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Abstract: In this paper, a car-following model considering the preceding vehicle type is proposed to
describe the longitudinal driving behavior closer to reality. Based on the naturalistic driving data
sampled in real traffic for more than half a year, the relation between ego vehicle velocity and relative
distance was analyzed by a multi-variable Gaussian Mixture model, from which it is found that the
driver following behavior is influenced by the type of leading vehicle. Then a Hidden Markov model
was designed to identify the vehicle type. This car-following model was trained and tested by using
the naturalistic driving data. It can identify the leading vehicle type, i.e., passenger car, bus, and truck,
and predict the ego vehicle velocity and relative distance based on a series of limited historical data
in real time. The experimental validation results show that the identification accuracy of vehicle
type under the static and dynamical conditions are 96.6% and 83.1%, respectively. Furthermore,
comparing the results with the well-known collision avoidance model and intelligent driver model
show that this new model is more accurate and can be used to design advanced driver assist systems
for better adaptability to traffic conditions.

Keywords: driving behavior; car-following; truncated Gaussian Mixture model; Hidden Markov
model; vehicle type identification; naturalistic driving study

1. Introduction

The topic of car-following behavior has become increasingly important in traffic engineering and
safety research [1–3]. Modeling the car-following behavior more effectively and accurately is of great
benefit to several application areas, such as simulation of microscopic traffic, development of advanced
driving assistance systems, etc. [4–6]. In the existing models, the multi-variables, e.g. relative distance,
relative velocity, ego vehicle velocity, leading vehicle velocity, and time headway are required overall
or partially to describe the car-following behavior. Moreover, the car-following behavior of a driver is
a non-linear system with a high dimension. Thus, a common following model with fixed parameters is
no longer suitable for new applications with more intelligence and user friendliness.

In the current researches, classical car-following models are designed to characterize the
interactional phenomena between the individual driver and the traffic, e.g., microscopic simulation [7,8].
These types of car-following models include the Gazis-Herman-Rothery (GHR) model, safety distance
or collision avoidance (CA) model, linear models, action point models (AP), and Fuzzy logic-based
models [1,9]. They can provide a real-time calculation for simulation because of the simplicity.
Other kinds of car-following models aim to describe the driver behavior with the same reaction as a real
human driver [10,11]. Thus, some empirical models used for simulation were modified to describe the
driver behavior [12]. For example, Chen et al. conducted research on headway/spacing between two
consecutive vehicles by considering it as a certain stochastic process to achieve better accuracy than
CA [13]. Yang et al. modified Gipps’ model by formulating the car-following distance as a function of
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both the distance and the relative velocity between the leading and ego vehicle [14]. After calibration,
the field data evaluation results show that this model has a higher accuracy than the original Gipps’
model. The Intelligent Driver Model (IDM) is one of the most widely used models, which attempts to
eliminate the difference between the real situation and the preferred [15,16].

Recently, with the development of the intelligent learning algorithms based on big data, it is
possible to construct a more accurate car-following model based on a great deal of naturalistic
driving data [17–24]. Ye et al. found that time headway (THW) is different when a driver follows
different vehicles [25]. In other words, the type of leading vehicle has an impact on the driving
behavior [4]. However, the aforementioned models ignore this important factor, i.e., leading vehicle
type. Thus, Aghabayk et al. established a car-following model that is applicable to a different but fixed
vehicle type, i.e., passenger car and heavy vehicle [26]. This model was developed on the basis of
the local linear model tree approach with Next Generation Simulation (NGSIM) data obtained from
a U.S. freeway under congested traffic conditions. Although various researches on the analysis of
car-following behavior have been conducted, little effort has been made to study the influence of
leading vehicle type on the car-following process especially in real dynamical driving conditions.

To establish a vehicle type-dependent car-following model, a combined Gaussian mixture model
(GMM) and a hidden Markov model (HMM) are used to analyze the naturalistic driving data to find a
car-following model considering the leading vehicle type. The GMM is used to fit driver’s following
behavior by using the expectation maximization algorithm. By this analysis, a joint probability density
function describing the relation between ego velocity and relative distance is found. Combining the
ego vehicle velocity and relative distance together to form the observation state and considering the
leading vehicle type as a hidden one, we designed an identify algorithm, which can estimate the
leading vehicle type by using HMM. Furthermore, to predict a driver’s following behavior with limited
historical data, an algorithm with weighted expectation is proposed to realize its real time application.
This model has the following advantages:

(1) It has the ability to identify the leading vehicle type in real-time because the HMM hidden state
can be predicted with limited historical data;

(2) The prediction accuracy is ensured by training the model with a large number of naturalistic
driving data;

(3) Its responsiveness to dynamical conditions is achieved by estimating the optimum state of a
car-following model based on historical data.

The rest of the paper is organized as follows: Section 2 introduces the data set used in this study;
the idea and structure of this new car-following model are described in Section 3; how to obtain the
model parameters based on the naturalistic data are explained in Section 4; the effectiveness of this
model is validated in Section 5; Sections 6 and 7 give out some applications and further discussions
about this study; and Section 8 concludes the paper.

2. Car-Following Data Collection and Preprocessing

The naturalistic driving data is collected from a program of China Automotive Engineering
Research Institute. In this database, 16 vehicles equipped with data acquisition systems were driven
in Beijing, Shanghai, Tianjin, Chongqing, and Chengdu. As shown in Figure 1, these vehicles are
equipped with a front-view camera, two side-view cameras and a front millimeter-wave (MMW) radar
to measure the environment information including relative velocity, relative distance and leading
vehicle type. The vision signal type of camera is LVDS, the resolution of image is 1280× 720 pixels,
and the field angle is H52 and V43. The MMW radar type is ARS 408-21, produced by Continental,
and has a detection range of 0–250 m. A Nvidia Jetson TX2 acts as the on-board computer to record
and process the signals. The state of ego vehicle is acquired from the vehicle controller area network
including the vehicle velocity, steering wheel angle, brake pressure, engine speed, acceleration, and gear
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position. The data acquisition vehicles have been driven for more than 50,000 km including both
highways and city roads.Electronics 2019, 8, x FOR PEER REVIEW  3 of 16 
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the proper data, firstly, we define the car-following scenario, which should satisfy the following five 
criteria [5,27,28]: 

a Velocity range: Ego vehicle velocity, 𝑣 , should be more than 20 km/h, because the 
condition that the speed is less than 20 km/h contains a lot of stop-and-go scenarios. 

b Distance range: Relative distance, 𝑦  , between the rear margin of the leading vehicle and 
the front margin of the ego vehicle should be less than 120 m. If this distance is greater than 
120 m, the preceding vehicle has almost no effect on ego vehicle and this scenario is similar 
to the free-driving case. 

c Restrictions on leading vehicle: The leading vehicle should drive on the same lane with the 
ego vehicle. 

d Road curvature: The radius of the road should be larger than 150 m. 
e Time range: The ego vehicle should follow the leading vehicle consistently for more than 

10 s. If the time is less than 10 s, there easily exists on-stable car-following scenarios, such 
as cut-in, cut-out and lane change. 

After being filtered by the above five criteria, the extracted dataset of the stable car-following 
scenario is further divided into three categories according to the leading vehicle type:  

Car–car (C-C): a passenger car following a passenger car; 
Car–bus (C-B): a passenger car following a bus; 
Car–truck(C-T): a passenger car following a truck. 
The statistical information of this dataset of car-following scenarios with different leading 

vehicle types is listed in Table 1. 

Table 1. Car-following dataset information. 

Statistical Parameter C-C C-B C-T 
N 6965 723 305 

Tc (s) 242,620 20,003 6655 
Tac (s) 34.8 27.7 21.8 

N: number of car-following cases. Tc: total car-following time. Tac: average car-following time. 

Figure 1. Data acquisition equipment mounted on the vehicle. Figure (a) shows the millimeter wave
radar. Figures (b–d) show the cameras.

In this program, there is no restriction on driving routes. The data acquiring system is activated
about 30 s after the engine starts and stops about 30 s before the engine stops. The sampling rate
of the naturalistic driving data is 13 Hz. To guarantee that the drivers are not disturbed by the
acquisition system, the equipped system is hidden and has no interaction with the driver. The driving
behaviors, such as car-following, cut-in, and lane changing, are all recorded in the dataset. To choose
the proper data, firstly, we define the car-following scenario, which should satisfy the following five
criteria [5,27,28]:

a Velocity range: Ego vehicle velocity, vego, should be more than 20 km/h, because the condition
that the speed is less than 20 km/h contains a lot of stop-and-go scenarios.

b Distance range: Relative distance, yr, between the rear margin of the leading vehicle and the front
margin of the ego vehicle should be less than 120 m. If this distance is greater than 120 m, the preceding
vehicle has almost no effect on ego vehicle and this scenario is similar to the free-driving case.

c Restrictions on leading vehicle: The leading vehicle should drive on the same lane with the
ego vehicle.

d Road curvature: The radius of the road should be larger than 150 m.
e Time range: The ego vehicle should follow the leading vehicle consistently for more than 10 s.

If the time is less than 10 s, there easily exists on-stable car-following scenarios, such as cut-in,
cut-out and lane change.

After being filtered by the above five criteria, the extracted dataset of the stable car-following
scenario is further divided into three categories according to the leading vehicle type:

Car–car (C-C): a passenger car following a passenger car;
Car–bus (C-B): a passenger car following a bus;
Car–truck(C-T): a passenger car following a truck.

The statistical information of this dataset of car-following scenarios with different leading vehicle
types is listed in Table 1.
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Table 1. Car-following dataset information.

Statistical Parameter C-C C-B C-T

N 6965 723 305
Tc (s) 242,620 20,003 6655

Tac (s) 34.8 27.7 21.8

N: number of car-following cases. Tc: total car-following time. Tac: average car-following time.

3. Car-Following Model Design

Since a driver uses different following behaviors for different types of leading vehicles [25,29],
a new model which can describe this feature is necessary. In this study, GMM is selected for modeling
the following behavior of drivers because of the following two advantages:

(a) It has already been demonstrated that GMM is effective in modeling the stochastic features of
driver behavior [30,31];

(b) It is a statistical model and the fundamental mechanism or detail of the driver response under
internal exciting is not necessary [32].

Furthermore, under real traffic conditions, the leading vehicle may change frequently, so the model
should have the ability to identify the leading vehicle type dynamically in real time. Unfortunately,
the leading vehicle type can hardly be described by an explicit index with observed signals as its
variables, because the interaction mechanism among the driver and environments is still not clear
enough now. To overcome this difficulty, HMM is selected because it can describe the high dimension
non-linear system and predict hidden states from a series of limited historical data [33]. And so in
this study, GMM is used to establish the relation between the relative distance and ego velocity when
following different vehicles. Then based on GMM, a HMM is designed to predict the leading vehicle
type with historical data to guarantee the real time performance.

3.1. Car-following Behavior Fitted with Gaussian Mixture Model

In the GMM, the relative distance, yr, and the ego vehicle velocity, vego, are selected as the exciting
of the driver car-following behavior model [26]:

x =
[
vego, yr

]
(1)

where x is the input. According to the dataset of car-following described by Table 1, three independent
GMMs are needed:

fi(xi; Θi) =
K∑

k=1

ωi,k fi,k
(
xi;θi,k

)
, i ∈ {1, 2, 3} (2)

where i is the type of leading vehicle and its value, 1, 2, 3, denotes passenger car, bus, and truck,
respectively. The parameter Θi = [K,ωi,θi], where K is the component of GMM, ωi,k is the weight
of the k-th component of type i and satisfying

∑K
k=1 ωi,k = 1, θi,k =

[
µi,k, Σi,k

]
is the parameter of

component k of type i; µi,k and Σi,k are the mean matrix and covariance matrix of the k-th component of
type i respectivly.

To identify the parameter values in (2), a revised Expectation Maximum (EM) algorithm is
designed to solve the equation because the data used to train the parameters is truncated. It contains
two steps called E step and M step respectively [34]:

E step: It is used to compute the posterior probability that x belongs to the k-th component.
Since the posterior probability remains unchanged with the truncated data, it is given by

pn+1
k =

πk fk(xi)∑
k πk fk(xi)

(3)
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where pn+1
k is the probability of the condition that data xi belongs to the k-th component.

M step: This step is used to compute the maximum Θ. The Lagrange multiplier is used and the
original analytic equations are modified as follows to adapt to the truncated dataset:

ωn+1
k = 1

N

N∑
n=1

pn+1
k ,µn+1

k =
∑

n pn+1
k xn+1∑
n pn+1

k
−mk,∑n+1

k =
∑

n pn+1
k (x−µn+1

k )(x−µn+1
k )

T∑
n pn+1

k
+ Hk

(4)

The parameters, mk and Hk, in (4) are calculated by

mk = M1(0, Σk; [s− µk, t− µk]), Hk = Σk −M2(0, Σk; [s− µk, t− µk]) (5)

where M1(µ, Σ; [a, b]) and M2(µ, Σ; [a, b]) are the moment and the second moment of Gaussian truncated
range in [a, b], respectively [34], s = min

{
µ1,µ2,µ3 . . . µk

}
and t = max

{
µ1,µ2,µ3 . . . µk

}
.

The termination condition of the EM algorithm is set to be

L
(
Θn+1

i

)
− L

(
Θn

i

)
< ε (6)

where L
(
Θn+1

i

)
= log

(
f
(
xi; Θn+1

i

))
. The last parameter K of GMM is determined by the Bayesian

information criterion (BIC) because of its positive correlation with the computation burden [27].
The parameters are trained with the car-following dataset by using (3)–(5) interactively until the
termination condition (6) is established.

3.2. Identification of Leading Vehicle Type with Hidden Markov Model

As shown in Figure 2, we define the hidden state, S, as the leading vehicle type, that is,
S = {S1, . . . St, . . .}, t = 1, 2, . . . , St ∈ {1, 2, 3}. The value of hidden state, 1, 2, 3, represents passenger car,
bus, and truck, respectively. The observation variable is O = {O1, . . . , Ot, . . .}, where Ot =

{
vego,t, yr,t

}
.

Then the transfer probability and emission probability of the Markov process are defined as.

p(St|S1, . . . , St−1, O1, . . . , Ot−1) = p(St|St−1), p(Ot|S1, . . . , St, O1, . . . , Ot−1) = p(Ot|St). (7)
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Furthermore, the transfer matrix of HMM, A =
[
Ai, j

]
∈ R3×3, can be calculated by using the

naturalistic driving dataset as

Ai, j = p(St = j, St−1 = i) =
Ti, j

Σ3
j=1Ti, j

, Ti, j = Σ
(
Mi →M j

)
(8)

where Mi ∈ {1, 2, 3} and the value indicates passenger car, bus, and truck respectively; Mi →M j
represents a mode transition from Mi to M j; and Ti, j is the total number of transitions. Since Ot is
continuous, the emission probability equals to f (xi; Θi):

B(Ot) =
K∑

k=1

ωkBk(Ot) =
K∑

k=1

ωk

(2π)
r
2 |Σk|

1
2

exp{−
1
2
(Ot − µk)Σ

−1
k (Ot − µk)

T
} (9)
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where B(Ot) is the emission probability and r is the dimension of observation data. The initial
probability, π, of the hidden state is defined as

π = [p(St = 1)p(St = 2)p(St = 3)], p(St = i) =
Fi∑3

i=1 Fi
, (10)

where Fi is the number of car-following conditions whose leading vehicle type is i. Then the best state
sequence, S∗1, . . . , S∗t , to fit the historical data can be calculated by the Viterbi algorithm [35]:

S∗t = argmaxS∗∈S(Vt,S∗), (11)

Vt,S∗ = maxS∗∈S
(
p
(
Ot

∣∣∣S∗t−1

)
p
(
S∗t−1

∣∣∣S∗)Vt−1,S∗t−1

)
= maxS∗∈S

(
BS∗t−1

(Ot)AS∗,S∗t−1
Vt−1,S∗t−1

)
(12)

The initial state used to solve the above optimal problem iteratively is set to be

V1,S∗ = p(O1|S1)π(S1). (13)

Then with a series of historical data, the optimal estimation of leading vehicle type can be obtained
by using (7)–(13) [29]. When there is a new sample of car-following data, the observation state,
i.e., the ego vehicle speed and relative distance, is calculated by the one-step prediction as

Ôt+1 =
1
J

2m∑
j=0

K∑
k=1

Ak(St+1, St)ωkBk
(
Ot− j

)
Ot− j =

1
J

K∑
k=1

Ak(St+1, St)Ek(B(O)) (14)

where O =
{
Ot−J+1, . . .Ot

}
is the historical data, Ek[B(O)] is the expectation of vehicle type k calculated

by the data sequence O, and J is the odd integer [36], which is a design parameter discussed in
Section 4.2.

In summary, the model parameters, B, A, and π are calculated according to (2), (8), and (10) using
the car-following dataset, respectively. When using this model, the current leading vehicle type is
identified by (11), using (11) and (14) interactively to predict.

4. Model Training

In this section, the car-following dataset set up in Section 2 is used to train the three GMMs to
identify three types of leading vehicles respectively. The dataset is divided into a training and testing
set with the ratio of 8:2.

4.1. Training of GMM

The component of GMM, K is given by [37]

BIC(K) = K ln(nc) − 2 ln(L(Θ)) (15)

where nc is the number of training data and BIC is an increasing function of the error variance and
K. Considering the complexity of the model and the computation burden, a model prefers a lower
BIC [38]. Thus, K is optimized by

Kmin = argminK(BIC(K)) (16)

Let K increase from 1 to 20 step by step and then fit the components of GMM with the termination
condition ε = 10−8. The results of BIC are shown in Figure 3.
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Normally, BIC decreases at the beginning when the value of the Gaussian component is small
and will go up until reaching a big constant with the increasing value of the Gaussian component [38].
In Figure 3a, BIC decreases at the beginning and then almost holds after K > 5. In Figure 3b,c,
BIC decreases at the beginning and then goes up with the increasing K. The trend of BIC in Figure 3a–c
is different, which is caused by the different amounts of training data. Normally, a larger amount of
training data leads to a larger value of BIC. From (16), the value of K should be selected, ensuring the
minimum value of BIC, and so the value of K for passenger car, bus, and truck is set to 10, 5, and 8,
respectively. With the selected K, the raw data and trained GMM are shown in Figure 4.
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From Figure 4, it is found that three raw data histograms have the same tendency with the fitted
GMM surfaces. These distributions are mainly concentrated at the lower relative distance and lower
ego velocity. The reason is that the raw data contains more than 75% city road data, about 20% highway
data and the rest is country road or others. Furthermore, the distribution of data of different types of
leading vehicle is also different. This implies that the driver-following behavior is influenced by the
leading vehicle type, which should be considered when setting up the car-following model.
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4.2. Prediction of Vehicle Type

With the trained GMMs, in this section, how to obtain the parameters in HMM are discussed.
Firstly, the design parameter, J, is to indicate whether global or local features should be focused on [39].
In (14), J is odd when m is an integer. Considering the requirement of dynamic performance, a small
m from 1 to 5 is considered and the corresponding J = [3, 5, 7, 9, 11]. With the testing data, the root
mean squared error (RMSE) and root mean squared percentage error (RMSPE) are used to evaluate the
model accuracy [40]:

RMSE =

√
1
N

∑
i

(ŷi − yi)
2, RMSPE =

√√
1
N

∑
i

(
ŷi − yi

yi + δ

)2

(17)

where ŷi and yi are the predicted value and the actual driving data respectively, δ is a small positive
constant used to prevent zero divisor, and N is the size of data. The model accuracy under different
values of J is shown in Table 2. From Table 2, it is found that the minimum RMSE and RMSPE are both
at J = 3.

Table 2. Model accuracy with different value of J.

J Ego Velocity Relative Distance

RMSE (km/h) RMSPE RMSE (m) RMSPE

3 0.1907 0.0097 0.0750 0.0119
5 0.2627 0.0133 0.1064 0.0169
7 0.3368 0.0170 0.1352 0.0213
9 0.4110 0.0206 0.1616 0.0254
11 0.4813 0.0241 0.1857 0.0291

5. Model Testing

5.1. Identification Accuracy of Leading Vehicle Type

A statistical index is defined to evaluate the accuracy of the presented HMM for identification of a
leading vehicle type [5]:

η =
TT + FF

TT + TF + FT + FF
(18)

where TT is the number of conditions that HMM identifies the correct vehicle type, TF is the number
of times that HMM takes the real type as others, FT is the number of times that HMM takes other
types as the real one, and FF is the number of times that HMM identifies the non-specified type in the
dataset correctly. Firstly, the static condition, under which the leading vehicle remains unchanged but
its type is unknown, is selected to test the HMM identification ability. The average accuracy is shown
in Table 3.

Table 3. Accuracy of vehicle type identification.

Identification Accuracy C-C C-B C-T Average

η 98.7% 92.8% 98.2% 96.6%

Under the static condition, HMM shows a high level of performance of identification accuracy,
which is 96.6%. When the leading vehicle type holds, the driver receives the same stimulus signal,
thus the inner character of observation data, i.e., the relative distance and ego velocity, stay the same.
In addition, the three truncated Gaussian mixture distributions have significant differences with each
other as shown in Figure 4. That is why the leading vehicle type can be identified with a high level
of accuracy.
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5.2. Dynamical Condition

When driving on the road, the leading vehicle can hardly always be the same, and so dynamical
test conditions are used to further validate the effectiveness of the proposed car-following model.
Under this condition, the initial leading vehicle type, the time when the leading vehicle changes,
and its duration are all unknown. Such dynamical conditions are more critical than the stable ones.
The statistical accuracy is reported in Table 4.

Table 4. Identification accuracy under dynamical conditions.

Identification Accuracy C-C C-B C-T Average

η 87.6% 81.2% 80.4% 83.1%

From Table 4, it is found that the identification accuracy of the passenger car is higher than
others. The reason is that the training data of a passenger car is much larger. Thus, the corresponding
component in GMM has a stronger ability and accuracy. The identification accuracy of the bus and
truck is almost the same, because the driver has almost the same reaction when the leading vehicle is a
truck or bus. Furthermore, compared with the results in Table 3, the accuracy decreases obviously
because the change of leading vehicle type causes a time delay to the model. During the identification
period, the same reaction may happen to different leading vehicles. Thus, the observation data will hide
the missed information, which leads to misidentification. To show the details, a typical identification
process is shown in Figure 5.

Figure 5b–e shows a time delay when the leading vehicle changes to another. The driver model
needs a period of time to adapt to the new condition. Figure 5c,f shows an error identification, where the
truck is misidentified as a passenger car and lasts about 10 s (Figure 5c). This is because the training
data of C-T is far less than C-C, which cannot cover all possible driving conditions. In Figure 5f, the bus
is misidentified as a passenger car or a truck. Besides the data size, another reason is that the truck and
bus have similar shape features, which generates similar stimuli to the driver [4].
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6. Application and Analysis

6.1. Driver Behavior Mimic Application

In order to evaluate the designed model, it has been applied to mimic the driver’s behavior.
In this application, a 280 s naturalistic driving period is used and the results are shown in Figure 6.
The results show that the predicted data is smoother than the real one and the model can predict the
driver behavior finely with RMSE of velocity, and the relative distance is 0.21 km/h and 0.09 m.
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6.2. Comparative Analysis

In this section, we compare the proposed model with other existing ones, namely the CA model
and IDM. The CA model characterizes the safe distance, which is given by

∆Y(t− T) = αv2
n−1(t− T) + βlv2

n(t) + βvn(t) + b0 (19)

where, ∆Y is the relative distance, vn−1 is the velocity of the ego vehicle and vn is the leading vehicle
velocity. The parameters are set as T = 0.5, α = −0.00028, β = 0.585, βl = 0.00028, and b0 = 4.1 [1].
IDM can describe the desired following distance, which is given by

∆Y(v, ∆v) = Y0 + vt +
v∆v

2
√

ab
(20)
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where, v is the ego vehicle velocity and ∆v is the relative velocity. The parameters in (20) are set as
Y0 = 0.64, v0 = 34, T = 1.7, a = 2, and b = 20.14 [15,16,24]. The RMSE and RMSPE of relative distance
are given in Table 5.

Table 5. Accuracy comparison between existing models and the proposed model.

Leading Vehicle Type Model
Relative Distance

RMSE (m) RMSPE

Passenger car
CA 1.3481 0.2360

IDM 0.4192 0.0662
Proposed 0.0750 0.0119

Bus
CA 2.3510 0.1524

IDM 0.4986 0.1327
Proposed 0.0820 0.0054

Truck
CA 14.5195 0.5791

IDM 4.4358 0.1765
Proposed 0.2281 0.0091

In Table 5, the accuracy of the proposed model is the best. The other two models have a
comparatively larger RMSE and RMSPE. The reason is that the CA model is designed to keep a
safer distance [1] and IDM is designed to eliminate the difference between the real situation and the
preferred [15,16]. Therefore, they ignore the influence of the type of leading vehicle on the driver
car-following behavior. Thus, they are not an appropriate choice for such application conditions.
The comparison results indicate that the proposed model is suitable for mimicking the human driver
behavior under such dynamic conditions. Some typical conditions are selected to show the details in
Figures 7–9.
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Figure 7. Results when following a passenger car.
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Figure 8. Results when following a bus.

The relative distance error of the proposed model is much smaller than others in Figures 7–9.
The output of IDM is closer to the real relative distance in Figures 7 and 8. The CA model has the
largest error of relative distance. In Figure 9, both CA and IDM output a smaller relative distance
than the driver. The reason is that CA and IDM ignore the influence of leading vehicle type, which is
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mainly the outline of the leading vehicle [4]. A small-sized vehicle only blocks out a small portion
of the traffic environment ahead. Comparatively, a larger vehicle easily causes critical accidents.
Therefore, when following a passenger car, the human driver is more aggressive and keeps with the
vehicle closer. On the contrary, if the leading vehicle is a bus or a truck, the proposed model keeps a
larger relative distance with the preceding vehicle than CA and IDM (Figure 9).
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Figure 9. Results when following a truck.

7. Discussion and Future Work

From the above-mentioned analysis, it is found that the proposed model can mimic human
driver driving behavior, and the proposed model has a high level of accuracy of leading vehicle type
identification. In this paper, we mainly focused on whether the different leading vehicle types have
an influence on car-following behavior. However, individuals’ driving style were not considered.
Potential directions in future work are discussed as follows.

7.1. Influence of Data Components

Driving on the city road and highway road are different driving styles. In this work, the model
does not divide naturalistic driving data into city road, highway, and others. In extraction data,
raw data contains more than 75% city road data, about 20% highway data, and the rest of the data
is country road or others. In this data, the vehicle also keeps a lower velocity and a shorter relative
distance. Thus, the proposed model prefers to fit a city road or low velocity driving condition. For the
reason given above, the data components need to be divided into suitable parts in future research work.

7.2. Influence of Individual Driving Style

Car-following behavior is influenced by the driver’s personal characteristics. First, driving years
of a driver can directly affect his or her driving habits. For example, a driver with more experience will
demonstrate a more confident driving style. A driving condition which is easy for a seasoned driver,
may be perceived to be quite difficult by a novice driver. Such a performance difference will make an
influence on the model. Therefore, a historical data-based model method may solve the problem in
future work.

7.3. Applications in Future Works

This paper proposed a novel car-following model which considered the leading vehicle type.
This model can apply to a human-friendly driver assist system. Each leading vehicle type corresponds
to a different car-following strategy. For example, this model can be applied to a human-friendly
Autonomous Emergency Braking (AEB) system, thus the driver will be warned at different velocities
and different relative distances with the different leading vehicle types. In other words, with the same
velocity and relative distance, the AEB system will warn the driver earlier if the leading vehicle is a
truck compared to that of a bus or car. The proposed model can also be applied to Adaptive Cruise
Control (ACC) system. In the car-following condition with different leading vehicle types, the model
can calculate the relative distance and velocity of the leading vehicle to mimic human driver behavior
to control the vehicle.
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8. Conclusions

This paper has developed a GMM-HMM model for learning, identify leading vehicle type,
and predicting ego vehicle velocity and relative distance in a car-following scenario. The proposed
model is formulated from sample data. In the proposed model, ego vehicle velocity and relative distance
are used. The relation between ego vehicle velocity and relative distance are fitted by a truncated
GMM. The leading vehicle type is identified in real-time by a hidden Markov model. The identified
vehicle types are passenger car, bus, and truck. Ego vehicle next state is predicted with an expectation
of a series of historical driving data. The experiment’s results show that the identification accuracy
of a single leading vehicle type and changing leading vehicle type are 96.6% and 83.1% on average,
respectively. Compared to the proposed model with the existing CA model and IDM, the results show
that the proposed model can mimic the driver behavior better than the CA model and IDM. The model
is more suitable for a real car-following condition with a changing leading vehicle type.

In summary, the model has two advantages. (1) It can identify the leading vehicle type in real-time
with a high level of accuracy; (2) the model has a strong ability to mimic driver car-following behavior
in nature driving conditions.
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