand, the described solution also meets the requirements of resource
constrained nodes in a CPS.
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