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Abstract: In this paper, the cooperative multi-task online mission planning for multiple Unmanned
Aerial Vehicles (UAVs) is studied. Firstly, the dynamics of unmanned aerial vehicles and the mission
planning problem are studied. Secondly, a hierarchical mechanism is proposed to deal with the
complex multi-UAV multi-task mission planning problem. In the first stage, the flight paths of UAVs
are generated by the Dubins curve and B-spline mixed method, which are defined as “CBC)” curves,
where “C” stands for circular arc and “B” stands for B-spline segment. In the second stage, the task
assignment problem is solved as multi-base multi-traveling salesman problem, in which the “CBC”
flight paths are used to estimate the trajectory costs. In the third stage, the flight trajectories of UAVs are
generated by using Gaussian pseudospectral method (GPM). Thirdly, to improve the computational
efficiency, the continuous and differential initial trajectories are generated based on the “CBC” flight
paths. Finally, numerical simulations are presented to demonstrate the proposed approach, the
designed initial solution search algorithm is compared with existing methods. These results indicate
that the proposed hierarchical mission planning method can produce satisfactory mission planning
results efficiently.

Keywords: Multi-UAV cooperative mission planning; B-spline; dubins curves; guassian
pseudospectral method

1. Introduction

UAVs have seen decades of successful deployment in military operations. These military UAVs
are traditionally large and expensive. Recent technological advances have enabled small, inexpensive
and commercially available UAVs. Small UAVs carrying cameras and other sensors have many civil
uses, including agriculture research and management, search and rescue operations, surveillance, and
communication relay [1]. UAVs are especially powerful in situations where ground vehicles cannot
access an area, making UAVs useful in monitoring disaster scenarios in real-time. Unfortunately,
a single UAV can only provide limited flight time and limited coverage [2]. In this paper, we investigate
the problem of mission planning for multiple cooperating UAVs working together to monitor and
survey multiple geographical points in an area of interest.

Different from the formation control in the work of W. Xing, etc. [3], multi-UAV cooperative task
processing is suitable for loose formation structures. To guarantee that UAVs will be able to process
intricate tasks cooperatively and efficiently, mission planning is one of the key problems, and combines
the problems of task assignment and optimal trajectory planning for UAVs [4]. Task assignment consists
of assigning tasks to UAVs with the aim of reducing the overall cost of task execution. Trajectory
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planning is the problem of planning optimal trajectories that satisfy the platform constraints and safety
requirements of UAVs.

In multi-UAV multi-task scenarios, the number of UAVs is often less than the number of tasks.
Therefore, one UAV may be assigned more than one task. Furthermore, the constraints of UAV
platforms should be considered in order to obtain the trajectories from one position (entry, task
positions) to another (other task positions, exit). In a real scenario, the rationality and validity of the
task assignment depends on accurate path estimation (which should be part of trajectory planning),
which would lead to a heavy computation load when the numbers of UAVs and tasks become large.
Therefore, the task assignment problem in a multi-UAV multi-task scenario is much more difficult than
that in a single-UAV scenario. The multi-UAV multi-task mission planning (MUMTMP) problem is a
complicated combinatorial optimization problem.

In many studies, task assignment and path-planning are considered as two independent parts
of mission planning and reasonable results have been achieved. Many researchers have studied the
multi-agent task assignment problem. Kuncheva Li proposes a task assignment method based on the
Hungarian algorithm [5]. Maddula T et al. apply the Dijkstra algorithm for task assignment [6]. Zhao
Ming et al. propose the Differential Evolution algorithm to solve the task assignment problem for
multiple UAVs [7]. Centralized optimization methods could generate efficient solutions. However,
it takes too much time for computation and is sometimes not robust. To improve the computational
efficiency, distributed methods have been studied. The max-mum method has been widely used to
solve the task assignment problem for distributed multiple robots [8-10]. The auction-based algorithm
has also been widely used in task assignment, but the communication loads among team members are
usually too heavy. Moreover, in each round of auction, only one single task is solved, and it is easy for
the solution to fall into local optima when a UAV performs multiple tasks [11,12]. The bionics-based
optimization method could solve the task assignment of multiple UAVs quickly; however, it is mainly
used in scenarios where each UAV performs a single task [8].

Many algorithms have been proposed to solve the trajectory planning problem of multiple UAVs.
Bai Li et al. propose the centralized motion planning method based on the optimization algorithm,
which generates satisfying planning results within sufficient time [13]. Yoshiaki Kuwata et al. propose a
distributed receding horizon mixed integer linear programming method for multiple UAVs to generate
trajectories [14]. Gu Xueqiang et al. propose a distributed receding horizon planning method [15],
without considering the task assignment problem. Intelligent algorithms such as the genetic algorithm
have been proposed to solve the multi-UAYV trajectory planning problem [16,17]. However, the dynamic
models of UAVs are oversimplified in these studies. The artificial potential field-based method has
been proposed to deal with the multi-UAV trajectory planning problem [18], and could be used for
short term planning and may lead to vibration of flight trajectories. To sum up, the mathematical
programming method could generate satisfactory trajectories with consideration given to the maneuver
constraints of UAVs. However, it is computationally inefficient if the MUMTMP problem is not
reasonably decoupled. The intelligent optimization algorithm and the artificial potential field are
computationally efficient, but due to oversimplification of the UAV platform and environment model,
the acquired results may be inefficient.

Zhang Yu et al. propose a hierarchical planning mechanism to manage the single-UAV multi-task
problem [19]. In the first layer, the single UAV multi-task mission planning problem is modeled as
a traveling salesman problem (TSP) with consideration given to the dynamic constraints. When the
costs of each flight path are known, the task sequence is determined by solving the TSP. In addition,
then, the Gauss pseudospectral method (GPM) is used to create the final optimal flight trajectories.
Since the computation is mostly conducted off-line, this is a prior-planning method. To deal with
unexpected changes during the mission, they propose an online search strategy based on the offline
planning results. However, such an online search strategy could not guarantee being able to find
feasible solutions.
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This paper studies the online MUMTMP problem. The original MUMTMP problem is a complex
combinatorial optimization problem with heavy resolving load. The key issue of online MUMTMP is
to find sub-optimal solutions within a limited time [4]. An appropriate method should be applied to
efficiently acquire satisfactory estimations for the costs of trajectories.

Askari, A et al. propose constructing the flight path of the UAV by combining Dubins curves and
Bezier curves, which could find a sub-optimal solution [20]. The UAV models are simplified reasonably
by using the Dubins curve-based trajectory planning methods. Oren Gal et al. study the visible
trajectories planning with a Dubins UAV model in 3D urban environments [21]. Suresh Jeyaraman et
al. present formal techniques for the modeling and validation of a cooperative UAV team that uses the
Dubins set for path planning [22]. Compared with Bezier curves, B-spline curves are advantageous in
that the local adjustment would only affect a limited segment of the curves. Mohamed Elbanhawi et al.
propose planning the obstacle avoidance paths of vehicles by using the B-spline curve [23]. We propose
estimating the trajectory costs by using “CBC” curves, which mix the Dubins curve and the B-spline
curve. “CBC” curves consider both the dynamic constraints and the obstacles in the environment.
In addition, based on the features of the Dubins curve and the B-spline curve, the “CBC” curves could
generate optimal flight curves.

A hierarchical planning strategy is proposed in this paper. First, the CBC flight paths are proposed
to plan the flight paths, which could provide reasonable estimations for the costs of trajectories.
Accordingly, a weighted directed graph is obtained, and the task assignment problem is modeled as a
multi-base multi-traveling salesman problem (MBMTSP). Second, after the task assignment has been
accomplished, the Gaussian pseudospectral method (GPM) is used to compute the optimal trajectories.
As the efficiency of GPM relies on the initial solutions, the continuous-differential initial trajectories
are designed by using the “CBC” curves. The performance of this approach is demonstrated by
making a comparison with existing methods. Well-optimized solutions are obtained efficiently in
complex scenarios.

The main contributions of this paper are as follows:

First, we present a hierarchical mechanism, which decomposes the MUMTMP problem into two
relevant sub-problems.

Second, the Dubins curve and B-spline curve are mixed to generate flight paths of UAVs, with
respect to the dynamic constraints and obstacle avoidance requirements. This gives a reasonable
estimation of the cost of each flight trajectory.

Third, we design “CBC”-based continuous-differential initial trajectories to improve the
computational efficiency of trajectory planning.

The rest of this paper is organized as follows. The MUMTMP problem formulation is given in
Section 2. In Section 3, the hierarchical mission planning mechanism is proposed. In Section 4, the
trajectory planning method is discussed. The experimental results are presented in Section 5, followed
by the conclusion in Section 6.

2. MUMTMP Problem Formulation

2.1. Analysis of the UAV Dynamics Model

Assume there are Niy UAVs and Nt targets. As a dynamic motion system in three-dimensional
space, the trajectory planning of UAVs should be based on appropriate dynamic and kinematics models.
In the ENU coordinate-system o-xyz, the particle kinematics equation of the UAV Uj;, i € Ny is
defined as: .
x; = Vicosyicosi;
y; = Vicosy;siny; 1)
hi = ViSii’l]/i
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P; = (x;,y;,h;) is the spatial coordinate system. V; is the velocity, y; is the pitch angle, and ¢;

is the course angle. In the flight path axis system Of-x*y*z*, the particle dynamics equation of U; is

defined as:
V' _ Ljcosa;—D; — osiny:
emieon s
- (L+Tsina)cosy; g .
ViT v, V0% @
4}} _ (Li+T;sina;)siny;
i mVcosy;

m; is the quantity of U;; g is the gravity, a; is the angle of attack, y; is the roll angle, and T}, D;, L; are
thrust, drag and lift power of engine. The states of U, is X; = [P;, Vj, ¢;, yi]. The control variables are
u = (a;j, i, T;). As the thrust is controlled by throttle 6;, the control tuple is turned into u = (a;, u;, 6;)

During the flight, the platform stability and safety of UAVs must be ensured [19]. The feasible
speeds of UAVs should be in specific ranges at different altitudes. The dynamic constraints of UAVs
are expressed as the following inequality equations when the flight altitudes of UAVs are clear:

I >y > B, VI > V> Vi 3)
a;nux 2 al Z a:ﬂl}’l, y:’ﬂﬂx Z [—11 Z H?’ll}’l

The constraints on maneuverability are as follows:

- max . - min .min . max - min

- max . .
P22 22 Y 22

4)

To improve the computational efficiency, the heading maneuver constraints are simplified as the
minimum turning radius in horizontal and vertical plane in the path planning phase:

2 a2, Max 2
; v cosey! . v
horizontal __ i i Rvertzcal _ i (5)

min,i qgsm|@:ﬁﬂx| ’ min,i g(ng—cos(y"™))
max
i
as constants.

is the maximum roll Angle, /"~

where ¢ ;

is the maximum pitch Angle, n,g,n r are simplified

2.2. MUMTMP Problem Formulation

The MUMTMP problem includes two relevant sub-problems: task assignment and trajectory
optimization. Task assignment assigns tasks to UAVs in a specific sequence. Trajectory optimization
generates the optimal trajectory segments of each UAV with consideration given to the constraints.
The following constraints are considered to plan feasible trajectory of each UAV.

UAVs may encounter air threats or obstacles during the flight. To ensure the flight safety of UAVs,
it is necessary to keep them away from air threats or obstacle during flight. The threats and obstacle
regions are considered as non-fly zones. These zones are modeled as hemispherical regions. The flight
constraints are modeled as: '

IP; = P)ll > Ri¥i € Ny, Vj € No (6)

where P; is the position of U;, N, is the number of obstacles in the local region, PZ, is the position of the
jth obstacle, and ||| is 2-norm.
The starting and ending states of U; are constrained as:

X;(0) = X!, X;(e) = X! @)

Meanwhile, UAVs should maintain specific attitudes to execute tasks when they reach the task
positions. The attitude constraint of U; in the jth task position is defined as:

X" = X]T (8)
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The trajectory planning problem is complex, as (1), (2), (6), (7) and (8) are all nonlinear constraints.
Hence reasonable estimations of the costs of potential trajectories are required. When the trajectory
costs are obtained, the task assignment problem could be modeled as a multi-base multi-traveling
salesman problem (MBMTSP) by using graph theory [15]. The entry points, task points and exit points
are collectively referred to as nodes V;,i = 1---2Ny + Nr. The directed edge from one node to another
is denoted as e(V;, V;),i # j, and the cost of the directed edge is jo = (x(V;),x(V;)). The process of
MBMTSP is as follows: UAVs start from their entry nodes, arrive at assigned task nodes sequentially,
and leave the mission area from the exit nodes after all tasks are completed as shown in Figure 1.

The aim of task assignment is to minimize the cost of the MBMTSP. Suppose that the task execution
cost of U; is C;, and C is the total costs of all the UAVs.

Target 1

'~

Figure 1. Mission planning for multiple cooperative UAVs.

If the purpose of MBMTSP is only to minimize the overall cost, it could lead to workload unbalance
among UAVs, as some UAVs may be assigned too many tasks, while others are assigned few or even
no tasks. Considering the fairness of task assignment, the object of MBMTSP is defined as the weighted
summation of two sub-objects in Equation (9). One is the summation of the costs of all UAVs and the
other is the cost of the UAV with the maximum cost. The object function can effectively balance the
cost of the whole UAV team and the cost of every UAV team member.

Ny

F=A) Ci+(1-A Cj 9
L, i+ (1=A), max C; ©)

In most cases, the goal of MBMTSP is to finish the task as soon as possible, while the trajectory of
task execution and fuel consumption are the secondary objectives in the mission-centered scenario.
This paper defines the task execution time as the optimization object.

To find the optimal task assignment, the cost of each trajectory should be acquired. The estimated
trajectory should consider both the dynamic constraints of UAV and obstacle avoidance constraints
in the environment. As mentioned above, the costs of 2NNt —i—A%\JT edges in the graph should be
acquired. It would be impractical to plan fine trajectories for UAVs with consideration given to
time consumption [19]. To improve the computational efficiency, the primary task is to reduce time
consumption to obtain a reasonable cost estimation for every trajectory.
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After the MBMTSP is solved, the sequential waypoints set of U; is obtained, which is defined
as Si, = {XZ}, ey XZ,”" } The fine trajectories that connect each waypoint and successors should be

generated to guide each UAV. Assuming that the initial path of U; between each pair of waypoints
(X5",
UAV trajectory that minimizes the time of flight. The hybrid optimal control problem is thus as follows.
Given an initial condition Xf, and end condition Xé, find an input sequence u: [to, t f]—> U, that fulfills
the dynamics (2) and constraints (3) (4) (6), and minimizes the cost function J(u). That is, the following

hybrid optimal control problem:

XZ,") is given as c", the objective in optimization-based trajectory planning is to find a feasible

i
mgn](u) =Pty + fL(x(t),u(t),cO"flf")dt (10)

to

s.t: ) )
Xi(to) = Xzim,Xi(tf) = XZJH
v; € [U;nmlvznax],yi c b/;nmlylmux]

a; € [qTin,aZzux]/ u; € [y?zin,#Tax]

IP; — P)Jl, =R} > 0¥i € Ny, Vj € No

(11)

In Equation (10), ¢ is referred to as the Mayer term, denoting a final cost, and the integral term in
J is referred to as the Lagrange term, denoting a running cost. The final cost can be used to quantify
the time consumption. The running cost can represent costs accumulated during the flight. The UAV
trajectory planning problem is then modeled as the optimal control problem.

3. Mission Planning Problem Solving for Multiple Cooperative UAVs

This section discusses the problem of online MUMTMP mechanism based on the discussion in
Section 2.

The mechanism is shown in Figure 2. First, the flight paths are planned by the Dubins curve
and B-spline curve mixed method. We define this type of flight path as “CBC” curves. The objective
is to minimize the length of each segment of the flight. By properly designing the coefficients of
the “CBC” curves, it is possible to avoid obstacles in the environment and satisfy the platform
maneuver constraints.

Second, the tasks of the UAVs are assigned in the task assignment stage. As the estimation cost
of each flight path is determined, a weighted digraph is built. There are 2NNt —i—Alz\]T edges in the
digraph. The task assignment problem is modeled as a MBMTSP 16. The task assigning policy that
minimizes the overall cost is solved by using existing methods, such as the LKH solver.

After the task sequence of each UAV is determined, the specific waypoints of each UAV are clear.
The trajectory planning method will be used to generate the optimal trajectories of each UAV from
each forward waypoint to its successor. GPM is adopted as the optimal control method, for which the
objective is to minimize the trajectory cost. The constraints are the dynamics of UAVs and the obstacle
avoidance requirements. The “CBC” curves are used to create the initial trajectories to enhance the
computation efficiency.
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method ‘ Dubins curve ‘ ‘ B-spline curve
Flight
path | objective ‘ Minimize the length of flight path
planning
constraints ‘ Dynamic environment ‘ ‘ Platform maneuver constraints
\ Trajectories costs
Weighted
Initial Task graph
Trajectories assignment
| method MBMTSP |
v / Task assignment
methods ‘ Gauss pseudospectral method ‘
Trajectory .. L. . .
planning objective ‘ Minimize the trajectories costs
constraints ‘ Dynamic environment H UAYV dynamic model ‘

Figure 2. Online MUMTMP mechanism.

4. Flight Path Planning Using the Dubins Curve and B-Spline Mixed Method

According to the analysis of the directed graph in Figure 1, the flight segments include the directed
edges from the entry nodes to task nodes, from task nodes to exit nodes, and from one task node to
another. As stated above, the number of possible flight paths is AIZ\]T + 2NTNy. The control sequences
of UAVs along the path do not need to be acquired in the flight path planning stage. Assuming that the
speeds of UAVs are fixed, the optimal objective is transformed into finding the shortest flight path from
the start position to the end position. The dynamic constraints of each UAV Uj, such as the starting and
arriving states, and the maneuver constraints, should be considered to create the optimal feasible flight
path. Dubins curves are used to produce the flight paths of UAVs [24]. According to the Dubins curves
theory, the shortest path between two vectors consists of an arc and its tangent. The shape of the path
includes “CLC”, “CCC” and “CCL”. The “CLC” path is composed by two arcs and the tangent line
between the two arcs; the “CCL” path utilizes two arcs to satisfy the angle demand at first, and then
points to the target; the “CCC” path consists of three circular arcs. An arc is the shortest rotation curve
between two vectors with the least order in two- or three-dimensional space; meanwhile, a straight line
is the path with the shortest distance between two points. If the radius of the arc satisfies the constraint
of the minimum turning radius of one UAYV, the path joining the arc and the tangent line is the shortest
path with the least order [25]. In this paper, “CLC” curve planning is applied with state constraint and
maneuvering constraint of UAVs.

Given two waypoints (X", X'/") of UAV U, both X" and X" contain the constraints on ;, y;,
and y;. The adjustment requirements of y; and 1); should be taken into account.

First, the Dubins curve-based path planning with the constraint of ¢; is discussed. Suppose the
coordinate of X;,m is P and the coordinate of X;’]” is P?. In the horizontal O-XY coordinates, we focus
on three parameters P!" = (x,y!", ") and P! = (x7,y,"). As shown in Figure 3, four different
maneuver arcs could be chosen at P and PY, of which the centers are C], Cl1 and Cy, Cl2 respectively.
When these choices are selected at sz and P:?, four different Dubins curves could be formed. Without
loss of generality, the curve with centers Cl1 and C} is chosen as the example. The coordinates of Cl1

and C}, could be determined based on the states of Xﬁ;,m and X;',”. By virtue of the horizontal minimum
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turning radius R};%fzioml/ the common tangent line of these two circles could be solved. Thus, a “CLC”
path with consideration given to the constraints of U; at P! and P! could be figured out.

Figure 3. Path planning using the Dubins curve in a horizontal space.

Because of the differences between )" and )7, it is necessary to establish the vertical plane
coordinate system Dy, — H, which is composed by the vertical coordinate axis H and the projection of
PP in the x — y plane. Assuming P!" is the origin point of the local coordinate system, the motion
states of U; at P}" and P are (0,0,9") and (dy,, d,, 7). The length of a Dubins curve on the horizontal
plane is d, = h? —h?, as shown in Figure 4. In the vertical coordinate system Dy, — H, the projections
of y" and y!' are on the positive half axis of Dy, which means y; € [-11/2,7/2]. Since the value of
yi cannot exceed [-71/2,7/2], it is necessary to discuss the feasibility of the planning strategy on
the vertical plane. The angle adjustment considered path planning on the vertical plane is shown
in Figure 4.

Figure 4. Path planning using Dubins curve in a vertical space.

Additionally, flight safety should be considered. There may be fixed obstacles or threats in the
local environment, and hence the problem of obstacles avoidance must be considered. It is difficult
to acquire smooth conflict-free curves in virtue of Dubins curve. The B-spline is used to devise
collision-free flight paths.

A description of B-splines can be found in Wang G G [26]. The B-spline curve is controlled by a
set of knots. The knots are connected sequentially to form a knot vector, and the B-spline approximates
the continuous curve of the knot vector. The B-spline curve has a high-degree continuous geometry
character. For instance, the B-spline of order n has the degree n — 1. If the number of knots of the
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corresponding curve is n + 1, with coordinates dy(xo, Yo, z0), --- , dn(Xn, Yn, zx), and knot vector
U = {to, ..., tw}, the B-Spline curve can be written as Function (12):

pu) =Y diB(u) (12)
i=0

di(i = 0,1,...,n) represents the coordinates of the i-th knots. Bjx (i = 0,1,...,n) is the i-th
blending function of degree k. The blending function can be written by means of the Cox-de Boor

1 ift;<u<t
Bi,o(”):{ HH S S

recursion Formula 13:

0 otherwise (13)
_u—t tigki1—t
Bix(u) = 25 Bix(w) + 5oy Bivik(u)

The shape of the curve can be controlled by the position of the knots. The B-spline curve has
the advantage of continuous curvature, and the curvature at the nodes of adjacent curve segments is
also continuous, so it is characterized by local support. The shortest distance for the UAV to bypass
obstacles is ensured by the knots. If the local constraints of the trajectory are not satisfied, the trajectory
can be corrected by adjusting the corresponding knots without affecting other trajectory segments.
This excellent quality has led to the B-spline curve being widely used in the field of path planning [16].

As a B-spline curve is determined when the coordinates of knots are known, we propose an
obstacle avoidance path planning method by virtue of the B-spline curve.

The beginning point and the end point of the B-spline are P; and P, respectively, as shown in
Figures 1 and 4. Suppose that there are n knots with coordinates Pi(x]%, yi, zi), ey, PZ(xZ, ny ZZ)
between P; and P, which are defined as the control variables. We sample the B-spline properly.
Therefore, the sample point series Ps = {py,...,pn} is generated, where m is the number of sample
points. The optimal collision-free B-spline flight paths could be acquired by solving the nonlinear
programming problem. The objective function is:

m=1
min) " [lpi1,pill, (14)
i=1

s.t.
Ps = fSﬂmPle(Cb—spline(P;r e PZ))

15
10, pill, =R} 2 0,¥i € m—1,Yj € No (15

where fiupie is the sample method and Cp_gpjipe is the B-spline curve that is determined by {Pi, .. PZ}

This paper proposes mixing the B-spline and Dubins curves together to take advantage of their
characteristics. Regarding the obstacle avoidance requirements, the “CLC” curve is upgraded by
“CBC”, where the tangent line is replaced by the B-spline curve. The “CBC” path that is the mixture of
the Dubins curves and the B-spline curve is shown in Figure 5.

As shown in Figure 3, there are four different adjustment policies from X;Um to X;',”. We need to
choose the adjustment mode according to the specific conditions. Two factors should be considered.
First, the starting point P; and ending point P; of the middle B-spline curve segment should be kept
as far from the obstacles as possible. If P or P; are too close to obstacles in the environment, it may
lead to excessive bending at P; or P, which may mean that the arc and the B-spline cannot connect
together smoothly. Second, the shortest “CBC” curve should be chosen from the alternatives.
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Entry Point

Obstacle

Dubins Curves ~

) Target )
— -~ ——- B-spline Curve y PE— ‘ ‘\'

Figure 5. Path planning by combining the Dubins curve and the B-spline curve.

By using the “CBC” curve-based planning method, the costs for different UAVs to execute different
tasks in different sequences could be estimated. In a further step, the task assignment of multiple UAVs
is constructed as MUMBTSP, and the existing TSP solving method is applied to solving the problem.

5. Trajectory Planning by Using the Gauss Pseudospectral Method

5.1. Introduction to the Gauss Pseudospectral Method

After the sub-problem of task assignment is solved in the first layer, it is necessary to plan the
optimal trajectories which meet all the dynamic constraints. As stated in Section 2, the sub-problem of
trajectory planning is modeled as the optimal control problem. The optimal control algorithms can
be divided into two categories. The first is the indirect method, which is based on the Pontryagin
extremum principle. The control and state constraints are transformed into a two-point boundary
problem. However, the numerical methods can hardly solve the two-point boundary problems of
non-linear systems. The transversal conditions are difficult to determine by the analytic method;
moreover, costate variables have no physical meaning, and it is also difficult to estimate an initial
solution that can decide the convergence of the algorithm. The second is the direct method, which
transforms the continuous system into a discrete system. In addition, then the nonlinear programming
algorithms are applied to solving the problem. Compared with the indirect method, the direct method
has wider applications in trajectory optimization, because there is no need to solve the cross-section
conditions and the co-state with the direct method [27]. The shortcoming is that the solution is not
as accurate as the indirect method. Thus, when the direct method is applied, the optimality should
be verified generally. The Gaussian pseudospectral method (GPM) is one of the successful direct
methods. Benson proves that the KKT condition of the GPM is equal to the discrete form of the
optimal first-order necessary condition; thus, the solution of the GPM is concordant with the indirect
method. The main idea of the GPM is presented below. First, it discretizes the unknown time series
of state and control variables to a series of Gaussian points. The real state and control variables are
estimated by the Lagrange interpolation polynomials, which are constructed by the Guassian points.
Second, the dynamic differential equation is converted into a series of algebraic constraints. Finally,
the non-linear optimization problem is reduced to a group of parameters optimization problems with
algebraic constraints [28].

Specifically, the time interval [fo, ] of the optimal control problem should be converted into the
interval T €(-1, 1) through mapping:

T=2t/(tf—t0)—(tf—i-to)/(tf—to) (16)
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Then, the GPM performs global interpolation polynomial approximation for state variables
and control variables at a series of discrete points. Assume that there are N + 2 discrete points
{TQ, T1,° " ,TN, Tf}. Here, {11, T2, , TN} are N order Legendre-Gauss (LG) points. The values of the
N-order Legendre polynomials would be 0 at these points. The LG points are distributed in the time
interval f €(—1,1). There are two edge points 79 = -1, 7y = 1. Figure 6 illuminates the distributions of
LG points when different values of N are taken. The distribution of LG points within [-1, 1] is sparse
in the middle and dense at both ends.
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Lagrange interpolation polynomial is used as the base function to approximate state variables
and control variables:

N
x(1) & x(1) = Y Li(t)x(t) (17)
i=0

N
u(r) ~u(t) = ) Tx(t)u(ry) (18)

N T—Tj |
Li(t) = H —L,i=0,...,N (19)

Li(7) is similar to L;(7), except k = 1,...,N. The terminal state is not defined in the function (19).
The continuous optimal control problem is transformed into the discrete parameter optimization
problem with the GPM, which is a nonlinear programming problem, and the standard form is:

min | =
Jrin] =1 ()
ot gi(y)<0,j=12,....p (20)
hi(y) =0,i=1,2,...,q
where decision vector y includes state variable x(7;) (i = 0,...,N) and control variable u(t;)

(i = 0,...,N), and terminal moment tr. ] (y) is the objective function, which minimizes the
flight time of U; in our trajectory planning.
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5.2. Discussion of the Initial Solution of Trajectory Optimization

The computational efficiency of the GPM relies heavily on the initial solution. To date, there have
been few discussions regarding the performance of the initial solution of the GPM, because even if the
initial solution is not the optimal, it is usually a feasible solution, for example, when it is applied in
satellite mission planning [29,30]. A better initial solution can greatly improve the efficiency of the
subsequent optimization process [31]. Many non-convex constraints are considered in the trajectory
planning problem, such as the attitude constraints, platform maneuver constraints, obstacle avoidance
constraints, and so on. Improper initial solutions may lead to computational inefficiency or even failure
to generate feasible solutions.

The flight paths generated by the “CBC” curve consider state constraints, platform dynamic
constraints and the obstacle avoidance requirements. To improve the efficiency of the GPM, this paper
proposes generating the optimal trajectories by virtue of the “CBC” curves. The “CBC” curves are
expressed by discrete flight waypoints.

According to the requirements of the GPM, the initial solution should be a continuous function
of time t. Therefore, continuous initial trajectories should be generated in virtue of the discrete
flight waypoints.

This paper proposes fitting the “CBC” curves into polynomial functions. According to the principle
of Occam’s razor principle, lower-order functions are more extensible. The local environments for each
pair of waypoints are different. For example, UAVs may have to take sharp turns to avoid obstacles in
some flight segments. Considering the obvious differences among different flight segments, we divide
the initial paths into three types:

1. The angles of the starting arc and ending arc are all acute angles.

In this case, the UAV does not need to take drastic heading maneuvers in two “C” parts. The angle
difference between the start point and the end point is small. Thus, the order of the polynomial function
is set to be low.

2. There exists an obtuse angle in the starting arc or ending arc.

In such a condition, the UAV needs to make a large-scale maneuver to satisfy the constraints of
the starting and ending states. The order of polynomial fitting is set at an appropriate higher value.

3. There are obstacles to be avoided during the flight

To avoid obstacles, the trajectory of the UAV will be significantly bent. The order of the polynomial
is accordingly increased.

There are multiple state parameters of U;. The effects of different situations on particular
parameters are different. Therefore, the parameters should be fitted separately. The function fitting
process is shown in Figure 7, the constraints of the starting and ending states of U; and obstacles in the
environment are considered.

e  First, a set of default parameters are set for the trajectory with slight heading maneuvers in the
start arc and the end arc, and no obstacle between two waypoints.

e  Second, check whether there are any obtuse angles in the start arc and the end arc. Adjust the
order value of the polynomial function when an obtuse angle is found.

e  Third, the obstacle avoidance adjustments of the B-spline curve are checked, and the parameters
are calculated giving consideration to the constraints of obstacles in practical environments.

e  After the time-based continuous initial solutions are planned with the “CBC” curves, the initial
solutions are brought into the GPM-based trajectory planning layer in our hierarchical mechanism.
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Set the default
parameters

v

Check the number of obtuse
angles of the circular arcs of
Dubins curves are

v

Adjust the fitting
parameters

Check the number of
obstacles in the flight
path

v

Determine the fitting
parameters

End

Figure 7. The process of determining the fitting parameters.

6. Simulation Experiment

Our approach is implemented in Matlab R2014a with a 3.2 GHz Intel i7 eight-core processor with
16 GB memory and Windows 10 operating system. Tomlab optimization package integrated with the
GPM optimization algorithm is used as the trajectory planner. LKH is applied to the experiment to
solve the MBTSP [32]. The UAV model adopts the simulation model of the “Storm Shadow” UAV [33].
The maneuver constraints of the UAV are defined in Table 1:

Table 1. The maneuver constraints of the UAV.

Parameters Range Parameters Range
altitude (2000 m, 10,000 m) Pitch angle (-pi/3, pi/3)
velocity (180 ms~1, 300 ms™1) Course angle (0, 2pi)

Roll angle (-pi/3, pi/3) Attack angle (-pi/30, pi/15)

Tuning rate of the roll angle (-pi/20, pi/20) Tuning rate of the attack angle (-pi/30, pi/30)

According to the dynamics constraints of UAVs and Equation (5), R%%"”W is set to be 3000 m and
Reeticnl be 4000 m, '

min,i
6.1. Simulation Scenario

A scenario where multiple UAVs cooperatively process multiple tasks is designed. In this scenario,
there are three homogeneous UAVs and five targets to be detected. The entry and exit positions of
the three UAVs are shown in Table 2. The course angle increases clockwise and the course angle 0 is
defined as the point toward the positive direction of axis Y.
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Table 2. The constraints of UAVs with respect to the entry and exit positions.

UAV ID Entry Positions Exit Positions
(m, m, m, ms~1, Degree, Degree, Degree) (m, m, m, ms~1, Degree, Degree, Degree)
1 10,000, 16,000, 4000, 240, 30, 0, 0 73,000, 82,000, 4000, 240, 30, 0, 0
2 8000, 12,000, 4500, 240, 90, 0, 0 80,000, 75,000, 4000, 240, 30, 0, 0
3 6000, 5000, 4800, 240, 90, 0, 0 75,000, 80,000, 4000, 240, 30, 0, 0

To obtain satisfactory views of ground targets and guarantee the stability of UAV platforms,
proper detection positions and specific attitudes of UAVs should be set. Moreover, there are hemisphere
obstacles in the environment. The target detection constraints and obstacle information are shown as
Table 3. The information regarding obstacles includes their positions (longitude, latitude, altitude) and
the radiuses of hemisphere ranges.

Table 3. Target detection constraints and obstacle information.

Target Detection Constraints Obstacle Information
Index Number )
(m, m, m, ms™", Degree, Degree, Degree) (m, m, m, m)

1 43,999, 13,311, 4019, 250, 119, 0, 0 37,000, 33,000, 0, 5100
2 72,188, 22,320, 3983, 250, 6, 0, 0 55,000, 79,000, 0, 4600
3 61,032, 47,372, 4000, 250, 27.5, 0, 0 27,000, 12,000, 0, 4800
4 37,077, 75,353, 4013, 250, 32.2, 0,0 77,000, 50,000, 0, 4800
5 12,556, 50,657, 4008, 250, 18.4, 0, 0 -

6.2. Simulation Experiment for Three UAVs to Detect Five Targets

Figure 8 illuminates the maneuvering constrained flight paths of the UAVs, which are generated
by using the “CBC” planning method. The red and green rectangular points identify the entry and
exit points of UAVs respectively, and the pink hollow points are the sampling task detection positions.
The obstacles are expressed by the red hemisphere.

Multi-UAYV Dubins& B spline curve based initial flight paths

x/m x10

Figure 8. Initial flight paths in a scenario where three UAVs are detecting five targets.
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As shown in Figure 8, the flight paths are quite smooth. These flight paths satisfy the minimum
turn radius constraint and keep a safe distance from obstacles in the environment.

A weighted directed graph is constructed based on the estimated cost of flight paths. The MBMTSP
problem is solved by using the LKH model. The results of task assignment are shown in Table 4:

Table 4. Task assignment.

UAV ID Tasks Assignment

1 54
2 1,2
3 3

After the task assignment is accomplished, the precise optimal trajectories should be acquired to
guide UAVs. As stated above, the efficiency of trajectory planning is affected by the initial solutions.
The flight paths that are obtained by the CBC planning method are utilized to design the initial flight
trajectories. The “CBC” paths are expressed by sets of way points. However, the GPM method needs
the initial trajectories of UAVs to be continues functions of time ¢. The polynomial fitting method is
adopted to fit CBC paths. Since UAVs are simplified as point mass models when the “CBC” paths
are planned, the changes of the roll angles could not be determined by the CBC paths. Therefore, we
define that y;(t) = 0,i € Ny;.

The GPM method is used to compute the optimal trajectories of UAVs from initial trajectories.
Figure 9 shows the optimal trajectories of three UAVs in processing their assigned tasks.

Multi-UAYV cooperative flight trajectories

5000, Exit 1
L ‘JJ 7 Exit 2
9 "-\I‘
L
8 \ .Obstacle 2
| T 5
x 10* \'t %rgc_F_ :
6 - ‘.\ i ) \
_4 . Obstacle 4.1
5 \\ H \i
A i
y/m 4
_7'\‘,
3 | Enwry 1 |
2 Entry2 ;B .
1 J‘-‘ i : Obstacle 3 | i ;\— — 7—:"\_
| Entry 3 L \ : 9
e . ) i 8
) } \ 4 5 6
0 ! 2 3
0 1 x/m x10

Figure 9. Three-UAV collaborative task assignment and trajectory planning.

The green curves are the initial “CBC” trajectories and the blue curves are the optimal trajectories.
As shown in Figure 9, most optimal flight trajectories are similar to the green initial trajectories while
some others are not. In the middle parts of flight trajectories, UAVs fly at a lower attitude than the
CBC-based initial flight trajectories. In the trajectory planning phase, the influence of gravity on UAVs
are considered. During the flights, UAVs fly from a high altitude to a low altitude to convert the
potential energy into kinetic energy, thus UAVs can fly faster.
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Figure 10a illuminates the variations of course angles of the three UAVs during the flight. UAVs
would change their course angles before and after they execute the assigned tasks, as shown in the
black box. During the flight, the variations of the course angles are relatively smooth. Similarly, the
pitch angles of UAVs are set below 0 to reduce flight altitude when they leave the entry points and
target detection positions. They would climb up rapidly to approach to the planned detection positions
when they are close to the targets, as shown in Figure 10b. The speeds of UAVs at the entry and exit
positions are 240 m/s, and their speeds should be 250 m/s when they are detecting the assigned targets.
As the objective is to shorten the flight time period, UAVs would accelerate to the maximum feasible
speed to reduce the task processing time. To satisfy the target detection requirements, UAVs reduce
their speeds rapidly when they are close to the task regions, as shown in Figure 10c.

25 T ; r 0.4

Heading change phase during two tasks | ___ U2 03+

0.2}
0.1F

Heading angle/radius
Pitch angle/radius

'
<
=
=

06 50 100 150 200 250 300 350 200 450 00030 T00 150 200 250 300 350 400 350
Time/s Time/s
(a) (b)
300 e BRI 0.04
| V|
; | o '
290ff Ef l=bud 002
' ' 1R 2
- 280 ! : ; E
o | : £
a | . K L
= | - | ] =
g 270 N ‘ : 5
2 | FE I H e
& I | : <
260 A Il i z
plE | <.0.06
| |
250 L d |
|

20350100 150 200 230 300 330 400 450 030 100 150 200 250 300 350 400 450
Time/s Time/s

(c) (d)

Ml' ——u
I
|
I
i
|

Roll angle/radius

Throttle
f=1
wn

0.2}
0.1}

S |

—
|

I

|

I

|
Cl
I

|

I

|

|

I

|

I

|

I

|

I

I

|
o

0 30 100 150 200 250300 350 400 450 030 100 150 200 250 300 350 400 50
Time/s Time/s

(e) (0

n

Figure 10. The changes in state and control parameters during the flights. (a) The variations of course
angles; (b) The variations of the course angles; (c) The variations of speeds; (d) The variations of the
attack angles; (e) The variations of roll angles; (f) The variations of the throttle controls.
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The variations of the attack angles of UAVs are shown in Figure 10d. Their attack angles do
not exceed the limit, and the adjustment rate does not exceed the attack angle variation constraint.
It shows that UAVs would keep their attack angles constant in most time. The variations of roll angles
are shown in Figure 10e. UAVs make horizontal turns by banking. Therefore, their roll angle would
change rapidly when they get close to the task regions. Figure 10e illuminates that the variations of
roll angles can satisfy the maneuver constraints defined in Table 1. Figure 10f shows the variations of
throttle control during the flight. To gain the maximum thrust, the throttle control is set to be 1 when
UAVs are flying to the task regions. To satisfy the task processing constraints, the throttles are set to be
0 when they arrive in the task regions.

This shows that the proposed hierarchical optimization framework was able to solve the MUMTMP
effectively, on the basis of the results of the simulation experiment. The mission planning method was
able to generate the optimal trajectories, maintain the safety of UAVs and reduce the computation cost.

6.3. Computational Experience for Multiple UAV's in Random Instances

In this section, we demonstrate the stability and computational efficiency of the proposed approach
by making a comparison with existing methods. The following elements are taken into account in the
simulation:

(@) The number of UAVs ranges from 3 to 7. The distances between the entry positions of these UAVs
are in the range [3 km, 6 km].

(b) The number of tasks of the UAVs ranges within [10,34]. The distances between these tasks are in
the range [25 km, 45 km].

(c) There are obstacles in the environment. To demonstrate the capability of the “CBC” curves,
obstacles are placed between task points.

The proposed hierarchical mission planning method is used to deal with the mission planning
problem. The main innovation of our approach is the “CBC”-based path planning method.
To demonstrate the efficiency of the proposed method, we compare this method with other existing
methods. There are several methods to estimate the flight paths of UAVs, such as the straight line
from the initial positions to the goal positions (straight line as the initial solution, SI) [35], the B-spline
curves-based method (B-spline curves as the initial solution, BI) [36], and the vertical section-based
method (VI) [7]. Our proposed method is defined as CI. We demonstrate our proposed method from
three perspectives: the computational efficiency, the proportions of the distances of estimated flight
paths and the planned trajectories, and the probabilities of generating the optimal trajectories by
searching from different initial estimations.

The performances of these methods are depicted in six different scenarios as below: (a) The
angles of the starting arc and the ending arc are both acute angles and there are no obstacles in the
environment (both acute angles no obstacles, BANO); (b) There exists one obtuse angle in the starting
arc or the ending arc and there are no obstacles in the environment (one obtuse angle no obstacles,
OONO); (c) There exist two obtuse angles in the starting arc and the ending arc and there are no
obstacles in the environment (two obtuse angles no obstacles, TONO); (d) The angles of the starting arc
and the ending arc are both acute angles and there are obstacles in the environment (both acute angles
with obstacles, BAWO); (e) There exists one obtuse angle in the starting arc or the ending arc and there
are obstacles in the environment (one obtuse angle with obstacles, OOWO); (f) There exits two obtuse
angles in the starting arc and the ending arc and there are obstacles in the environment (two obtuse
angles with obstacles, TOWO).

We have collected 200 flight path estimation samples derived by each method on the six different
scenarios, respectively. The average computation time for each method of planning one segment of the
flight path is recorded in Table 5.
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Table 5. Average computational consumption.

GPM (with a “CBC”-Based

Methods SI BI VI C1 Initial Trajectory)

Average computation

. <1 ms 954 ms 200 ms 1023 ms 300,000 ms
consumption

The results show that our method would take more time to find the “CBC”-based flight paths.
However, the computation time is obviously less than the GMP method. This means that our method
satisfies the online planning requirement.

The estimations of the flight distances in different scenarios are compared with the trajectory
planning results. The proportions of the distances of the estimated flight paths and the distances of
the real flight trajectories are shown in Figure 11. This shows that the flight distances of the flight
paths estimated by using the CI method are almost similar to those of real trajectories. The other three
methods were not able to provide reliable estimation results in any of these six scenarios.
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Different scenarios

Figure 11. The performances of different initial solution search methods.

We demonstrate the performances of initial solution search methods with consideration given
to trajectory planning by using different initial flight trajectory estimations. In the simulation, the
GPM-based trajectory planning method searches for distinct initial solutions, and the probabilities of
acquiring the optimal solutions are recorded. As shown in Figure 12, our method outperforms other
methods. The initial solutions generated by the vertical section-based method is not smooth. In the
simulation, the data smoothing method is employed on the vertical section-based initial solutions.
However, this method is still inferior to the B-spline-based method.

The simulation results show that our method outperforms the existing methods in acquiring more
precise flight paths and supporting the trajectory planning.
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Figure 12. The probabilities of generating optimal solutions by using different initial solution
search methods.

7. Conclusions

In this paper, the problem of multi-task mission planning for multiple cooperative unmanned
aerial vehicles (UAVs) is studied. A hierarchical optimization framework is designed to solve the
problem. In the first stage, the flight paths are generated by virtue of the Dubins curve and B-spline
mixed path planning method. In the second stage, the task assignment problem is solved as a
multi-base traveling salesman problem. In the third stage, the Gaussian pseudospectral method (GPM)
is used to plan the precise trajectory and calculate control variables of UAVs. The initial feasible
trajectories planned in the first stage can enhance the computation efficiency. The proposed algorithm
is implemented and tested in simulation experiments in MATLAB. Simulation results demonstrate the
satisfactory performance of the proposed algorithm in dealing with the online mission.
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