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Abstract: In inverse synthetic aperture radar (ISAR) imaging, time-frequency analysis is the basic
method for processing echo signals, which are reflected by the results of time-frequency analysis as
each component changes over time. In the time-frequency map, a target’s rigid body components
will appear as a series of single-frequency signals in the low-frequency region, and the micro-Doppler
components generated by the target’s moving parts will be distributed in the high-frequency
region with obvious frequency modulation. Among various time-frequency analysis methods,
S-transform is especially suitable for analyzing these radar echo signals with micro-Doppler (m-D)
components because of its multiresolution characteristics. In this paper, S-transform and the
corresponding synchrosqueezing method are used to analyze the ISAR echo signal and perform
imaging. Synchrosqueezing is a post-processing method for the time-frequency analysis result,
which could retain most merits of S-transform while significantly improving the readability of the
S-transformation result. The results of various simulations and actual data will show that S-transform
is highly matched with the echo signal for ISAR imaging: the better frequency-domain resolution
at low frequencies can concentrate the energy of the rigid body components in the low-frequency
region, and better time resolution at high frequencies can better describe the transformation of the
m-D component over time. The combination with synchrosqueezing also significantly improves the
effect of time-frequency analysis and final imaging, and alleviates the shortcomings of the original
S-transform. These results will be able to play a role in subsequent work like feature extraction and
parameter estimation.
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1. Introduction

In inverse synthetic aperture radar (ISAR) imaging, to obtain the final image, two steps of
Fourier transform are necessary for the original echo signal. Through the Fourier transform,
the periodic characteristics of the time domain signal are found and reflected in the frequency domain.
With the periodic characteristics in different dimensions combined with the appropriate resolution,
the shape information of the target can be obtained [1].

In these radar echo signals, the rigid body part of the target and the moving part will produce
two types of component. The latter will be referred to as the micro-Doppler (m-D) component with
frequency modulation, which may generate from rotation of propellers or rotor wings on plane, surface
vibration caused by engine, and swinging arms when human walk may cause the m-D effect [2,3].

The m-D component usually interferes with the final imaging result, but on the other hand, it can
also be used for feature extraction and parameter estimation of the target, which is useful information
in subsequent work [4]. However, in the face of such components, the simple Fourier transform
cannot analyze the transformation of their frequency domain characteristics with time. For this reason,
time-frequency analysis, which was born to characterize the transformation of signals in the frequency
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domain over time, has been applied to this field and has become one of the most basic analysis methods
for m-D components [1,5,6].

Among many time-frequency analysis methods, S-transform (ST) is especially suitable for
analyzing radar echo signals for imaging [7]. The multiresolution characteristics of S-transform are
consistent with ISAR’s signal type. Its high frequency domain resolution in the low-frequency region
can achieve accurate imaging of the target’s rigid body component, while the time domain resolution
advantage of the high frequency region can effectively provide target micro-Doppler information.

S-transform can be further combined with the synchrosqueezing transform (SST) method to
further improve the concentration of the time-frequency analysis results [8]. The algorithm performs
synchronous squeezing of the time-frequency map in the frequency domain, which improves the
concentration while inverse transformation, in a strict mathematical sense, can be ensured. Therefore,
SST can not only do analysis from the time domain to the time-frequency domain, but can also
hold the synthesis from the time-frequency domain to the time domain. Recently, by adopting the
second-order operator, second-order synchrosqueezing (SST2) has been able to analyze a strong
frequency-modulated signal [9–11].

In this paper, S-transform and second-order synchrosqueezing methods are applied to ISAR
imaging. Both the simulation and the actual signal will have the benefit of the multiresolution
characteristics of the S-transform when analyzing radar echo signals containing micro-Doppler
components. Synchrosqueezing, on the basis of retaining these characteristics, greatly improves the
readability of time-frequency analysis results, which brings more favorable conditions for subsequent
work. The arrangement of this paper is as follows. A brief introduction of ISAR imaging and m-D
effects are given in Section 2. The principles of time-frequency and S-transform is given in Section 3.
Synchrosqueezing and second-order synchrosqueezing is introduced in Section 4. The results of
numerical simulations and real data tests are presented in Section 5.

2. Principle of ISAR Imaging

A model of the ISAR echo signal is described in Figure 1.

Figure 1. ISAR geometric model.

The micro-Doppler effect is illustrated by the rigid body portion scattering point Q and the
rotational scattering point P of the target in Figure 1. The echo signal after range compression is
defined as

S( fr, tm) = ATpc · sin[Tp( fr + 2
γ

c
R∆(tm))] exp(−j2π

2
λ

R∆(tm)), (1)
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where A is the amplitude of the echo signal, Tp is the pulse width, γ is the modulation rate, c is
the velocity of light, λ is the wavelength of carrier frequency, and R∆(tm) = R− R0 is the distance
difference from scattering point Q to the radar displaced phase center and reference point O. fr and tm

correspond to the frequency domain and slow time of the pulse compression result, respectively.
For the rigid scattering point Q,

R∆Q(tm) =
√

R2
0 + r2

Q − 2R0rQ cos(θ(tm) + θQ0 +
π
2 )

≈ rQ sin(θQ(tm) + θQ0),
(2)

where rQ is the distance from the rigid rotation center to point Q, θQ0 is the angle between the X axis
and OQ in coordinate XOY, and θQ(tM) = ωtm. Based on the assumption of the uniform circular
motion for point Q, it is centered at O with angular velocity ωQ in the coherent accumulative time.

Since the accumulation on cross-range is very small here, it has cos(θQ(tm)) ≈ 1, sin(θQ(tm)) ≈ 0.
The Doppler frequency of Q is given by

fdQ =
2
λ

dR∆Q(tm)

dtm
≈ 2

λ
ωQxQ0. (3)

For high-speed rotating scattering point P on target, while it has the same rotation center to point
O as Q, another rotation with center point o′ of moving parts makes it different. As in Figure 1, it has

R∆P ≈ ro′ sin(θo′(tm) + θo′0) + rrot sin(θp(tm) + θP0), (4)

where r′o is the distance from o′ to O, θo′0 is the angle between the X axis and Oo′ at zero time, and they
have θo′(tm) = ωtm. Similarly, rrot is the radius of the rotation of P, θP0 is the angle between the X axis
and o′P at zero time, and they are related as θP(tm) = ωPtm. In comparison to Q, one more rotation of
P introduces a term of sinusoidal modulation to it’s Doppler frequency:

fd p = 2
λ

dR∆P(tm)
dtm

= 2
λ

d[ro′ sin(θo′ (tm)+θo′0)+rrot sin(θp(tm)+θP0))]
dtm

≈ 2
λ [xo′ωQ + rrot cos(θp(tm) + θP0)ωP],

(5)

which is called m-D information.
In the above model of the m-D effect, in coherent accumulative time, rigid parts appear as

superpositions of sinusoidal waves in ISAR’s cross-range. Then, moving parts add modulation.
When there are Nr scattering points in rigid parts, and Nm in moving parts, the echo signal could be
written as 

s = s1 + s2

s1 =
p=1

∑
Nr

A1p exp(j2π f1pt)

s2 =
q=1

∑
Nm

A2q exp(j2π( f2qt + λq sin(ωqt))),

(6)

where s1 represents the components from rigid parts, and A1p and f1p are the amplitude and frequency
of the cross-range Doppler signal for the pth scattering point, respectively. s2, A2q and f2q have the
same meaning for moving parts, and λq sin(ωqt) is the m-D information.

Figure 2 shows the process of ISAR imaging.
Originally, in the dotted line parts of Figure 2, signals from different range cells only need to do

the Fourier transform then arrange results in order, the imaging result would then be obtained. In the
frequency domain of those signals, the energy of the sinusoidal frequency modulated (FM) component
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brought by moving parts will be distributed in a range where the spectrum is larger than the rigid
body component. In the final imaging results, they seemed to be unwanted interference information
relative to the rigid body part. The Fourier transform only shows the distribution of these interferences
in the frequency domain but does not indicate the information of these m-D components over time.
In Figure 1, Fourier transform is replaced by time-frequency analysis, and the m-D information is
reflected in a more specific form on the time-frequency plane.

Figure 2. The process of ISAR time-frequency imaging.

3. Time-Frequency Analysis and S-Transform

Generally, time-frequency analysis methods can be divided into two categories: one-order
time-frequency transform and second-order time-frequency distribution [12]. Although the latter
works much better than the former for the single-component signals, it would bring cross-terms that
are inconvenient to handle when processing multicomponent signals. As mentioned above, the signals
used for imaging in this paper are multicomponent (6), so the time-frequency distribution method is
not desirable. Thus, here we will start with the most basic short-time Fourier transform (STFT) in the
one-order time-frequency transform.

The multicomponent (MC) FM signal is considered as

x(t) =
M

∑
m=1

Am · exp(j(φm(t))), (7)

here φm(t) is the phase function of the mth signal, and Am is the amplitude.
As the signal is inserted into the time-frequency plane by short time Fourier transform (STFT),

we have

STFT(t, f ) =
∫ +∞

−∞
x(τ)w(τ − t)e−2iπ f τdτ, (8)

where w(t) is usually a Gaussian window function with fixed parameters. This would bring a
fixed time-frequency resolution to the analysis result. Even if it is adjusted, it is difficult to get the
overall optimality.



Electronics 2018, 8, 676 5 of 16

Similarly, the S-transform is defined as

STx(t, f ) =
∫ +∞

−∞
x(τ)h(τ − t, f )e−2iπ f τdτ, (9)

and it holds a variable Gaussian window function.

h(t, f ) =
| f |√
2π

e
− f 2t2

2 (10)

For the component located in the low frequency region, the window function is longer and has
better frequency resolution. The high-frequency area is the opposite, with better time resolution.

This feature matches the radar echo signal form (6) used for imaging in this paper: The better
frequency resolution at low frequencies concentrates the energy of the rigid body component, while the
better time resolution at high frequencies depicts the variation of the m-D component over time.

All of the above would make it possible for ST to get better results than STFT overall.
In application, to keep the frequency resolution of the high frequency region, a lower bound should be
set for the window length.

h(t, f ) =


| f |√
2π

e
− f 2t2

2 , f ≤ fmax

| fmax|√
2π

e
− f 2

maxt2
2 , f > fmax

(11)

4. Synchrosqueezing Method

The results obtained from ST analysis are still somewhat insufficient: the energy would spread in
the frequency direction of the high-frequency part, which affects the readability of the time-frequency
map. Here, the synchrosqueezing method will be introduced for this problem. It is a post-processing
method for time-frequency analysis results. The energy is compressed from the frequency direction,
the final map is significantly improved, and the beneficial characteristics of the ST can be preserved.

If we consider a harmonic signal x(t) = Aei2π f1t, its Fourier Transform is shown as

X( f ) = 2πAδ( f − f1), (12)

where δ is the Dirac-delta function. Hence, the S-transform of x(t) can be expressed as

STx(t, f ) = Ae
−2π2( f1− f )2

f 2 e2πi( f1− f )t. (13)

This illustrates that e
−2π2( f1− f )2

f 2 e2πi( f1− f )t are distributed into the ambiguity area in (9). Ideally,
the frequency of x(t) is concentrated around f1. In practice, the energy of STx(t, f ) spreads out in a
range of frequency. To eliminate the effect of modulated items, in the ST spectrum, the signal can
calculate the instantaneous frequency (IF) whenever STx(t, f ) 6= 0 for any (t, f ) by

ω̂x(t, f ) = f + Im(
∂tSTx(t, f )
STx(t, f )

). (14)

The form of the IF is suitable for S-transform [13]. Here, ∂tSTx(t, f ) means STx(t, f ) is partial to t.
By using (9), we can obtain ω̂ = f1. The multicomponent signals can be defined as a superposition of
AM-FM components

x(t) =
N

∑
K=1

AK(t)e2πiφk(t), (15)
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where the AK and φk are, respectively, time-varying amplitude and phase functions satisfying
AK(t) > 0, φ′k(t) > 0 and φ′k+1(t) > φ′k(t) for any t. The goal is to recover the instantaneous frequencies φ′k
and the instantaneous amplitudes AK(t). If there is some distance between the different components, i.e.,

φ′k+1(t)− φ′k(t) > 2∆, (16)

where ∆ ∈ (0, 1), it is called the well-separated multicomponent signal. ω̂(t, f ) can also perform
effectively for IF estimation [14].

4.1. Synchrosqueezing S-Transform

Before introducing synchrosqueezing transform, it is necessary to revisit the reassignment
technique (RM) [15]. The aim of RM is to sharpen the time frequency (TF) representation. There
are two meaningful quantities that are called reassignment operators, ω̂x(t, f ) and t̂x(t, f ). The former
is the same as Equation (14) and the latter is defined as

t̂x(t, f ) = t− Re(
∂ f STx(t, f )

2iπSTx(t, f )
). (17)

Here, ∂ f STx(t, f ) means STx(t, f ) is partial to f . While RM as a useful post-processing technique
that moves the coefficients according to the map (t, f ) → (t̂x, ω̂x) in the TF plane, no mode
reconstruction method is available.

Synchrosqueezing transform was originally introduced for analyzing auditory signals in [16]
and developed further in [8]. It can be viewed as a special reassignment method. The coefficients
are reassigned according to the map (t, f ) → (t, ω̂x(t, f )), making it remain invertible.
The synchrosqueezing S-transform (SSST) is defined as follows:

SSST(t, ω)

=
∫
{ωl |STx(t,ωl)|>γ} STx(t, ωl)δ(ω− ω̂x(t, ωl))dωl ,

(18)

where γ is an adjustable threshold.
By squeezing the frequency components within a certain range of instantaneous frequency,

an energy-concentrated TF representation can be obtained. Then, the reconstruction of the original
signal is computed by

x(t) =
1

Ch

∫ +∞

−∞
SSST(t, ω)

dω

ω
, (19)

where Ch = Re(CϕCψ), Cϕ = e−i2π f t f 2, and Cψ = 1
2

∫ +∞
0 ψ̂(ξ) 1

ξ dξ. ψ̂(ξ) is the complex conjugate of

the Fourier transform of the mother wavelet ψ(t) = 1√
wπ

e−
t2
2 ei2πt.

More details of the proof can be found in [13].

4.2. Second-Order Synchrosqueezing S-Transform

Although SST gives a good TF representation and mode reconstruction for multicomponent
signals, it is restricted to analysis signals made of weakly modulated modes [17]. For a mode
x(t) = AK(t)e2πiφk , only when φ′′k (t) is approximate to zero or very small compared to φ′k(t),
the instantaneous frequency estimation ω̂(t, f ) is close to φ′k(t). When considering the strong
frequency-modulated signal, for instance a quadratic chirp, the φ′′k is no longer negligible.

In order to deal with highly modulated signals like m-D components, second-order
synchrosqueezing S-transform (SST2) was introduced by a more accurate IF estimate, based on
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the second-order operator. The operator corresponds to the second-order derivatives of phase
Re{q̂x(t, f )} = φ′′k (t). The second-order local complex modulation operator q̂x(t, f ) is defined as

q̂x(t, f ) = ∂tω̂x(t, f )
∂t t̂x(t, f )

=
STx∂2

ttSTx−(∂tSTx)2

2iπST2
x−STx∂2

t f STx+∂tSTx∂ f STx
,

(20)

where ∂2
ttSTx represents STx to t for second-order partial derivatives, and ∂2

t f STx means that STx is

partial to t and then partial to f . Owing to the operator, a more precise IF estimate ω̂
(2)
x (t, f ) can be

obtained as

ω̂
(2)
x (t, f ) =

{
ω̂x + f + q̂x(2t− τ̃), ∂t t̂x 6= 0

ω̂x + f , ∂t t̂x = 0.
(21)

Then, the second-order synchrosqueezing S-transform (SSST2) is modified by replacing ω̂x by
ω̂
(2)
x in (15).

SSST2(t, ω)

=
∫
{ωl ,|STx(t,ωl)|>γ}

STx(t, ωl)δ(ω− ω̂
(2)
x (t, ωl))dωl (22)

5. Numerical Experimental Results

For the sake of clarity, the abbreviations used below will be detailed here. They are S-transform
(ST), short-time Fourier transform (STFT), synchrosqueezing transform (SST), synchrosqueezing
S-transform (SSST), and second-order synchrosqueezing S-transform (SSST2).

In this section, the simulation experiment with adjustable parameters will be given first. Results
are compared using different time-frequency analysis methods. Subsequently, the actual ISAR signal is
also tested.

First, ISAR data is simulated on the helicopter miniaturization model in Figure 3. The simulation
parameters are shown in Table 1. Its resolution will be more than enough for the target. Three different
propeller speeds are set, which plays a decisive role in the performance of the m-D component.

Figure 3. ISAR geometric model.
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Table 1. Simulation parameters.

Parameter/Variable Value Parameter/Variable Value

Center wavelength 10.6 × 10−6 m Target size 2.5 m × 2.5 m
Transmitting bandwidth 20 × 109 Hz Velocity 100 m/s

Pulse repetition frequency 7 × 103 Hz Main rotor speed 20/10/5 r/s
Coherent accumulation time 0.1 s Route angle relative to radar ray 30◦

Transmitting width 1 µs Imaging distance 10 Km
Range sampling points 620 Cross-range sampling points 700

In Figure 4a,c, the imaging results using STFT and ST are respectively shown. Although both of
them roughly represent the outline of the target rigid body part due to the setting of the experimental
parameters, it is obvious that the ST subsection is more accurate and reflects some details. The reason
can be seen from the time-frequency analysis results of the single distance unit (300th) using two
methods: for the rigid body component, ST can obtain a more gradual result for the low-frequency
part, while it would jitter in the STFT (Figure 4b,d).

After applying the synchrosqueezing method, the imaging effects of both methods have been
significantly improved. The SST imaging result (Figure 4e) is more concentrated, and the contour of
the target becomes clearer. In the time-frequency map, the energy is concentrated in the low-frequency
part, but the jitter of the rigid body component still exists (Figure 4f).

For relatively clear ST imaging results, the SSST changes are more reflected in the further depiction
of the details (Figure 4g). Since the application of the ST changes the energy distribution of the signal
in the frequency domain, the difference in energy between the rigid body imaging result and the
m-D information is not as sharp as the SST result. But this also makes the m-D component not too
weak (Figure 4h). In addition, in the results of SSST, the readability of the m-D component is also
significantly improved, although this should mainly be attributed to ST. But the effect of the original
ST in the high-frequency part is not ideal (Figure 4b).

When the rotational speed is increased to 10 r/s and 20 r/s, the same analysis results as those of
Figure 4 are also correspondingly placed in Figures 5 and 6.

The difference between these results is the same as when the rotating speed is 5 r/s, but the
m-D component brings more interference than before, which makes the imaging result blurred
(Figures 5a,c,e,g and 6a,c,e,g).

The characteristics of the results of each time-frequency analysis are not significantly different
from the previous ones; the jitter range of the rigid body components of STFT and SST seems to be
larger (Figures 5b,f and 6b,f). In the results of ST and SSST, the energy is more distributed at high
frequencies (Figure 5c,d,g,h). These changes become more pronounced after increasing the rotational
speed to 20 r/s (Figure 6c,d,g,h).

After the second-order synchrosqueezing is further applied (Figure 7), it mainly affects the time
resolution of the m-D separation in each time-frequency map (Figure 7b,d,f). This is easier to observe
in the zoomed red rectangle region of Figures 6h and 7f,g,h. The imaging result has no obvious gap
(Figure 7a,c,e) with the SSST result.

With simple energy accumulation criteria, the rigid body component can be roughly separated
from the imaging results. The advantage of ST-based results (Figure 8b,d,f) relative to STFT
(Figure 8a,c,e) is obvious. The former almost restored the details of the rigid part of the original
model (Figure 3). It is worth mentioning that, although the contour of the rigid body part of the SSST2
imaging result is blurred at the rotational speeds of 10 r/s and 20/s (Figure 7c,e), the details of the
extraction result can still be compared, with SST having a better performance (Figure 8d,f).

For the computing speed, SSST is not very different from the more complex SSST2, and the latter
is even slightly faster (SSST: 1227s; SSST2: 934s). Moreover, due to the use of more matrix operations,
SST is much faster than the other two methods (SST: 23s) that use more loop statements, as they hold
similar levels of complexity. The above results show that there is still a lot of optimization space for
the SSST and SSST2 programs used in this paper, and the calculation of operator (20) for SSST2 does
not significantly change the computational complexity.
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(a) STFT imaging result (b) STFT result of the 300th range cell

(c) ST imaging result (d) ST result of the 300th range cell

(e) SST imaging result (f) SST result of the 300th range cell

(g) SSST imaging result (h) SSST result of the 300th range cell

Figure 4. Results of target with a main rotor speed of 5 r/s. ST—S-transform; SST—synchrosqueezing
transform; SSST—synchrosqueezing S-transform; STFT—short time Fourier transform.
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(a) STFT imaging result (b) STFT result of the 300th range cell

(c) ST imaging result (d) ST result of the 300th range cell

(e) SST imaging result (f) SST result of the 300th range cell

(g) SSST imaging result (h) SSST result of the 300th range cell

Figure 5. Results of target with a main rotor speed of 10 r/s.
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(a) STFT imaging result (b) STFT result of the 300th range cell

(c) ST imaging result (d) ST result of the 300th range cell

(e) SST imaging result (f) SST result of the 300th range cell

(g) SSST imaging result (h) SSST result of the 300th range cell

Figure 6. Results of target with a main rotor speed of 20 r/s.
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(a) SSST2 imaging result, 5 r/s (b) SSST2 result of the 300th range cell, 5 r/s

(c) SSST2 imaging result, 10 r/s (d) SSST2 result of the 300th range cell, 10 r/s

(e) SSST2 imaging result, 20 r/s (f) SSST2 result of the 300th range cell, 20 r/s

(g) Zoom of the result of Figure 6g (h) Zoom of the result of Figure 7f

Figure 7. Second-order synchrosqueezing S-transform (SSST2) results of target with different main
rotor speed.
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(a) SST, 5 r/s (b) SSST2, 5 r/s

(c) SST, 10 r/s (d) SSST2, 10 r/s

(e) SST, 20 r/s (f) SSST2, 20 r/s

Figure 8. Imaging separation results of simulated signals.

Actual An-26 aircraft data is also subjected to similar experiments. Similar to Figures 4–6, Figure 9
shows the imaging effects of different methods (Figure 9a,c,e,g) and the time-frequency analysis results
of a certain distance unit (Figure 9b,d,f,h). The difference between the results is still consistent with the
previous simulation data. In addition, the imaging effects of SSST and SSST2 are still similar (Figures 9g
and 10a), and their differences are reflected in the time resolution of high-frequency components
(Figures 9h and 10b). For real data, STFT-based imaging is even worse; the more concentrated energy
allows the latter to achieve a better separation result (Figure 11a,b).
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(a) STFT imaging result (b) STFT result of the 131st range cell

(c) ST imaging result (d) ST result of the 131st range cell

(e) SST imaging result (f) SST result of the 131st range unit

(g) SSST imaging result (h) SSST result of the 131st range unit

Figure 9. Time-frequency and imaging analysis results of real An-26 data.
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(a) SSST2 imaging result (b) SSST2 result of the 131st range unit

Figure 10. Time-frequency and imaging analysis results of real An-26 data.

(a) SST (b) SSST2

Figure 11. Imaging separation results of real An-26 data.

6. Conclusions

In this paper, S-transform is applied to ISAR imaging. Since the multiresolution characteristics
of S-transform and the characteristics of radar echo signals match each other, better analysis and
imaging results are achieved compared with STFT; this contrast is obvious in both simulation and
actual data results. In the simulated helicopter model, although the micro-Doppler component
brings more interference to the imaging results as the rotational speed of the rotor increases, after the
application of the synchrosqueezing method, the quality of the time-frequency analysis results is
significantly improved. Especially in the ST-based synchronous compression results, the change in the
micro-Doppler component over time in the frequency direction is clearly depicted. All of the above
will play an important role in subsequent work such as feature extraction, parameter estimation, etc.
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