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Abstract: This paper proposes a modeling method to establish a parametric-conducted emission
model of a switching model power supply (SMPS) chip through a developed vector fitting algorithm.
A common SMPS chip LTM8025 was taken as an example to explain the modeling process. According
to the integrated circuit (IC) electromagnetic modeling (ICEM) standard, the parametric conducted
emission model is divided into two parts: IC internal activity (ICIA) and IC passive distribution
network (ICPDN). The parameters of ICIA are identified by measured data and correlated with key
components; an improved vector-fitting algorithm is proposed to solve the fitting problem of ICPDN
without phase information. This parametric model can be used with commercial simulation software
together to achieve predictions of conducted emissions from power modules. The experiment results
show that the maximum and 90% confidence interval of the forecast errors are 9.677 dB and (−4.56 dB,
6.52 dB) respectively, which achieve the international standard requirements and have sufficient
accuracy and effectiveness.

Keywords: electromagnetic compatibility (EMC); switching model power supply (SMPS); conducted
emission; parametric modeling method; vector fitting algorithm

1. Introduction

Electromagnetic compatibility (EMC) is one of the important conditions for measuring the
electromagnetic strength of a device or a system. With an increasing number of electronic and electric
devices integrated into complex electronic information systems, the electromagnetic environments,
including the circuit principle and the coupling relationship are increasingly complicated. The inside
or outside electromagnetic interference (EMI) of the system leads to an increase in cases where the
sensitive devices may become degraded or even unable to work properly.

In order to solve this problem, in the actual development process, the iterative process of
‘design-test-redesign’ has been carried out to ensure electromagnetic compatibility of the electronic
and electric devices and complex information systems. To reduce the development period and cost, it
is particularly important to make a reasonable prediction of its EMC before the prototype is produced.
The importance of EMC design work has become increasingly prominent.

As a large number of devices are integrated into complex systems, switching model power supply
(SMPS) becomes essential for its role in improving power efficiency and reducing costs. However, its
rapid on-off and parasitic effects may lead to serious electromagnetic emission problems. This makes it
difficult to pass the appropriate industrial EMC/EMI control standards and may affect the functional
ability of itself or other equipment. To ensure electromagnetic compatibility of an equipment or system,
electromagnetic (EM) emission prediction is required [1–3]. EM emission can be further categorized
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into conducted emission (CE) and radiated emission (RE). Since the switching frequency of SMPS is
between several tens of kHz to serval MHz, the emission of SMPS is mainly transmitted by conduction.

For the conducted emission modeling of SMPS, the earlier research starts from the physical
parameters of the device and constructs the CE model [4–7]. However, this method requires detailed
information of the device, the modeling process is complicated, and the established model has poor
precision. Another mainstream method is behavioral level modeling. This method directly establishes
the CE model of SMPS for analysis without considering the specific parameters of the switching power
supply. In terms of behavioral model construction, Norton or Thevenin equivalent can generally be
used to give an equivalent circuit of a CE model, and its parameters are determined by analysis or
test [8,9]. In addition to these two aspects, there are other methods for modeling SMPS, such as using a
concept-named fast reconstruction method (FRM) to deal with the time domain simulation of common
mode conducted disturbances [10].

The SMPS modeling methods mentioned above need to measure the properties of internal
components so as to ensure the accuracy of the model. With the miniaturization of devices, an
increasing number of SMPS chips have emerged. For SMPS chips, traditional CE modeling methods are
no longer applicable because their components are packaged inside the chip and cannot be measured.
To calculate the EM emission accurately, it is necessary to model SMPS at the chip-level through
simulation and external measurement.

As for these matters, various research has been reported in the past years [11–13]. Reference [14]
gives an overview of the EMC research focusing on chip-level. IBIS (I/O buffer information specification)
model is the standard for electronic behavioral specifications for integrated circuit input/output analog
characteristics [15]. However, it is not sufficient to directly apply EM emission modeling because
the interference associated with the internal activities of the component is not considered. IMIC (I/O
interface model for integrated circuits) model can effectively solve the modeling accuracy problem [16].
Considering the modeling process may require confidential information to build a netlist and read it
through dedicated simulation software, the portability is not relatively high. ICEM (integrated circuit
electromagnetic modeling) is a simple and intuitive method that uses RLC (resistance, inductance, and
capacitance) circuits to fit the measured port characteristics, which seems accurate enough for EMC
predictions [17,18].

In recent years, the ICEM method was widely used to model different integrated circuits (ICs) and
predict their electromagnetic compatibility [19–21]. Jean-Luc Levant, et al. used the ICEM model to
simulate and predict the jitter of the integrated phase-locked loop and provide a correction solution [22].
Hyun Ho Park, et al. generated a macro model of the timing controller chip for running pseudo H
pattern data from transistor level simulation and is used to estimate the power switching current on the
printed circuit board (PCB) [23]. Abhishek Ramanujan, et al. designed a common interchange format
for ICEM based on the well-known extensible markup language format and applied to Atmega88
microcontrollers [13]. Modeling methods for PCB and components with both chips and packages were
published in [24] and [25], in order to calculate PCB power noise generated by the switching chip.

Although the ICEM model has been successfully applied in many chip-level EM emission
predictions, it still has certain limitations. In the modeling process, the ICEM model divides the
IC model into the passive distribution network (PDN) component and the internal activity (IA)
component [26]. The establishment of IA parameter extraction depends on the extracted PDN
parameters and the measured external current, thus the parameters have no specific physical meaning
and cannot be parametrically modeled based on different practical scenarios. Therefore, when
application parameters are different from the test board, the accuracy of the predicted results will be
limited as well. Su, D. et al. proposed a new theory named ‘basic emission waveform theory’, which
characterizes emission with four basic waveforms by its physical characteristics of the equipment. The
identification and analysis of an emission source can be realized by analyzing the basic waveforms
from the emission of a complex system [27].
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Based on the basic emission waveform theory, this paper proposes a parametric modeling
method to establish the conducted emission model of an SMPS chip through a developed vector
fitting algorithm.

The organization of this paper is as follows. Section 2 describes the measurement configuration
required for modeling. Section 3 illustrates the model division and parametric modeling methods of
each part. In Section 4, a set of comparative experiments and an application example are given to
verify the effectiveness of the modeling method. Conclusions are drawn in Section 5 to summarize the
work proposed.

2. Measurement Configuration

This study takes a commercial SMPS chip called LTM8025 [28] as an example to illustrate the
modeling method. LTM8025 is a step down micro module converter chip and widely used in consumer
electronics as power supply modules.

It usually requires a dedicated chip test board to predict its conducted emission by the ICEM
method at chip-level modeling. However, since the output voltage and switching frequency of the
LTM8025 are closely related to the selection of component parameters in the peripheral circuits, the
user needs to make a particular measurement board according to the used parameters to ensure the
modeling accuracy. Furthermore, when a power supply module needs to convert one input voltage
into multiple different output voltages, the user needs to integrate multiple ICs on one PCB. Under this
case, in order to accurately predict the conducted emission of the PCB, multiple measurement boards
are required to build a variety of chip models under each working condition. This will undoubtedly
lengthen the design process time and increase costs.

Instead of the particular measurement board in ICEM method, an official demonstration circuit
DC1379B [29] of LTM8025 is used as the test board in this paper. Figure 1 shows the PCB and schematic
of DC1379B. The authors measured the conducted emission currents of the port VIN (Power Input
Port) and VOUT (Power Output Port) to extract the parametric model. As can be seen from Figure 1b,
the port VIN provides a voltage input to the DC1379B, which is stepped down by the LTM8025 and
filtered by the peripheral circuit, and is output from the port VOUT to the downstream load.

The experimental configuration during the measurement were as follows: The port VIN was
connected to a stabilized DC voltage supply with an internal resistance of RPCB_VIN = 0.2 Ω to provide
a 30 V input voltage to the board; the port VOUT was connected with a RPCB_VOUT = 1.4 Ω high-power
resistor as the downstream load; current monitor probe F-33-2 from the FCC company was used to
connect to the spectrum analyzer to measure the conducted emission on the power lines (as shown in

Figure 2). The measured results Umeasured = [ UVIN UVOUT ]
T

are shown in Figure 3.
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Figure 1. Board diagram and schematic of DC1379B [29]. (a) Printed circuit board (PCB) and its layouts;
(b) Schematic.
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Figure 2. Experimental scenario of the test board at (a) VIN port; (b) VOUT port conduction emissions.
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Figure 3. The measured results Umeasured (a) the measured conducted emission UVIN at the port VIN;
(b) the measured conducted emission UVOUT at the port VOUT.

3. Parametric Modeling Method

Referring to the ICEM partitioning method, the SMPS chip model is also divided into ICIA and
ICPDN parts. Different from ICEM, based on the ‘basic emission waveform theory’, the authors treat
ICIA as a square waveform which parameters are related to the chip usage parameter settings and
define the peripheral circuits as ICPDN, as Figure 4 shows.
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Figure 4. IC conducted emission model partitioning. ICIA and ICPDN.

The following sections will introduce the modeling methods of IA and PDN separately.

3.1. ICIA Parameters Extraction

The time-domain expression of an ideal square waveform can be represented by

iIA(t) =

 1, n
f0
< t ≤ n+dc0

f0
0, n+dc0

f0
< t ≤ n+1

f0

, n = 1, 2, · · · (1)

where f0 represents the repetition frequency, dc0 represents the duty cycle, n is a positive integer.
After Fourier transform to (1), the magnitude-frequency characteristics is given by

IIA( f ) =
+∞∑

n=−∞

dc0

f0
Sa(nπdc0)δ( f − n f0) =

+∞∑
n=−∞

IIAnδ( f − n f0), n ∈ N (2)
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where N is the integer set, n represents an arbitrary integer and IIAn = dc0
f0

Sa(nπdc0).
It can be found from (2) that the magnitude-frequency characteristics of a square wave can be

determined by two key parameters which are repetition frequency f0 and duty cycle dc0. The following
discussion will focus on the estimation process of these two parameters.

3.1.1. Repetition Frequency f 0 Estimation

It is easy to understand that the frequency spectra of the SMPS conducted emission are a bunch of
discrete spectrum lines. The discrete frequency points set

{
Fsample

}
could be described as{

Fsample
}
= n f0, n = 0, 1, 2, · · · . (3)

It shows that elements in the set
{
Fsample

}
are only related to f0, and all of them are integral

multiples of f0. Therefore, theoretically speaking, we can obtain f0 by reading the frequency intervals
between adjacent spectrum lines ∆ f from the measured data Umeasured. Unfortunately, considering
the RBW settings of spectrum analyzer, the measured ∆ f can hardly be equaled with f0. Moreover,
due to the spectrum analyzer’s own algorithm, the frequency sampling intervals of the test data is
non-uniform. The above-mentioned problems make it impossible to read f0 from Umeasured accurately
and intuitively. Figure 5 shows an example of a spectrum analyzer display frequency interval data. In
this case, the frequency range is from 100 kHz to 200 MHz, the number of sampling points is 32001,
and RBW = 1 kHz. It can be seen that the frequency intervals are non-uniform.
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The paper presents an engineering method to obtain accurate f0 from measured data. Firstly,
find all frequency points {Fmeasured} 10 dB higher than the noise (as the red stars in Figure 3a) and
record intervals between adjacent two frequency points as a set

{
∆ f

∣∣∣measured
}

(as the black line in
Figure 6). Secondly, find the mode ∆ f

∣∣∣
mode in the set

{
∆ f

∣∣∣measured
}

as the initial value. Finally, find all
the elements in the set

{
∆ f

∣∣∣measured
}

that satisfy
∣∣∣∆ fi − ∆ f

∣∣∣
mode

∣∣∣ < 0.1 ∗ ∆ f
∣∣∣mode,∀∆ fi ∈

{
∆ f

∣∣∣measured
}
, and

take the average as the final result of f0, as shown in Equation (4).

f̂0 = average({∆ fi}
∣∣∣∀∆ fi∈{∆ f |measured},s.t. |∆ fi−∆ f |mode |<0.1∗∆ f |mode

), i = 1, 2, . . . , N (4)

In this case, f̂0 = 706.39 kHz.
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3.1.2. Duty Cycle dc0 Preliminary Estimating

The estimation process of dc0 is divided into two steps. Firstly, the measured data Umeasured was
used for preliminary estimation; secondly, a more accurate value will be estimated in the ICPDN
modeling process. The process to estimate dc0 preliminarily is explained hereafter.

We know that the envelope of the square waveform spectrum IIA( f ) can be described by the
envelope function

E( f ) =
dc0

f0
Sa(

πdc0 f
f0

). (5)

It can be seen from Equation (5) that when the frequency f satisfies f = m f0/dc0, m ∈ N, there is
E( f ) = 0. According to the characteristic of the trigonometric function, the frequency interval between
two adjacent zeros ∆ fzeros is

∆ fzeros = f0/dc0. (6)

Since it is usually impossible to exist a series of resonance points with multiple relations in the IC_PDN
part, we can infer that most of the minimum values in the envelope of the measured data Umeasured are
near the zeros of the envelope function E( f ).

Therefore, we use the following method to estimate dc0 initially. Firstly, find the envelope of
the measured data Umeasured, which can be described by the amplitude value curve corresponding to
the frequency set {Fmeasured}. Secondly, find all the minimums of this envelope (as the blue circles in
Figure 3a), calculate the frequency interval between two adjacent minimums, and find their average,
denoted as ∆ f min. Finally, estimate the initial value of dc0 as Equation (7) shows.

d̂c0
0 = f̂0/∆ f min. (7)

The estimated result in the case is d̂c0
0 = 13.09%.

3.1.3. Parameterization of ICIA

Considering the working principle of the SMPS, the repetition frequency f0 is related to the
resonance resistance, and the duty cycle dc0 is related to the ratio of output voltage and input one.

Since the components on the test board DC1379B are difficult to be replaced, the curve of repetition
frequency f0 under different values of resonance resistance RT are taken from the LTM8025 data sheet
and showed in Figure 7. Using an inverse function to fit the data, the fitted curve equation is:
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f0(RT) =
4.489× 1010

RT + 1.036× 104
− 9.630× 103. (8)
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Since the output voltage is related to the value of bias resistor Radj, which is difficult to adjust.
Therefore, the author obtained different input voltages by adjusting the regulated power supply and
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Figure 8. The curve of duty cycle dc0 under different value of Vout/Vin.

Till now, the paper has completed the parametric modeling of ICIA. For practical use, according
to designed parameters, the user could estimate f0 and dc0 by Equations (8) and (9); and obtain the
model of IIA according to Equation (2).
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3.2. ICPND Modeling

In the ICEM method [26], the hardware set-up used to extract the PDN parameters consists
of measurement equipment (usually the vector network analyzer), a measurement probe and
a measurement board. Therefore, before extracting the PDN parameters, a de-embedding
process is needed so as to remove all the parasitic elements of this set-up. Figure 9 shows its
de-embedding principle.
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The block diagram of the measurement setup of proposed method in this paper is shown in
Figure 10. The coupling relationship can be expressed as Equation (10).

|YPCB·ZIC·IIA|/
∣∣∣Zprobe

∣∣∣ = Umeasured (10)

where YPCB and Zprobe represent the influence of the measured board and the current probe respectively.
And ZIC represents the ICPDN model.
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One of the most important differences is that the study uses spectrum analyzer to measure the
spectra of the input and output ports respectively, instead of using VNA to gain the impedance between
two ports in the ICEM method. This leads to a lack of phase information for the measured data.
Therefore, it is impossible to use the same de-embedding and ZIC fitting method with ICEM.

3.2.1. De-Embedding Process

� Current monitor probe F-33-2

In this paper, the authors used F-33-2 current monitor probe to measure the conducted emission
on the power lines. The F-33-2 is for laboratory and field testing. The useable frequency range of this
probe is 1–250 MHz. A typical calibration curve

∣∣∣Zprobe
∣∣∣ is shown below [30].
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From the curve shown in Figure 11, the measured results Umeasured can be converted into the

spectrum of the interference current on the power line, which is IPCB = [ IVIN IVOUT ]
T

.

IPCB = Umeasured/
∣∣∣Zprobe

∣∣∣ (11)
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� Test board DC1379B

As for the modeling of the in-band characteristics of passive linear components, the extant
methods are relatively mature, especially when the parasitic parameters of the main components are
known. Therefore, a commercial simulation software Ansys SIwave [31] is used to model the test board
DC1379B. ANSYS SIwave is a specialized design platform for modeling, analyzing and simulating of
IC packages and PCBs. The test board consisted of four layers; the relative permittivity of the dielectric
substrate is εr = 4.4; all conductors are made by copper material with conductivity σ = 5.8 × 107 S/m.
The given layout and geometry of the DC1379B were imported into the software. The locations and
basic descriptions of the four defined ports are shown in Figure 12 and Table 1.Electronics 2019, 8, x FOR PEER REVIEW 11 of 24 
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Table 1. Parameter settings of each port.

No. Name Description

1 IC_in Internal port: IC input voltage port
2 IC_out Internal port: IC output voltage port
3 VIN External port: PCB input voltage port
4 VOUT External port: PCB output voltage port
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Therefore, the PCB can be regarded as a four-port network, and the effect of DC1379B on the
measured results can be represented by a Y-parameter matrix YPCB.

YPCB =

[
Y13 Y23

Y14 Y24

]
. (12)

Using the full-wave analysis method, the Y-parameters were calculated. The results are shown in
Figure 13.
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Theoretically, the output interference signals UIC = [ UICin UICout ]
T

from the chip pins can be
obtained by solving the linear equations of Equation (13) when IPCB and YPCB are known.

|YPCB·UIC| = IPCB. (13)

However, since Umeasured has no phase information, IPCB has no phase information either. Therefore,
the solution of the complex coefficient Equation (13) may not be unique. Under the test configuration
described in this paper, ZIC cannot be directly obtained referring the de-embedding process in the
ICEM standard.

To solve this problem, the paper proposes a developed vector fitting algorithm as follows.

3.2.2. A Developed Vector Fitting Algorithm

Let f0 = f̂0 and dc0 = d̂c0
0, Equation (2) could be represented as below:

IIA( f̂0, d̂c0
0) =

d̂c0
0

f̂0

+∞∑
n=−∞

Sa(nπd̂c0
0)δ( f − n f̂0), n ∈ N. (14)

Bring (14) into (10), there is:∣∣∣∣∣∣
[

Y13 Y23

Y14 Y24

]
·

[
ZICin
ZICout

]
·IIA

∣∣∣∣∣∣ =
[

IVIN

IVOUT

]
(15)

or: {
|Y13ZICin + Y23ZICout| = IVIN/|IIA|

|Y14ZICin + Y24ZICout| = IVOUT/|IIA|
. (16)
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Let the auxiliary functions Zin and Zout as{
Zin = Y13ZICin + Y23ZICout
Zout = Y14ZICin + Y24ZICout

. (17)

Since Zin and Zout were fitted in the same the process, researchers took Zin as an example to
illustrate the algorithm. The traditional vector fitting [32] algorithm makes a clever use of matrix
transformation to provide a feasible numerical solution method for solving frequency domain responses
rational approximation problems. Contrast with vector fitting algorithm, considering the rational
function approximations of the impedance parameter Zin as:

Zin(s) =
N∑

n=1

cn

s− an
+ d + sh, (18)

let auxiliary function σ( f ) as

[
σZin(s)
σ(s)

]
=


N∑

n=1

cn
s−an

+ d + sh

N∑
n=1

cn
s−an

+ 1

. (19)

Multiplying the second row in (20) with Zin yields the following relation

N∑
n=1

cn

s− an
+ d + sh−Zin·

N∑
n=1

cn

s− an
= Zin. (20)

However, since Umeasured were measured by the spectrum analyzer, it contains no phase information.
Therefore, it is unable to obtain Zin with accurate phase information. This can greatly affect the accuracy
of vector fitting and even lead to serious errors. Therefore, the paper proposed a developed algorithm
to reduce the impact of the uncertain phase information. When only the amplitude information is
considered, the Equation (20) turns into:∣∣∣∣∣∣∣

N∑
n=1

cn

s− an
+ d + sh

∣∣∣∣∣∣∣− |Zin|·

∣∣∣∣∣∣∣
N∑

n=1

cn

s− an

∣∣∣∣∣∣∣ = |Zin| (21)

where cn, cn, d, h are unknowns.
It can be seen that Equation (21) is no longer a linear problem. Therefore, the linear least squares

optimization process in the original method is changed to a nonlinear problem, and a margin control
parameter is added into the iterative process to reduce the impact of the uncertain phase information.

From Equation (21), record the residual function r(cn, cn, d, h) as:

r(cn, cn, d, h) =

∣∣∣∣∣∣∣
N∑

n=1

cn

s− an
+ d + sh

∣∣∣∣∣∣∣− |Zin|·

∣∣∣∣∣∣∣
N∑

n=1

cn

s− an

∣∣∣∣∣∣∣− |Zin|. (22)

Therefore, the fitting problem on the sample data set {Fmeasured} can be described by a nonlinear
least squares problem as Equation (23).

minimize
{Fmeasured}

f ({Fmeasured}) =
M∑

i=1
r2

i

subject to ri =

∣∣∣∣∣∣ N∑
n=1

cn
j fi−an

+ d + j fih

∣∣∣∣∣∣− ∣∣∣Zi
in( fi)

∣∣∣·∣∣∣∣∣∣ N∑
n=1

cn
j fi−an

∣∣∣∣∣∣− ∣∣∣Zi
in( fi)

∣∣∣
fi ∈ {Fmeasured}

(23)
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This nonlinear problem can be solved by the Levenberg-Marquardt algorithm. The pseudo-code
algorithm is shown in the reference [33].

Therefore, Zin and Zout could be calculated. According to Equation (17), the values of ZICin and
ZICout can be obtained, and ÎPCB can be obtained from (10) and (11).

As an example, Figure 14 shows the comparison results between the calculated IVIN and the
predicted ÎVIN which is under the condition that d̂c0

0 = 13.57%. IVIN is represented by the black line
in the figure which is as same as the red star in the Figure 3a. Since it was directly converted from
the test result Umeasured, the values of IVIN were used as a reference to measure the accuracy of the
fitting algorithm. The blue line in the figure shows the predicted result calculated by the traditional
vector fitting algorithm, while the red line is estimated by the developed algorithm proposed in this
paper. Comparing the two curves, it can be seen that the proposed algorithm can effectively solve the
problem that the traditional vector fitting algorithm has low fitting precision when there is no phase
information in the fitted data.
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3.2.3. Further Estimation of dc0 and ICPND

Due to the influence of measurement accuracy, etc., the accuracy of the estimated d̂c0
0 in Section 3.1.2

is limited. Therefore, this subsection describes a process establishing the model of ZIC while estimating
a more accurate value of dc0.

It can be seen from Equations (10) and (14), ZIC is related to the value of dc0. Therefore, the
problem can be converted into finding an optimal dc0 which minimizes the error between the predicted
output Ii

PCB and the calculated data IPCB, as is shown in (24).

minimize
dc0

‖Ii
PCB − IPCB‖2

subject to Ii
PCB = YPCB·ZIC(dc0)·IIA( f0, dc0)

f0= f̂0

(24)

To solve the above mentioned optimization problem (24), errors function errorsi was built as the
2-norm of the difference between Ii

PCB and IPCB at the sample set {Fmeasured}, which can be represented as:

errorsi = ‖Ii
PCB({Fmeasured}) − IPCB({Fmeasured})‖2. (25)

At this point, (24) can be transformed to minimize (25).
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Repeat the above process under different dc0 values in the neighborhood of d̂c0
0. Then the final

duty cycle d̂c0 is estimated as the one which made (25) achieve its minimum. And let the corresponding

Zi
IC = [ Zi

ICin Zi
ICout ]

T
be the impedance parameters of ICPDN part ẐIC.

Figure 15 shows the variation of errors under different dc0, and the red star represents the final
estimated result d̂c0 = 13.57%.
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4. Experimental Results and Discussion

In this section, an application example and a set of comparative experiments are given to verify
the effectiveness of the modeling method.

4.1. Application Example

An application example was taken to verify the accuracy of the above-mentioned modeling
method. In this example, the 12 V input voltage were convert to 5.4 V, 5.4 V, and 3.8 V output voltages
respectively by three LTM8025 chips. The PCB board adopts a four-layer board structure. Its photo
and topology diagram are shown in Figures 16 and 17 respectively.
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Figure 17. The topology of the power supply module.

The author treated the PCB sub-module in the instance as a 10-port network and simulated its
Y-parameters by Ansys SIwave. The port definitions were shown in Figure 18 and Table 2. And the
calculation results were shown in Figure 19.
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Figure 18. Port definitions of the power supply module instance.

Table 2. Parameter settings of each port.

No. Name Description

1 12Vin External port: PCB input voltage port
2 5.4Vout_1 External port: PCB output voltage port (comes from IC3)
3 5.4Vout_2 External port: PCB output voltage port (comes from IC 2)
4 3.8Vout External port: PCB output voltage port (comes from IC 1)
5 IC1_in Internal port: IC1 input voltage port
6 IC1_out Internal port: IC1 output voltage port
7 IC2_in Internal port: IC2 input voltage port
8 IC2_out Internal port: IC2 output voltage port
9 IC3_in Internal port: IC3 input voltage port
10 IC3_out Internal port: IC3 output voltage port
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Figure 19. Y parameter simulation results between the Port 1 and other internal ports.

As for IC sub-modules modeling, according to the design parameters, f0 and dc0 of the three chips
are as shown in Table 3. Therefore, the functions of the three ICIAs can be calculated according to
Equation (10). Furthermore, the CE model of each chip could be obtained according to Equation (6).
As an example, the estimated results of IC sub-module 1 are shown in Figure 20.

Table 3. Design parameters of the three chips.

RT (kΩ) f 0 (kHz) Vin (V) Vout (V) dc0 (%)

IC 1 39.5 890.7 12 5.4 38.83
IC 2 22 1377.5 12 5.4 54.96
IC 3 20 1468.9 12 3.8 54.96
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Figure 20. The estimated results of the IC sub-module 1.

However, in practical applications, the true value of a resistor often deviates from its nominal value,
which may cause the estimated interference spectrum to offset from the measured value. Furthermore,
for a regular electromagnetic interference such as switching signals, we tend to pay more attention to
the characteristics of its envelope rather than a single frequency point. Therefore, the authors used
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its envelope to evaluate the accuracy of the estimated result in the following part. At this point, the
conducted emission measured result at the port 12Vin could be estimated according to Equation (10).

Figure 21a shows the comparison between the envelope of the measured result (as the red line)
and the estimated one (as the blue line). And the forecast errors and its 90% confidence interval are
shown in Figure 21b. It can be found that the maximum error is 9.677 dB @23.79 MHz, and its 90%
confidence interval is (−4.56 dB, 6.52 dB).
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Figure 21. Comparison between the measured result and the estimated one. (a) Predicted results;
(b) forecast errors.

As an authoritative international standard for IC conduction emission modeling, the examples
given in the reference [26] suggest that ‘the agreement is very good’ when the forecast error is less than
±10 dB. In contrast, it can be seen that the modeling method proposed in this paper could achieve the
standard requirements and has sufficient accuracy and effectiveness.
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4.2. Comparative Experiments

According to ICEM of test configurations described in the reference [26], a dedicated chip test
board for LTM8025 is made. In order to ensure the normal operation of the tested chip, the resonance
resistance RT = 15 kΩ and the bias resistance Radj = 200 kΩ are set. Using the impedance analyzer and
the oscilloscope to measure the impedance curve and output waveform of the chip. The ICEM model
is obtained, and the following two comparative experiments are used to illustrate the practicality of the
algorithm. With reference to DC1379B, the authors created three demo boards with different parameter
settings as models to be used for comparison experiments.

Table 4 shows the parameter settings for the three demo boards. It can be seen that the parameter
settings of Board 1 are same with the ICEM test board while the other two boards are different.

Table 4. Design parameters of the three boards.

RT (kΩ) f0 (kHz) Radj (kΩ) Vin (V) Vout (V) dc0 (%)

Board 1 15 1745.4 200 5.8 2.75 57.88
Board 2 27 1180.5 75 10 5.87 71.52
Board 3 42 847.6 115 5.8 4.21 88.36

It should be noted that since the impedance analyzer used in ICEM modelling process only covers
a frequency band from 20 kHz to 100 MHz, the CE predicted results were only considered in this range
in the comparison experiments.

� Board 1: The usage parameters are same as the ICEM test board.

When the actual board parameter settings are exactly same as the ICEM test board, the two
methods are used to predict the conducted emissions separately. The comparison results are shown in
Figure 22.

It can be seen that in this case, the 90% confidence intervals of the two methods are (−6.82 dB,
7.32 dB) and (−7.04 dB, 7.54 dB), respectively. The accuracy of the two modeling methods is not much
different. Both the proposed method and ICEM method can meet the requirements for CE prediction.
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results; (b) forecast errors.

� Board 2 and Board 3: The usage parameters are different with the ICEM test board.

To make it different from the ICEM test board parameter settings, the author changed the main
components of the actual board as Board 2 which is shown in Table 4. CE of the actual board at its
voltage input port was predicted by the two methods respectively. The comparison results are shown
in Figure 23.

What the comparison results show are as following. Although the accuracy of the ICEM method
is similar with the proposed method approximately to the middle of the considered frequency band, it
decreases significantly with increasing frequency. As a statistical result, the 90% confidence interval of
forecast errors is (−6.54 dB, 9.56 dB) by the proposed method, while (−8.28 dB, 15.29 dB) though the
ICEM method.
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Figure 23. Comparison between the proposed method and ICEM method for Board 2. (a) Predicted
results; (b) forecast errors.

Another comparative test board parameter setting are as Board 3 shown in Table 4, and the
comparison results are shown in Figure 24.

It can be seen from the comparison results that the accuracy of the proposed method is still
acceptable after changing the board’s design parameter settings. Except for a minimum point near
8 MHz, the forecast error is less than 10 dB in almost the entire considered frequency band. The 90%
confidence interval of forecast errors is (−7.53 dB, 6.46 dB). Unfortunately, the ICEM method does
not perform well in the CE prediction of Board 3. The forecast error is much larger than 10 dB in the
frequency bands below 10 MHz or above 60 MHz. In particular, when the CE has obvious periodic
variation characteristics, the ICEM method can only describe the trend roughly but cannot effectively
describe its envelope. The 90% confidence interval of forecast errors is (−8.29 dB, 17.6 dB).
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From the above mentioned comparison results we can find that when the parameters of the actual
circuit are different from the test board, the modeling accuracy of ICEM modeling method is greatly
reduced. This is because the interference signal generated by the SMPS chip is related to the parameter
setting of the external circuit. In the ICEM method, the IA modeling is reliant entirely on the measured
results and without considering its association with peripheral parameters. Therefore, when the actual
circuit used is inconsistent with the test board parameters, the ICEM model will no longer be applicable.
In practical applications, since the circuit parameters have not been determined during the product
design stage, a huge number of test boards with different parameter settings are needed when we use
the ICEM method to predict the conduction emission. The workload it brings are enormous.

Otherwise, the method proposed in this paper fully considers the mechanism of interference
generation. It found the relationship between emission characteristics and peripheral circuit parameters,
and established a parametric CE model of the SMPS chip. Therefore, it is more convenient in actual
use, since only the model parameters need to be adjusted as required without further measuring.

In summary, compared with the traditional ICEM modeling method, the proposed modeling
method has better applicability in the product design stage under the premise of ensuring that the
modeling accuracy is not reduced.

5. Conclusions

This paper proposes a modeling method to establish a parametric-conducted emission model of a
switching model power supply (SMPS) chip through a developed vector-fitting algorithm. Reference
the ICEM standard, the parametric conducted emission model is also divided into two parts: ICIA and
ICPDN. The parameters of ICIA are identified by measured data and correlated with key components;
an improved vector fitting algorithm is proposed to solve the fitting problem of ICPDN without phase
information. The experimental results show that the proposed method could achieve the international
standard requirements and has sufficient accuracy and effectiveness.
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