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Abstract: This paper presents an iterative algorithm for the synthesis of the three-dimensional
(3D) radiation pattern generated by an antenna array of arbitrary geometry. The algorithm is
conceived to operate in fifth-generation (5G) millimeter-wave scenarios, thus enabling the support of
multi-user mobile streaming and massive peer-to-peer communications, which require the possibility
to synthesize 3D patterns with wide null regions and multiple main beams. Moreover, the proposed
solution adopts a phase-only control approach to reduce the complexity of the feeding network
and is characterized by a low computational cost, thanks to the closed-form expressions derived
to estimate the phase of each element at the generic iteration. These expressions are obtained from
the minimization of a weighted cost function that includes all the necessary constraints. To finally
check its versatility in a 5G environment, the developed method is validated by numerical examples
involving planar and conformal arrays, considering desired patterns with different numbers of main
beams and nulls.

Keywords: 3D synthesis; conformal antenna arrays; phase-only control; multi-beam pattern;
null constraints

1. Introduction

Multi-antenna technology has had a very long history since the first antenna array was
developed more than one century ago [1]. Along the years, arrays have been exploited for
different purposes, including electronic beamsteering, interference suppression, direction of arrival
estimation, gain/directivity increase, transmission/reception diversity, and spatial multiplexing [2–8].
This wide set of applications makes antenna arrays one of the key components of forthcoming
communication systems, from nanosatellite swarms to 5G cellular networks, with the aim of allowing
the actual realization of the Internet of Things (IoT) and Internet of Everything (IoE) paradigms. One
of the main reasons for the employment of multiple antennas for last generation communications is
the choice, performed by network designers, of exploiting the millimeter-wave (mmWave) domain,
which provides a large amount of unused spectrum. This choice enables the adoption of radiators of
reduced size that, in turn, allows the installation of high-gain multi-antenna systems on the network
devices in order to compensate the significant mmWave channel attenuations.

Basically, the design of an antenna array has to deal with two main problems: the development of
the physical system (i.e., the geometry of the array and the selection of the radiating elements) [9,10],
and the evaluation of the excitations that better satisfy the pattern synthesis requirements [11,12].
For this second task, several algorithms have been developed considering the geometry of the
array, the shape of the desired pattern, and the degrees of freedom that characterize the array
excitations [13–15]. However, when the array has to be mounted on a 5G base station (BS) or on
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a user device, some more specific constraints must be taken into account. Firstly, the beamforming
algorithm must be able to perform beamsteering both in the azimuth and zenith domains, thus allowing
a three-dimensional (3D) pattern synthesis. This requirement derives from the dimension of the
5G cells, whose radii are expected to be not larger than a few hundred meters [16], which makes
situations where a source and a destination lie overground or underground relative to one another
likely. Interesting solutions addressing this aspect have been developed by considering the synthesis
of both the amplitudes and the phases of the array excitations [17–19]. Unfortunately, this choice
does not match a second relevant constraint that characterizes the beamforming network of a
5G device: its simplicity. The feeding network must, in fact, be as simple as possible, since the
ultra-densification strategy adopted for the 5G cellular system implies the deployment of a huge
number of BSs that have to necessarily satisfy stringent cost requirements [20]. This suggests the usage
of a phase-only control approach for the synthesis of the excitations, whose amplitudes hence have to
be left constant and identical to avoid the installation of expensive power dividers. The development
of phase-only synthesis techniques has been widely investigated, and thus a large number of solutions
are already present [21–27], whose testing, except for [27], has been focused on the two-dimensional
(2D) scenario. In this context, an interesting 3D clustered approach has been proposed in [28],
where the array elements belonging to a cluster are characterized by a common amplitude and
different phases. The support of massive device-to-device communications leads to a third constraint:
the capability of generating radiation patterns with properly shaped null regions to selectively reduce
the interference towards the active peer-to-peer links [8]. In this case, several proposals also already
exist [21–26,29,30], but their analysis has again often been limited to the 2D environment. Finally,
5G developers aim to enable multi-user mobile streaming for serving multiple distributed mobile users
in a cell [31]. This novel functionality has to rely on multibeam patterns, capable of generating multiple
independent directional high-gain beams to cover different angular regions. Methods allowing the
synthesis of multiple main lobes and also enabling null placement by phase-only control have been
proposed [24–26], but still solely for the 2D scenario. In consequence, the satisfaction of all of the four
discussed requirements invites the development of an array-processing algorithm able to perform
multi-beam and null steering by phase-only control, simultaneously operating both in the zenith and
azimuth domains.

To address this issue, this paper proposes an iterative method to synthesize the 3D pattern
generated by an antenna array of arbitrary geometry with the sole modification of the excitation phases
when multiple main lobes and nulls are required. The algorithm relies on the generalization of the 2D
approach in [26], which is extended to operate in 3D scenarios also in the presence of wide null regions
and is applied to planar and conformal arrays. The proposed method is developed by moving from a
weighted cost function that accounts for the different constraints and is iteratively minimized. One of
the main advantages of this method is the availability of closed-forms for evaluating the phase of each
element at each iteration, which maintains the computational cost of the algorithm low. Numerical
examples are presented to check the performance of the conceived solution and to prove its versatility
in managing different synthesis problems.

The paper is organized as follows. Section 2 formulates the problem. Section 3 presents the
algorithm. Section 4 discusses the results. Section 5 summarizes the main conclusions.

Notation. Throughout the paper the following notation is used: (·)T denotes the transpose
operator, (·)∗ denotes the complex conjugate, j denotes the imaginary unit, and arg(·) denotes the
argument function.

2. Problem Formulation

Let us consider a Cartesian reference system O(x, y, z) to identify the positions of the N elements
of an antenna array. The location (xn, yn, zn) of the generic n-th element (n = 1, . . . , N) is described by
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the vector dn = xn x̂ + yn ŷ + zn ẑ, where x̂, ŷ, and ẑ denote the unit vectors of the coordinate axes x, y,
and z, respectively. Accordingly, the unit vector describing the generic space direction is given by:

r̂ = sin ϑ cos ϕ x̂ + sin ϑ sin ϕ ŷ + cos ϑ ẑ, (1)

where ϑ ∈ [0, π] and ϕ ∈ [−π, π] denote the zenith and azimuth angles, respectively. The far-field
radiation pattern generated by this array can hence be expressed as

F(a; r̂) =
N

∑
n=1

an pn(r̂) exp (jkdn · r̂) =
N

∑
n=1

an fn(r̂), (2)

where a = [a1, . . . , aN ]
T is the column vector of the complex excitations, pn(r̂) is the pattern of the n-th

element, and k = 2π/λ is the wave number, with λ representing the wavelength.
Consider now the problem of synthesizing (2) assuming equal amplitudes for all the excitation

currents (i.e., phase-only control), which implies a = [exp(jψ1), . . . , exp(jψN)]
T , with ψn (n = 1, . . . , N)

denoting the phase of the n-th element. The synthesis has to be carried out satisfying three requirements
for the squared amplitude of (2), consisting in: (a) the presence of P maxima in the set of directions
Ξ = {ξ̂1, . . . , ξ̂P}, with ξ̂p = sin ϑp cos ϕp x̂+ sin ϑp sin ϕp ŷ+ cos ϑp ẑ (p = 1, . . . , P); (b) the generation
of Q nulls in the set of directions X = {χ̂1, . . . , χ̂Q}, with χ̂q = sin ϑq cos ϕq x̂ + sin ϑq sin ϕq ŷ +

cos ϑq ẑ (q = 1, . . . , Q); and (c) the maintenance of low values in the set of the remaining directions
Ω = [0, π]×[−π, π] − Ξ− X. From a mathematical point of view, the objective is hence that of
estimating the excitation vector a such that:

|F(a; ξ̂p)|2 is maximum for p = 1, . . . , P; (3a)

|F(a; χ̂q)|2 is minimum for q = 1, . . . , Q; (3b)

|F(a; r̂)|2 is low for r̂ ∈ Ω; (3c)

|a1| = |a2| = ... = |aN | = 1, (3d)

where the modulus is conventionally defined as

|F(·; ·)| =
√

F(·; ·)F∗(·; ·). (4)

In particular, condition (3a) imposes the P desired directions, condition (3b) imposes the Q
undesired directions, condition (3c) imposes the minimum possible radiation in the remaining
directions, and finally, condition (3d) imposes the constraint concerning the phase-only control.
The algorithm developed to solve this problem is presented in the next section.

3. Algorithm

A versatile approach to take into account the above discussed requirements consists in joining
them into a cost function that contains selectable weights, which can be suitably modified in adherence
to the specifications of a given problem [5]. However, a further basic aspect that should be considered
when multibeam patterns must be synthesized is the equalization of the gains corresponding to the
P directions of maxima. Thus, beside the terms deriving from (3a)–(3c), the cost function should
include a further term having the objective of reducing the difference between the gains achieved in
different desired directions. In agreement with these observations, we hence consider the minimization
of the following weighted cost function:
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F (a) ,−
P

∑
p=1

wp

∣∣∣F(a; ξ̂p)
∣∣∣2 + wP+1

P

∑
p=1

P

∑
p′=1

∣∣∣F(a; ξ̂p)− F(a; ξ̂p′)
∣∣∣2

+ wP+2

Q

∑
q=1

∣∣∣F(a; χ̂q)
∣∣∣2 + wP+3

∫
Ω
|F(a; r̂)|2dr̂, (5)

in which the real parameters w1, . . . , wP, wP+1, wP+2, wP+3 are proper non-negative weights.
In particular, in (5), the minimization of the first term has the purpose of forming the P required
maxima, while the minimization of the second term aims to guarantee that the difference between
the amplitudes corresponding to these maxima is sufficiently low. Hence, the first two terms jointly
impose condition (3a), in order to obtain an identical radiation level for all the P desired directions.
The minimization of the third term aims to form the Q required nulls, thus imposing condition (3b), and
finally, the minimization of the last term, identified by the integral, allows one to maintain the generated
pattern as low as possible in the other directions, thus imposing condition (3c). By inserting (2) in (5)
and using (4), after some algebra, F (a) can be expressed in compact form as

F (a) =
N

∑
n=1

N

∑
m=1

ana∗mTmn, (6)

where
Tmn = Amn + Bmn + Cmn + Dmn, (7)

in which

Amn =−
P

∑
p=1

wp fn(ξ̂p) f ∗m(ξ̂p), (8a)

Bmn =wP+1

P

∑
p=1

P

∑
p′=1

[ fn(ξ̂p)− fn(ξ̂p′)][ fm(ξ̂p)− fm(ξ̂p′)]
∗, (8b)

Cmn =wP+2

Q

∑
q=1

fn(χ̂q) f ∗m(χ̂q), (8c)

Dmn =wP+3

∫
Ω

fn(r̂) f ∗m(r̂)dr̂. (8d)

Each of the four terms in (8) may be viewed as the generic component of an N × N matrix. Thus, we
can define the matrices A = [Amn], B = [Bmn], C = [Cmn], and D = [Dmn], which are all Hermitian,
since it can be easily proved that Amn = A∗nm, Bmn = B∗nm, Cmn = C∗nm, and Dmn = D∗nm. This, in turn,
implies that the matrix T = [Tmn] = A + B + C + D is also Hermitian.

Let us now impose condition (3d) according to which F (a) becomes a function of the sole set of
phases Ψ = [ψ1, . . . , ψN ]

T . Therefore, recalling that Tmn = T∗nm, (6) can be rewritten considering its
upper triangular elements as

F (Ψ) =
N

∑
n=1

Tnn + 2
N

∑
n=2

n−1

∑
m=1
|Tmn| cos[ψn − ψm + arg(Tmn)], (9)

the minimization of this function cannot be accomplished in closed-form, thus an iterative procedure
is required.

This procedure can be inferred from the single co-ordinate method [21], which performs the
minimization process through the calculation of the unknown phases one at a time, following a
sequential order. Accordingly, (9) is minimized by individually evaluating each of the N unknown
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phases, assuming the other N − 1 phases as constants. To allow this operation, the cost function is
rearranged to put into evidence its dependence on the generic phase ψk, thus obtaining

F (Ψ) = 2
N

∑
m=1
m 6=k

|Tmk| cos[ψk − ψm + arg(Tmk)] + Λk, (10)

where

Λk = 2
N

∑
n=2
n 6=k

n−1

∑
m=1
m 6=k

|Tmn| cos[ψn − ψm + arg(Tmn)] +
N

∑
n=1

Tnn (11)

is a term independent of ψk. A further manipulation of (10) leads to

F (Ψ) =
√

U2
k + V2

k cos(ψk + vk) + Λk, (12)

where

Uk = 2
N

∑
m=1
m 6=k

|Tmk| cos[arg(Tmk)− ψm], (13a)

Vk = 2
N

∑
m=1
m 6=k

|Tmk| sin[arg(Tmk)− ψm], (13b)

vk = arg(Uk + jVk). (13c)

It can be immediately observed that the final expression in (12) is minimized for

ψk = π −vk. (14)

Thus, the generic unknown phase that minimizes F (Ψ) can be evaluated in closed form.
This advantage can be exploited to design an iterative algorithm to solve the original 3D synthesis
problem described in Section 2. The proposed algorithm develops as follows (Figure 1).

First, given the formulated problem (i.e., the antenna array, the sets of desired and undesired
directions, and the weights of the cost function), the elements of the matrix T are calculated
by (7) and (8). The starting point Ψ0 = [ψ0

1, . . . , ψ0
N ]

T is then selected. Its first component, that is,
ψ0

1 , is taken as the reference phase, thus its value is maintained equal to zero for the entire evolution of
the algorithm. Subsequently, the second element of Ψ0 is modified by using (13) and (14), while keeping
constant all the remaining phases of Ψ0. This leads to the updated value ψ1

2. By using the novel set
[ψ0

1, ψ1
2, ψ0

3, . . . , ψ0
N ]

T , the same operation is carried out to update the third phase ψ0
3. This procedure

is sequentially repeated until the last element ψ0
N is updated, thus concluding the first iteration of

the algorithm, which provides an updated set Ψ1 = [ψ0
1, ψ1

2, . . . , ψ1
N ]

T . Proceeding in this way, at the
generic i-th iteration, the last N − 1 elements of Ψi−1 = [ψ0

1, ψi−1
2 , . . . , ψi−1

N ]T are updated to obtain
Ψi = [ψ0

1 , ψi
2, . . . , ψi

N ]
T . Therefore, each iteration consists of N− 1 subiterations necessary to update the

N − 1 phases different from the reference one. Since the cost function F (Ψ) is minimized at each step,
the algorithm generates a non-increasing, and hence convergent, sequence {Fi}, where Fi = F (Ψi).
The iterative procedure is terminated when the maximum allowed number of iterations Imax is reached.
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Figure 1. Proposed algorithm.

4. Results

The performance achievable by the conceived method is tested considering four numerical
examples that are developed assuming isotropic antenna elements and a working frequency
of 28 GHz [16], corresponding to a wavelength λ = 10.7 mm. The results are derived using the
Matlab R2018b tool, which is installed on a personal laptop equipped with an Intel(R) Core(TM)
i5-5300U CPU@2.30 GHz processor and 8 GB RAM. For all the presented examples, the maximum
number of iterations Imax has been set equal to 4000.

The first example refers to a 9×9 uniform square array with an interelement spacing equal to
3/4 λ [9]. This implies that the array side is lower than 7 cm, making it suitable for usage on typical
commercial smartphones. The desired pattern is characterized by a single main beam (P = 1) directed
at (0◦, 0◦) (broadside direction) and two null regions: a notch at (40◦, 0◦) and a wide null obtained by
imposing four close notches at (60◦ + 2q, 0◦) for q = 2, . . . , 5, resulting in Q = 5 overall nulls. The 3D
pattern synthesized by selecting the weights w1 = 103, w2 = 0, w3 = 106, and w4 = 10 is reported
in Figure 2, while the corresponding 2D cut at φ = 0◦ is shown in Figure 3. As it may be seen from
this latter figure, the notch is exactly placed at (40◦, 0◦), and the pattern amplitude is maintained
close to −60 dB in the angular region identified by the wide null. Moreover, the side lobe level (SLL)
of the overall pattern is kept below −10 dB, and interestingly, the entire 3D synthesis procedure is
accomplished in approximately 5 s.
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Figure 2. First example: 3D pattern.

0 10 20 30 40 50 60 70 80 90

 (degrees)

-80

-70

-60

-50

-40

-30

-20

-10

0

N
o
rm

al
iz

ed
 p

at
te

rn
  
(d

B
)

Figure 3. First example: 2D pattern cut at φ = 0◦.

The second and the third examples refer to a larger array suitable for a compact 5G BS. The array
consists of N = 268 elements placed on R = 9 concentric rings, lying on the xy plane and having
the center at the origin of the Cartesian system. In particular, the nine rings have radii ρ1 = 8.9 mm,
ρ2 = 19.6 mm, ρ3 = 30.4 mm, ρ4 = 41.1 mm, ρ5 = 51.8 mm, ρ6 = 62.5 mm, ρ7 = 73.2 mm,
ρ8 = 83.9 mm, and ρ9 = 94.6 mm and consist of N1 = 4, N2 = 11, N3 = 17, N4 = 24, N5 = 30,
N6 = 36, N7 = 42, N8 = 49, and N9 = 55 elements, respectively. These values have been chosen
to guarantee a minimum interelement distance not lower than λ. Using this radiating structure,
the second example is developed by considering a desired pattern with two main beams (P = 2)
directed at (5◦, 0◦) and (60◦, 0◦), together with a wide null region, obtained by regularly spacing
Q = 6 notches at (28◦ + 2q, 0◦) for q = 1, . . . , Q. The 3D pattern derived by choosing the weights
w1 = w2 = 103, w3 = 9× 102, w4 = 106, and w5 = 102 is plotted in Figure 4, while the corresponding
2D cut at φ = 0◦ is reported in Figure 5. These two figures confirm the satisfactory behavior achieved
by the proposed method, which guarantees the support of the required dual-beam pattern maintaining
an SLL below −10 dB and a −50 dB level in the imposed wide null region. Moreover, also in this case
the results have been obtained in an acceptable CPU time, since approximately 48 s was sufficient to
complete the 3D synthesis procedure.
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Figure 4. Second example: 3D pattern.
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Figure 5. Second example: 2D pattern cut at φ = 0◦.

The third example refers to the same multi-ring array used for the previous example,
but considering a more challenging scenario with P = 3 main beams and two wide nulls.
More precisely, the maxima are imposed at (60◦,−25◦), (20◦, 45◦), and (60◦, 45◦), while the null
regions are obtained by placing three notches at (16◦ + 2q,−25◦) for q = 1, 2, 3 and another three at
(28◦ + 2q, 45◦) for q = 4, 5, 6, resulting in Q = 6 overall nulls. The 3D pattern calculated by adopting
the weights w1 = 1.1× 103, w2 = w3 = 1.5× 103, w4 = 103, w5 = 106, and w6 = 10 is shown in
Figure 6, while the corresponding 2D cuts at φ = −25◦ and φ = 45◦ are depicted in Figure 7a,b,
respectively. This example reveals that also in the presence of more stringent requirements involving
multiple main beams and wide nulls, the desired constraints are properly matched. The CPU time
necessary to obtain this result is approximately equal to 48 s, almost identical to that of the previous
example. This is reasonable, since the maximum number of iterations is fixed, and hence the CPU
time becomes directly dependent on the number of elements, which is the same for the second and
third examples.

The fourth example refers to an array suitable for a compact 5G BS having a conformal geometry.
The array consists of N = 338 elements placed on R = 9 rings, with their centers on the z axis,
parallel to the xy plane and lying on the surface of a sphere having the center at the origin of the
Cartesian system. More precisely, the radii and the heights of the rings are ρ1 = 66.0 mm, z1 = 1.7 mm;
ρ2 = 65.3 mm, z2 = 9.7 mm; ρ3 = 63.5 mm, z3 = 17.8 mm; ρ4 = 60.7 mm, z4 = 25.8 mm; ρ5 = 56.6 mm,
z5 = 33.8 mm; ρ6 = 51.0 mm, z6 = 41.9 mm; ρ7 = 43.2 mm, z7 = 49.9 mm; ρ8 = 31.6 mm,
z8 = 57.9 mm; and ρ9 = 0, z9 = 66.0 mm, while the corresponding number of elements are N1 = 51,
N2 = 50, N3 = 49, N4 = 47, N5 = 44, N6 = 39, N7 = 33, N8 = 24, and N9 = 1. These values have been
chosen to guarantee a minimum inter-element distance not lower than 0.75λ. Using this radiating
structure, the last example is developed by considering a desired pattern with four main beams (P = 4)
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directed at (45◦, 30◦), (135◦, 30◦), (225◦, 30◦) and (315◦, 30◦), together with a notch at (0◦, 0◦) and
a wide null region, obtained by imposing the notches at (75◦ + 5q, 30◦) for q = 2, 3, 4, resulting in
Q = 4 overall nulls. The 3D pattern derived by choosing the weights w1 = w2 = w3 = w4 = 103,
w5 = 103, w6 = 106, and w7 = 5× 104 is plotted in Figure 8, while the corresponding 2D cut at
θ = 30◦ is reported in Figure 9. These two figures confirm the ability of the algorithm to guarantee
the generation of a four-beam pattern with a maximum SLL lower than −10 dB. A very deep notch is
achieved at (0◦, 0◦), and a satisfactory level is guaranteed in the wide null region, where the pattern lies
below −50 dB. Finally, also in this example involving a conformal structure, the CPU time remained
acceptable since approximately 74 s were sufficient to complete the 3D synthesis procedure.

Figure 6. Third example: 3D pattern.
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Figure 7. Third example: 2D pattern cuts at (a) φ = −25◦ and (b) φ = 45◦.
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Figure 8. Fourth example: 3D pattern.
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Figure 9. Fourth example: 2D pattern cut at θ = 30◦.

Observations and Suggestions

One of the most interesting features of the presented algorithm is the availability of the weights
w1, . . . , wP+3, which provide significant versatility in satisfying the requirements of a specific problem.
To this aim, some practical rules may be followed during the selection of the weights. In particular,
their setting can be carried out following their order in the cost function by firstly specifying w1, . . . , wP
to impose the P maxima, then wP+1 to equalize these maxima and wP+2 to impose the nulls, and
finally, wP+3 to obtain an acceptable SLL. Some further refinements on some weights can be applied
to match the problem requirements. In the proposed examples, just two of these further refinements
were necessary to derive the provided results. Thus, in summary, a few preliminary executions of the
algorithm can be considered sufficient to accomplish the synthesis. Regarding the magnitude of the
weights, one may notice that for all examples, the weight referred to the nulls is usually much higher
than the other ones. This characteristic is reasonable since the pattern value in a null is very low. Thus,
in the cost function, this value must be properly amplified to be properly taken into account during
the numerical evolution of the procedure.

A final aspect that is worth discussing concerns the sensitivity of the achieved solution to the
starting point. The provided numerical examples have shown that very good results can be obtained
by adopting a very simple choice of the starting point for the phase vector. Precisely, in all of the
proposed examples, a null vector of phases has been chosen. However, in order to investigate the
dependency of the results on the initialization of the phase coefficients, different starting points may
be used. To investigate this aspect, M = 100 randomly selected sets of phases have been considered
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for each of the four examples. Figure 10a,b report, for the fourth example, the corresponding one
hundred synthesized 2D pattern cuts at θ = 30◦ for Imax = 100 and Imax = 1000, respectively.
A direct comparison of these figures with Figure 9 reveals that, with a sufficient number of iterations,
the algorithm converges towards the same solution, thus revealing poor sensitivity to the starting
point. A similar behavior has been observed for the other three examples.

(a)

(b)

Figure 10. Fourth example: overlapping of one hundred 2D pattern cuts at θ = 30◦ obtained by
randomly selected starting points for (a) Imax = 100 and (b) Imax = 1000.

5. Conclusions

An iterative algorithm for the 3D phase-only pattern synthesis of conformal antenna arrays in
the presence of null and multibeam constraints has been presented. The method has been shown
to be characterized by acceptable CPU times, thanks to the analytical expressions derived from the
minimization of a weighted cost function that allow one to estimate the phase of each element in
closed form at each iteration. The results have shown that the developed algorithm can be satisfactorily
applied to arrays with arbitrary geometry and to synthesis problems characterized by different numbers
of main lobes and wide nulls. Furthermore, the radiating structures adopted to test its performance
have proven the suitability of the conceived solution for both 5G BSs and user equipments.
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