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Abstract: In this paper, an altered adaptive algorithm on block-compressive sensing (BCS) is developed
by using saliency and error analysis. A phenomenon has been observed that the performance of BCS
can be improved by means of rational block and uneven sampling ratio as well as adopting error
analysis in the process of reconstruction. The weighted mean information entropy is adopted as the
basis for partitioning of BCS which results in a flexible block group. Furthermore, the synthetic feature
(SF) based on local saliency and variance is introduced to step-less adaptive sampling that works
well in distinguishing and sampling between smooth blocks and detail blocks. The error analysis
method is used to estimate the optimal number of iterations in sparse reconstruction. Based on the
above points, an altered adaptive block-compressive sensing algorithm with flexible partitioning
and error analysis is proposed in the article. On the one hand, it provides a feasible solution for the
partitioning and sampling of an image, on the other hand, it also changes the iteration stop condition
of reconstruction, and then improves the quality of the reconstructed image. The experimental results
verify the effectiveness of the proposed algorithm and illustrate a good improvement in the indexes
of the Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), Gradient Magnitude Similarity
Deviation (GMSD), and Block Effect Index (BEI).

Keywords: block-compressive sensing (BCS); saliency; error analysis; flexible partitioning; step-less
adaptive sampling

1. Introduction

The traditional Nyquist sampling theorem states that the sampling frequency of a signal must be
more than twice its highest frequency to ensure that the original signal is completely reconstructed
from the sampled value, while the compressive sensing (CS) theory breaks through the traditional
limitation of the Nyquist sampling theorem in signal acquisition and can achieve reconstructing a
high-dimensional sparse signal or compressible signal from the lower-dimensional measurement [1].
As an alternative to the Nyquist sampling theorem, CS theory is being widely studied, especially in the
current image processing. The research of CS theory mainly focuses on several important aspects such
as sparse representation, measurement matrix construction, and the reconstruction algorithm [2,3]. The
main research hotspot of sparse representation is how to construct a sparse dictionary of the orthogonal
system and an over-complete dictionary for suboptimal approximation [4,5]. The construction of the
measurement matrix mainly includes the universal random measurement matrix and the improved
deterministic measurement matrix [6]. The research of the reconstruction algorithm mainly focuses
on the suboptimal solution problem and a training algorithm based on self-learning [7,8]. With the
advancement of research and application about CS theory, especially in 2D or 3D image processing,
the CS technology faces several challenges, including computational dimensional disaster and the
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spatial storage problem with the increase of the images geometric scale. To solve these challenges, the
researchers proposed many fast-compressive sensing algorithms to solve the computation cost and the
block-compressive sensing (BCS) algorithm to solve the space storage problem [9–12]. This article is
based on the analysis of the above two points.

The CS recovery algorithm of images can mainly be divided into convex optimization recovery
algorithms, non-convex recovery algorithms, and hybrid algorithms. The convex optimization
algorithms include basis pursuit (BP), greedy basis pursuit (GBP), iterative hard threshold (IHT), etc.
Non-convex algorithms include orthogonal matching pursuit (OMP), subspace matching basis pursuit
(SP), and iteratively reweighted least square (IRLS), etc. The hybrid algorithms include sparse Fourier
description (SF), chain pursuit (CP), and heavy hitters on steroids pursuit (HHSP) and other mixed
algorithms [13–15]. The convex optimization algorithms based on l1 minimization have benefits on the
reconstruction effect, but with large computational complexity and high time complexity. Compared
with convex optimization algorithms, the non-convex algorithms, such as the greedy pursuit algorithm,
operate quickly, with a slightly poor accuracy based on l0 minimization, and can also meet the general
requirements of practical applications. In addition, the iterative threshold method has also been widely
used in both of them with excellent performance. However, the iterative threshold method is sensitive
to the selection of the threshold and the initial value of the iteration that affects the efficiency and
accuracy of the algorithm [16,17]. The selection of thresholds in this process often uses simple error
values (including absolute or relative values) or quantitative iterations as stopping criterion of the
algorithm, which does not guarantee algorithm optimization [18,19].

The focus of this paper is on three aspects, namely, the block partitioning under weighted
information entropy, the adaptive sampling based on synthetic features, and the iterative reconstruction
through error analysis. The mean information entropy (MIE) and texture saliency (TS) are introduced
in the block partitioning to provide a basis for promoting the algorithm. This part of adaptive sampling
mainly improves the overall image quality through designing the block sampling rate by means of
variance and local saliency (LS). The iterative reconstruction part mainly uses the relationship of three
errors to provide the number of iterations required for the best reconstructed image in different noise
backgrounds. Based on the above points, this paper proposes an altered adaptive block-compression
sensing algorithm with flexible partitioning and error analysis, which is called FE-ABCS.

The remainder of this paper is organized as follows. In Section 2, we focus on the preliminaries
of BCS. Section 3 includes the problem formulation and important factors. Then, the structure of the
proposed FE-ABCS algorithm is presented in Section 4. In Section 5, the experiments and results
analysis are listed to show the benefit of the FE-ABCS. The paper concludes with Section 6.

2. Preliminaries

2.1. Compressive Sensing

The algorithm theory of compressive sensing is derived from the sparse characteristic of natural
signals that can be sparsely represented under a certain sparse transform basis, enabling direct sampling
of sparse signals (sampling and compressing simultaneously). Set the sparse representation s of an
original digital signal x which can be obtained by the transformation of sparse basis Ψ with K sparse
coefficients and the signal x is observed by a measurement matrix Φ, then the observation signal y can
be expressed as:

y = Φx = ΦΨs = Ωs (1)

where, x ∈ RN, s ∈ RN, and y ∈ RM. Consequently, Ω ∈ RM×N is the product of the matrix Φ ∈ RM×N

and Ψ ∈ RN×N, named the sensing matrix, and the value of M is much less than N because of the
compressive sensing theory.

The reconstruction process is an NP-hard problem which restores the N-dimensional original signal
from the M-dimensional measurement value through nonlinear projection and cannot be solved directly.
Candès et al. pointed out that, the number M must meet the condition M = O(K log(N)) in order to
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reconstruct the N-dimensional signal x accurately, and the sensing matrix Ω must satisfy the Restricted
Isometry Property (RIP) [20]. Furthermore, the former theories proved that the original signal x can be
accurately reconstructed from the measured value y by solving the l0 norm optimization problem:

x̂ = Ψŝ, ŝ = arg min‖s‖0 s.t. y = Φx = ΦΨs (2)

In the above formula, ‖ ∗ ‖0 is the l0 norm of a vector, which represents the number of non-zero
elements in the vector.

With the wide application of CS technology, especially for 2D/3D image signal processing, it
inevitably leads to a dimensional computing disaster problem (because the amount of calculation
increases with the square/cube of dimensions), which is not directly overcome by CS technology itself.
Here, it is necessary to introduce block partitioning and parallel processing to improve the algorithm,
that is, the BCS algorithm improves its universality.

2.2. Block-Compressive Sensing (BCS)

The traditional method of BCS used in image signal processing is to segment the image and
process the sub-images in parallel for reducing the cost of storage and calculation. Suppose the original
image (IW × IH) with N = W ×H pixels in total, the observation with M-dimension and the definition of
total sampling rate (TSR = M/N), in the normal processing of BCS, the image is divided into small blocks
with a size of B× B, each of which is sampled with the same operator. Let xi represent the vectorized
signal of the i-th block through raster scanning, and the output vector yi of BCS measurement can be
written as:

yi = ΦBxi (3)

where, ΦB is an m × n matrix with n = B2 and m = bn·TSRc. The matrix ΦB is usually taken as an
orthonormalized i.i.d Gaussian matrix. For the whole image, the equivalent sampling operator Φ in (1)
is thus a block diagonal matrix taking the following form:

Φ =


ΦB · · · 0

...
. . .

...
0 · · · ΦB

 (4)

2.3. Problems of BCS

The mentioned BCS algorithm for solving the storage space, dividing image into multiple
sub-images, reduces the scale of the measurement matrix on the one hand, and on the other hand
could be conducive to the parallel processing of the sub-images. However, BCS still has the following
problems that need to be investigated and solved:

• Most existing research papers of BCS do not perform useful analysis on image partitioning and
then segment according to the analysis result [21,22]. The common partitioning method (n = B × B)
of BCS only considers reducing the computational complexity and storage space problem without
considering the integrity of the algorithm and other potential effects, such as providing a better
foundation for subsequent sampling and reconstructing by combining the structural features and
the information entropy of the image.

• The basic sampling method used in BCS is to sample each sub-block uniformly according to the
total sampling rate (TSR), while the adaptive sampling method selects different sampling rates
according to the sampling feature of each sub-block [23]. Specifically, the detail block allocates a
larger sampling rate, and the smooth block matches a smaller sampling rate, thereby improving
the overall quality of the reconstructed image at the same TSR. But the crux is that the studies of
criteria (feature) used to assign adaptive sampling rates are rarely seen in recent articles.
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• Although there are many studies on the improvement of the BCS iterative construction
algorithm [24], few articles focus on optimizing the performance of the algorithm from the aspect
of iteration stop criterion in the image reconstruction process, especially in the noise background.

In addition, the improvement on BCS also includes blockiness elimination and engineering
implementation of the algorithm. Finally, although BCS technology still has some aspects to be solved,
due to its advantages, the technology has been widely applied to optical/remote sensing imaging,
medical imaging, wireless sensor networks, and so on [25].

3. Problem Formulation and Important Factors

3.1. Flexible Partitioning by Mean Information Entropy (MIE) and Texture Structure (TS)

Reasonable block partitioning reduces the information entropy (IE) of each sub-block to improve
the performance of the BCS algorithm at the same total sampling rate (TSR), and ultimately improves
the quality of the entire reconstructed image. In our paper, we adopt flexible partitioning with image
sub-block shape n = row× column = l× h to remove the blindness of image partitioning with the help
of texture structure (TS) and mean information entropy (MIE) instead of the primary shape n = B× B.
The expression of TS is based on the gray-tone spatial-dependence matrices and the angular second
moment (ASM) [26,27]. The value of TS is defined as follows using ASM:

gTS =
255∑
i=0

255∑
j=0

{
p(i, j, d, a)

}2

p(i, j, d, a) = P(i, j, d, a)/R
(5)

where, P(i, j, d, a) is the (i,j)-th entry in a gray-tone spatial-dependence matrix, p(i, j, d, a) is the
normalized form of P(i, j, d, a), (i, j, d, a) is the neighboring pixel pair with distance d, orientation a,
and gray value (i, j) in the image, and R denotes the number of neighboring resolution cell pairs. The
definition of MIE of the whole image is as follows:

gMIE =
1

N/n

N/n∑
i=1

(−
255∑
j=0

ei, j log2 ei, j) =
1

T1

T1∑
i=1

(−
255∑
j=0

ei, j log2 ei, j) (6)

where, ei, j is the proportion of pixels with gray value j in the i-th sub-image, and T1 is the number of
sub-images.

Suppose the flexible partitioning of BCS is reasonable, increasing the similarity between pixels
in each sub-block and reducing the MIE of the whole image sub-blocks will inevitably bring about a
decrease in the difficulty of image sampling and recovery, which means that the flexible partitioning
itself is a process of reducing order and rank. Figure 1 shows the effect on the MIE of four 256 ×
256-pixel-testing gray images with 256 gray levels by different partitioning methods when the number
of pixels per sub-image is limited to 256. The abscissa represents different 2-base partitioning modes,
the ordinate represents the MIE of the whole image in different partitioning modes. Figure 1 indicates
that images with different structures reach minimum MIE on different partitioning points which will
be used in flexible partitioning to provide a basis for block segmentation.
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Furthermore, the MIE guiding the partitioning of the image only considers the pixel level of the
image, i.e., gray scale distribution, without considering the image optimization of the spatial level,
i.e., texture structure. In fact, TS information is also very important for image restoration algorithms.
Therefore, this paper uses the method of gMIE combined with gTS to provide the basis for flexible
partitioning, that is, weighted MIE (WM) which is defined as follows:

gFB = cTS × gMIE = f (gTS) × gMIE (7)

where, cTS is the weighting coefficient, f (∗) is the weighting coefficient function, and its value is related
to the TS information gTS.

3.2. Adaptive Sampling with Variance and Local Salient Factor

The feature selection for distinguishing the detail block and the smooth block is very important
on the process of adaptive sampling. Information entropy, variance, and local standard deviation are
often used as criteria for features, respectively. The shortcomings are found in using the above features
individually as criteria for adaptive sampling, such as information entropy only reflects the probability
of gray distribution, the variance is also only related to the degree of dispersion of the pixels, and the
local standard deviation only focuses on the spatial distribution of the pixels. Secondly, the adaptive
sampling rate is mostly set using segment adaptive sampling instead of step-less adaptive sampling
in the previous literature [28], which leads to the discontinuity of sampling rate and the inadequacy
utilization of the distinguishing feature.

In order to overcome the shortcomings of individual features, this paper uses the synthetic feature
to distinguish between smooth blocks and detail blocks. The synthetic feature for adaptive sampling is
defined as:

J(xi) = L(xi)
λ1 ×D(xi)

λ2 (8)

where, D(xi) and L(xi) denote the variance and local salient factor in the i-th sub-image, and λ1 and λ2

are the corresponding weighting coefficients. The expressions of variance and local salient factor for
the sub-block are as follows:

D(xi) =
1
n

n∑
j=1

(xi j − µi)
2

L(xi) =
1
n

n∑
j=1

q∑
k=1

∣∣∣∣∣xk
i j
−xi j

∣∣∣∣∣
xi j

(9)
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where, xi j is the gray value of the j-th pixel in the i-th sub-image, µi is the gray mean of the i-th sub-block
image, xk

i j is the gray value of the k-th pixel in the salient operator domain around the center pixel xi j,
and q represents the number of pixels in the salient operator domain. The synthetic feature J(xi) can
not only reflect the degree of dispersion and relative difference of sub-image pixels, but also combines
the relationship between sensory amount and physical quantity of Weber’s Law [29].

In order to avoid the disadvantage of segmented adaptive sampling, step-less adaptive sampling
is adopted in this literature [30–32]. The key point of step-less adaptive sampling is how to select
a continuous sampling rate accurately based on the synthetic feature. The selection of continuous
sampling rates is achieved by setting the sampling rate factor (ηSR) based on the relationship between
the sensory amount and the physical quantity in Weber’s Law. The sampling rate factor (ηSR) and the
step-less adaptive sampling rate (cSR) are defined as follows:

ηSR(xi) =
log2 J(xi)

1
T1

T1∑
j=1

log2 J(x j)

(10)

cSR(xi) = ηSR(xi) × TSR (11)

where, TSR is the total sampling rate of the whole image.

3.3. Error Estimation and Iterative Stop Criterion in Reconstruction Process

The goal of the reconstruction process is to provide a good representative of the original signal:

x∗ =
[
x∗1, x∗2, · · · , x∗N

]T
, x∗ ∈ RN. (12)

Given the noisy observed output (ỹ) and finite-length sparsity (K), the performance of
reconstruction is usually measured by the similarity or the error function between x∗ and x. In
addition, the reconstruction method, whether it is a convex optimization algorithm or a non-convex
optimization algorithm, needs to solve the NP-hard problem by linear programming (LP), wherein
the number of the correlation vectors is crucial. Therefore, the error estimation and the selection of
the number of correlation vectors are two important factors of reconstruction. Especially in some
non-convex optimization restoration algorithms, such as the OMP algorithm, the selection of the
number of correlation vectors is linearly related to the number (v) of iterations of the algorithm. So, the
two points (error estimation and optimal iteration) need to be discussed below.

3.3.1. Reconstruction Error Estimation in Noisy Background

In the second section, Equation (1) was used to describe the relationship model between the
original signal and the noiseless observed signal, but the actual observation is always in the noise
background, so the observed signal in this noisy environment is as shown in the following equation:

ỹ = Φx + w = ΦΨs + w = Ωs + w (13)

where, ỹ is the observed output in the noisy environment, and w is an additive white Gaussian noise
(AWGN) with zero-mean and standard deviation σw. The M-dimension AWGN w is independent of
the signal x. Here, we discuss the reconstruction error in two steps, the first step confirms the entire
reconstruction model, and the second step derives the relevant reconstruction error.

Since the original signal (x) itself is not sparse, it is K-sparse under sparse basis (Ψ), so we have:

s = Ψ−1x, s = [s1, s2, · · · , sk, · · · , sN]
T (14)
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where, [s1, s2, · · · , sk, · · · , sN]
T is a vector of length N which only has K non-zero elements, i.e., the

remaining N-K micro elements are zero or much smaller than any of the K non-zero elements. Assuming
that the first K elements of the sparse representation s are just non-zero elements without loss of
generality, we can have:

s =
[

sK

sN−K

]
(15)

where, sK is a K dimensional vector and sN−K is a vector of length N-K. The actual observed signal
obtained by Equations (13) and (15) can be described as follows:

ỹ = y + w = Ωs + w =
[

ΩK ΩN−K
][ sK

sN−K

]
+ w = ΩKsK + ΩN−KsN−K + w (16)

where, Ω =
[
ω1 · · · ωK ωK+1 · · · ωN

]
is an M × N matrix generated of N vectors with

M-dimension.
In order to estimate the error of the recovery algorithm accurately, we define three error functions

using the l2 norm:

Original data error : ex =
1
N
‖x− x∗‖22 (17)

Observed data error : ey =
1
M
‖y− y∗‖22 (18)

Sparse data error : es =
1
N
‖s− s∗‖22 (19)

where, x∗, y∗, s∗ represent the reconstructed values of x, y, s, respectively. The three reconstructed values
are obtained by maximum likelihood (ML) estimation using l0 minimization. The number of iterations
in the restoration algorithm is v times, that is, the number of correlation vectors. In addition, in the
process of solving s∗ by using pseudo-inverse, which is based on the least-squares algorithm, the value
of v is smaller than M. Using Equations (13) and (15), the expressions of x∗, y∗, s∗ are listed as follows:

s∗ =
[

s∗v
s∗N−v

]
=

[
s∗v

0∗N−v

]
=

[
Ω+

v ỹ
0∗N−v

]
=

[
Ω+

v (Ωvsv + ΩN−vsN−v + w)

0∗N−v

]
=

[
sv + Ω+

v (ΩN−vsN−v + w)

0∗N−v

]
(20)

x∗ = Ψs∗ (21)

y∗ = Ωs∗ (22)

where, Ω+
v is the pseudo inverse of Ωv, and its expression is Ω+

v =
(
ΩT

v Ωv
)−1

ΩT
v .

Using Equations (20–22), the three error functions are rewritten as follows:

ex =
1
N
‖

[
−ΨvΩ+

v (ΩN−vsN−v + w) + ΨN−vsN−v
]
‖

2

2
(23)

ey =
1
M
‖

[
−ΩvΩ+

v (ΩN−vsN−v + w) + ΩN−vsN−v
]
‖

2

2
(24)

es =
1
N
‖

[
−Ω+

v (ΩN−vsN−v + w)

sN−v

]
‖

2

2
. (25)

According to the definition of Ψ, Ω and the RIP, we know:

es = ex (26)

(1− δK)es ≤ ey ≤ (1 + δK)es (27)
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where, δK ∈ (0, 1) represents a coefficient associated with Ω and K. According to Gershgorin circle
theorem [33], δK = (K − 1)µ(Ω) for all K < µ(Ω)−1, where µ(Ω) denotes the coherency of Ω:

µ(Ω) = max
1≤i< j≤N

∣∣∣∣〈ωi,ω j
〉∣∣∣∣

‖ωi‖2‖ω j‖2
. (28)

Using Equations (26) and (27), the boundaries of the original data error are as follows:

1
(1 + δK)

ey ≤ ex ≤
1

(1− δK)
ey. (29)

Therefore, from the above analysis, we can conclude that the three errors are consistent, and the
minimizing of the three errors is equivalent. Due to the complexity and reliability of the calculation
(ex-too complicated, es-insufficient dimensions), ey is used as the target in the optimization function of
the recovery algorithm.

3.3.2. Optimal Iterative Recovery of Image in Noisy Background

The optimal iterative recovery of image discussed in this paper refers to the case where the error
function of the image is the smallest, as can be seen from the minimization of ey in the form of l2 norm:

vopt =
{
v
∣∣∣∣ argmin

v
ey

}
(30)

argmin ey = argmin
1
M
‖GvΩN−vsN−v −Cvw‖22 (31){

Gv = I −ΩvΩ+
v

Cv = ΩvΩ+
v

(32)

while Gv is a projection matrix of rank M− v, Cv is a projection matrix of rank v. Since the projection
matrices Gv and Cv in Equation (30) are orthogonal, the inner product of the two vectors GvΩN−vsN−v

and Cvw is zero and therefore:

ey =
1
M
‖Cvw‖22 +

1
M
‖GvΩN−vsN−v‖

2
2 = ew

y + es
y (33)

According to [34], the observed data error ey is a Chi-square random variable with degree of
freedom v, and the expected value and the variance of ey are as follows:

M
σ2

w
ey ∼ χ

2
v (34)

E
(
ey

)
=

v
M
σ2

w +
1
M
‖GvΩN−vsN−v‖

2
2 (35)

var
(
ey

)
=

2v
M2

(
σ2

w

)2
(36)

The expected value of ey has two parts. The first part v
Mσ

2
w is the noise-related part, which is a

function that is positively related to the number v. The second part 1
M‖GvΩN−vsN−v‖

2
2 is a function of

the unstable micro element sN−v, which is decreased as the number v increases. Therefore, the observed
data error ey is normally called a bias-variance tradeoff.

Due to the existence of the uncertain part es
y, this results in an impossible-to-seek optimal number

of iterations vopt by solving the minimum value of ey directly. As a result, another bias-variance tradeoff
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e∗y is introduced to provide probabilistic bounds on the es
y by using the noisy output ỹ instead of

noiseless output y:

e∗y =
1
M
‖ỹ− y∗‖22 =

1
M
‖GvΩN−vsN−v + Gvw‖22. (37)

According to [35], the second observed data error e∗y is a Chi-square random variable of order
M− v, and the expected value and the variance of e∗y are as follows:

M
σ2

w
e∗y ∼ χ

2
M−v (38)

E
(
e∗y

)
=

M− v
M

σ2
w +

1
M
‖GvΩN−vsN−v‖

2
2 =

M− v
M

σ2
w + es

y (39)

var
(
e∗y

)
=

2(M− v)
M2

(
σ2

w

)2
+

4σ2
w

M2 ‖GvΩN−vsN−v‖
2
2 (40)

So, we can derive probabilistic bounds for the observed data error ey using probability distribution
of the two Chi-square random variables:

ey(p1, p2) ≤ ey ≤ ey(p1, p2) (41)

where, p1 is the confidence probability on a random variable of the observed data error ey, and p2 is
the validation probability on a random variable of the second observed data error e∗y. As both of the
two errors satisfy the Chi-square distribution, Gaussian distribution can be used to estimate them.
Therefore, confidence probability p1 and validation probability p2 can be calculated as:

p1 = Q(α) =

∫ α

−α

1
√

2π
e
−x2

2 dx (42)

p2 = Q(β) =

∫ β

−β

1
√

2π
e
−x2

2 dx (43)

where, α and β denote the tuning parameters of confidence and validation probabilities, respectively.
Furthermore, the worst case is considered when calculating the minimum value of ey, that is, by
calculating the minimum value of the upper bound of ey:

vopt =
{
v
∣∣∣∣ argmin

v
ey

}
=

{
v
∣∣∣∣ argmin

v
ey(p1, p2)

}
=

{
v
∣∣∣∣ argmin

v
ey(α, β)

}
=

{
v
∣∣∣∣ argmin

v
( 2v−M

M σ2
w + e∗y + α

√
2v

M σ2
w + βvar

(
e∗y

)
)
} (44)

Normally, based on Akaike information criterion (AIC) or Bayesian information criterion (BIC),
the optimum number of iterations can be chosen as follows:

AIC: Set α = β = 0

ey = ey(α= 0, β= 0)= (
2v
M
− 1)σ2

w + e∗y (45)

BIC: Set α =
√

v log M and β = 0.

ey = ey
(
α =

√
v log M, β= 0

)
=

 (2 + √2 log M)v
M

− 1)σ2
w + e∗y (46)

where, e∗y can be calculated based on the noisy observation data and the reconstruction algorithm.
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3.3.3. Application of Error Estimation on BCS

The proposed algorithm (FE-ABCS) is based on block-compressive sensing, so the optimal
number of iterations (vopt) derived in the above section also requires a variant to be applied to the
above algorithm:

vi
opt =

{
vi
∣∣∣∣∣ argmin

vi
eyi

}
=

{
vi
∣∣∣∣∣ argmin

vi
eyi(p

i
1, pi

2)

}
=

{
vi
∣∣∣∣∣ argmin

vi
eyi(αi, βi)

}
=

{
vi
∣∣∣∣∣ argmin

vi
( 2vi
−mi+αi

√

2vi

mi σ2
wi + βivar

(
e∗yi

)
+ e∗yi

)

} (47)

where, i = 1, 2, · · · , T1 represents the serial number of all sub-images. Similarly, the values of αi and βi
can be valued according to the AIC and BIC criteria.

4. The Proposed Algorithm (FE-ABCS)

With the knowledge presented in the previous section, the altered ABCS (FE-ABCS) is proposed
for the recovery of block sparse signals in noiseless or noise backgrounds. The workflow of the
proposed algorithm is presented in Section 4.1 while the specific parameter settings of the proposed
algorithm is introduced in Section 4.2.

4.1. The Workflow and Pseudocode of FE-ABCS

In order to better express the idea of the proposed algorithm, the workflow of the typical BCS
algorithm and the FE-ABCS algorithm are presented, as shown in Figure 2.
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opt y
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// calculate optimal iterative of sub-images 
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optj v=    do 
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r w∧ = ; 

25:      { }A A= ∪ ∧ ; 

26:      [ ](:, ) (:, )i i i ir y A A y+= − Ω Ω   ; 

27:     end for 

28:  [ ](:, )i i is A y+∗ = Ω  ; 

// is
∗ --reconstructed sparse representation 

29:  *
i ix s∗= Ψ ; 

// ix
∗ --reconstructed original signal 

30: end for 

Figure 2. The workflow of two block-compressive sensing (BCS) algorithms. (a) Typical BCS algorithm,
(b) FE-ABCS algorithm.

According to Figure 2, compared with the traditional BCS algorithm, the main innovations of this
paper can be reflected in the following points:

• Flexible partitioning: using the weighted MIE as the block basis to reduce the average complexity
of the sub-images from the pixel domain and the spatial domain;
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• Adaptive sampling: adopting synthetic feature and step-less sampling to ensure a reasonable
sample rate for each subgraph;

• Optimal number of iterations: using the error estimate method to ensure the minimum error
output of the reconstructed image in the noisy background.

Furthermore, since the FE-ABCS algorithm is based on iterative recovery algorithm, especially the
non-convex optimization iterative recovery algorithm, this paper uses the OMP algorithm as the basic
comparison algorithm without loss of generality. The full pseudocode of the proposed algorithm is
presented as follows.
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 
1
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1

2
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( , 1, , )

1
log ( )

i

i T

i

i

J x i T
x i T

J x
T






 


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15:      1, , , , , :
i

T

n i irandperm n         ; 

16:     1 1, 1, , ( 1, , ,:), 1, ,
ii ii T m i T     ; 

17:    1 1, 1, , , 1, ,i i iy i T x i T    ; 

step3: restoring based on error estimation 

18:   1 1, 1, , , 1, ,i i iy i T y w i T    ; 

// : 0, : i i idimension AWw m w noiseN ssG le   

19:    1 1, 1, , , 1, ,i ii T i T      ; 

20: for i = 1,…,T1 do 

21:    *

1, , , , , 0n

i i in ir y A s      ; 

// , 1, ,ij j n  -- column vector of i  

22:   argmin
i i

i i

opt y
v

v v e ; 

// calculate optimal iterative of sub-images 

23:    for 1, , i

optj v   do 

24:      argmin , ij
j

r w  ; 

25:       A A   ; 

26:       (:, ) (:, )i i i ir y A A y


   ; 

27:     end for 

28:   (:, )i i is A y
   ; 

// is


--reconstructed sparse representation 

29:  
*

i ix s  ; 

// ix
--reconstructed original signal 

30: end for 

31:    * * * *

1, 1, , , , ,i rx x i T I x l h   ; 

// rI 
--reconstructed image without filter 

step4: multimode filtering (MF) 

32:  *if BEI BEI ; //
* hreshod o block ef f tBEI T fec  

33:  
* *( )r rI deblock I ； 

34: end if  

35:  *if TSR TSR ; //
* hreshod oTSR T Rf TS  

36:  
* *( )F rI wienerfilter I ; 

37: 
* *( )F relse I medfilter I ; 

38: end if  

39: 
* *

FI I  

// I  --reconstructed image with MF 

4.2. Specific Parameter Setting of FE-ABCS 

4.2.1. Setting of the Weighting Coefficient TSc  

The most important step in achieving flexible partitioning is to the minimum of the weighted 

MIE, where the design of the weighting coefficient function is the most critical point. Therefore, this 

section focuses on the specific design of the function which ensures optimal partitioning of the image: 
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4.2. Specific Parameter Setting of FE-ABCS

4.2.1. Setting of the Weighting Coefficient cTS

The most important step in achieving flexible partitioning is to the minimum of the weighted
MIE, where the design of the weighting coefficient function is the most critical point. Therefore, this
section focuses on the specific design of the function which ensures optimal partitioning of the image:

cTS = f (gTS) =
{
( f (gTS)) j, 1, · · · , T2

}
=

{
( f ([gH

TS, gV
TS])) j, 1, · · · , T2

}

=


ones(1, T2) gH

TS ≤ GTS&gV
TS ≤ GTS

[0, 1, · · · , b]/(b/2) gH
TS ≤ GTS&gV

TS > GTS

[b, · · · , 1, 0]/(b/2) gH
TS > GTS&gV

TS ≤ GTS
[b,log(n/2+2)

2 ,log(n/4+4)
2 ,··· ,log(4+n/4)

2 ,log(2+n/2)
2 ,b]

b/2+1 gH
TS > GTS&gV

TS > GTS

(48)

where, gH
TS and gV

TS represent the value of horizontal and vertical TS by using ASM, and GTS represents
the threshold at which the TS feature value reaches a significant degree.

4.2.2. Setting of the Adaptive Sampling Rate cSR

In the process of adaptive observation, the most important thing is to design a reasonable random
observation matrix, and the dimension of this matrix needs to be constrained by the adaptive sampling
rate, so as to assign the different sampling of each sub-image with a different complexity. Therefore,
the setting of cSR =

{
cSR(xi), i = 1, · · · , T1

}
is crucial, and its basic form is mainly determined by the

synthetic feature (J =
{
J(xi), i = 1, · · · , T1

}
) and the sampling rate factor (ηSR =

{
ηSR(xi), i = 1, · · · , T1

}
).

The definition of J(xi) can be implemented by setting the corresponding weighting coefficients
λ1 andλ2. This article obtains the optimization values for λ1 andλ2 through analysis and partial
verification experiments: λ1 = 1 andλ2 = 2.

The purpose of setting ηSR(xi) is to establish the mapping function relationship between J(xi)

and cSR by Equations (10) and (11). However, the mapping relationship established by Equation (10)
does not consider the minimum sampling rate. In fact, the minimum sampling rate factor (MSRF) is
considered in the proposed algorithm to improve performance, that is, the function between ηSR(xi)

and J(xi) should be modified as follows.

• Initial value calculation of ηSR(xi): get the initial value of the sampling factor by Equation (10).
• Judgment of ηSR(xi) through MSRF (ηmin): if the corresponding sampling rate factor of all image

sub-blocks meets the minimum threshold requirement (ηSR(xi) > ηmin, i ∈ {1, 2, · · · , T1}), there is
no need for modification, however, if it is not satisfied, modify it.

• Modifying of ηSR(xi): if ηSR(xi) ≤ ηmin, then ηSR(xi) = ηmin; if ηSR(xi) > ηmin, then use the
following equation to modify the value:

ηSR(xi) == (1 + (1− ηmin)
T1 − T1

′

T1
′

)
log2 J(xi)

1
T1
′

T′1∑
j=1

log2 J(x j)

(49)

where, T1
′ is the number of sub-images that can meet the requirement of the minimum threshold.



Electronics 2019, 8, 753 13 of 26

4.2.3. Setting of the Iteration Stop Condition vopt

The focus of the proposed algorithm in the iterative reconstruction part is to make the best effect
of the rebuilt image by choosing vopt in the actual noisy background. This paper combines BIC and
BCS to propose the calculation formula of the optimal iteration number of the proposed algorithm:

vopt =
{
vi

opt, i = 1, · · · , T1
}
=

vi

∣∣∣∣∣∣ argmin
vi

(
(2 +

√
2 log mi)vi

−mi

mi σ2
wi + e∗yi

) , i = 1, · · · , T1

. (50)

5. Experiments and Results Analysis

In order to evaluate the FE-ABCS algorithm, experimental verification is performed in three
scenarios. This paper first discusses the performance of the improved algorithm by flexible partitioning
and adaptive sampling in the absence of noise, and secondly discusses how to combine the number of
optimal iterations to eliminate the noise effect and achieve the best quality (comprehensive indicator)
under noisy conditions. Finally, the differences between this proposed algorithm and other non-CS
image compression algorithms is analyzed. The experiments were carried out in the matlab2016b
software environment, and 20 typical grayscale images with 256 × 256 resolution were used for testing,
which were selected from the LIVE Image Quality Assessment Database, the SIPI Image Database,
the BSDS500 Database, and other digital image processing standard test Databases. The performance
indicators mainly adopt Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), Gradient
Magnitude Similarity Deviation (GMSD), Block Effect Index (BEI), and Computational Cost (CC). The
above five performance indicators are defined as follows:

The PSNR indicator is an index that shows the amplitude error between the reconstructed image
and the original image, which is the most common and widely used objective measure of image quality:

PSNR = 20× log10(
255√

1
N

N∑
i=1

(xi − x∗i )
2

) (51)

where, xi and x∗i are the gray value of i-th sub-image of the reconstructed image and the original image.
The SSIM indicator is adopted to indicate similarity between the reconstructed image and the

original image:

SSIM =
(2µxµx∗ + c1)(2σxx∗ + c2)

(µ2
x + µ2

x∗ + c1)(σ2
x + σ2

x∗ + c2)
(52)

where, µx and µx∗ are the mean of x and x*, σx and σx∗ are the standard deviation of x and x*, σxx∗

represents the covariance of x and x*, constant c1 = (0.01L)2 and c2 = (0.03L)2, and L is the range of
pixel values.

The GMSD indicator is mainly used to characterize the degree of distortion of the reconstructed
image. The larger the value, the worse the quality of the reconstructed image:

GMSD = std(
{
GMS(i)|i = 1, · · · , N

}
) = std(

 2mx(i)mx∗(i) + c3

m2
x(i) + m2

x∗(i) + c3
|i = 1, · · · , N

) (53)

where, std(∗) is the standard deviation operator, GMS is the gradient magnitude similarity between x and

x*, mx(i) =

√
(hH ⊗ x(i))2 + (hV ⊗ x(i))2 and my(i) =

√
(hH ⊗ x∗(i))2 + (hV ⊗ x∗(i))2 are the gradient

magnitude of x(i) and x*(i), hH and hV represent the Prewitt operator of horizontal and vertical direction,
and c3 is an adjustment constant.
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The main purpose of introducing BEI is to evaluate the blockiness of the algorithm in a noisy
condition, which means that the larger the value, the more obvious the block effect:

BEI = log2

 sum(edge(x∗)) − sum(edge(x)) + sum(
∣∣∣edge(x∗) − edge(x)

∣∣∣)
2

 (54)

where, edge(∗) denotes the edge acquisition function of the image, sum(∗) represents the function of
finding the number of all edge points of the image, and |∗| is an absolute value operator.

The Computational Cost is introduced to measure the efficiency of the algorithm, which is usually
represented by Computation Time (CT). The smaller the value of CT, the higher the efficiency of
the algorithm:

CT = tend − tstart (55)

where, tstart and tend indicate the start time and end time, respectively.
In addition, the sparse basis and the random measurement matrices use discrete cosine orthogonal

basis and orthogonal symmetric Toeplitz matrices [36,37], respectively.

5.1. Experiment and Analysis without Noise

5.1.1. Performance Comparison of Various Algorithms

In order to verify the superiority of the proposed ABCS algorithm, this paper mainly uses the
OMP algorithm as the basic reconstruction algorithm. Based on the OMP reconstruction algorithm,
eight BCS algorithms (including the proposed algorithm with the idea of flexible partitioning and
adaptive sampling) are listed, and the performance of these algorithms under different overall sampling
rates is compared, which is shown in Table 1. In this experiment, four normal grayscale standard
images are used for performance testing, the dimension of the subgraph and the iterative number of
reconstructions are limited to 256 and one quarter of the measurement’s dimension, respectively.

These 8 BCS algorithms are named as M-B_C, M-B_S, M-FB_MIE, M-FB_WM, M-B_C-A_S,
M-FB_WM-A_I, M-FB_WM-A_V, and M-FB_WM-A_S respectively, which in turn represent BCS with
a fixed column block, BCS with a fixed square block, BCS with flexible partitioning by MIE, BCS
with flexible partitioning by WM, BCS with a fixed column block and IE-adaptive sampling, BCS
with WM-flexible partitioning and IE-adaptive sampling, BCS with WM-flexible partitioning and
variance-adaptive sampling, and BCS with WM-flexible partitioning and SF-adaptive sampling (A
form of FE-ABCS algorithm in the absence of noise). Comparing the data in Table 1, there are the
following consensuses:

• Analysis of the performance indicators of the first four algorithms shows that for the BCS algorithm,
BCS with a fixed column block is inferior to BCS with a fixed square block because square
partitioning makes good use of the correlation of intra-block regions. MIE-based partitioning
minimizes the average amount of information entropy of the sub-images. However, when the
overall image has obvious texture characteristics, simply using MIE as the partitioning basis may
not necessarily achieve a good effect, and the BCS algorithm based on weighted MIE combined
with the overall texture feature can achieve better performance indicators.

• Comparing the adaptive BCS algorithms under different features in Table 1, variance has obvious
superiority to IE among the single features, because the variance not only contains the dispersion of
gray distribution but also the relative difference of the individual gray distribution of sub-images.
In addition, the synthetic feature (combined local saliency) has a better effect than a single feature.
The main reason for this is that the synthetic feature not only considers the overall difference of
the subgraphs, but also the inner local-difference of the subgraphs.

• Combining experimental results of the eight BCS algorithms in Table 1 reveals that using adaptive
sampling or flexible partitioning alone does not provide the best results, but the proposed
algorithm combining the two steps will have a significant effect on both PSNR and SSIM.
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Table 1. The Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) of reconstructed
images with eight BCS algorithms based on OMP. (TSR = total sampling rate).

Images Algorithms
TSR = 0.2 TSR = 0.3 TSR = 0.4 TSR = 0.5 TSR = 0.6

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Lena

M-B_C 29.0945/0.7684 29.8095/0.8720 30.6667/0.9281 31.8944/0.9572 32.9854/0.9719
M-B_S 31.1390/0.8866 31.7478/0.9227 32.4328/0.9480 33.2460/0.9651 34.2614/0.9763
M-FB_MIE 30.7091/0.8613 31.2850/0.9115 32.0093/0.9413 32.9032/0.9600 33.8147/0.9737
M-FB_WM 31.1636/0.8880 31.7524/0.9236 32.4623/0.9479 33.2906/0.9645 34.2691/0.9763
M-B_C-A_I 29.1187/0.7838 29.8433/0.8803 30.8898/0.9305 32.0023/0.9577 33.2193/0.9732
M-FB_WM-A_I 31.1763/0.8967 31.8872/0.9344 32.7542/0.9584 33.7353/0.9732 34.8647/0.9827
M-FB_WM-A_V 31.2286/0.9087 32.0579/0.9433 33.0168/0.9643 34.1341/0.9775 35.4341/0.9856
M-FB_WM-A_S 31.3609/0.9138 32.0943/0.9487 33.1958/0.9681 34.3334/0.9807 35.8423/0.9878

Goldhill

M-B_C 28.4533/0.7747 28.9144/0.8718 29.3894/0.9080 29.7706/0.9315 30.2421/0.9495
M-B_S 29.5494/0.8785 29.9517/0.9089 30.3330/0.9341 30.8857/0.9514 31.4439/0.9640
M-FB_MIE 29.7012/0.8882 29.9811/0.9154 30.4465/0.9364 30.9347/0.9516 31.5153/0.9642
M-FB_WM 29.7029/0.8867 30.0277/0.9151 30.4827/0.9361 30.9555/0.9516 31.5333/0.9649
M-B_C-A_I 28.4436/0.7809 28.8691/0.8693 29.3048/0.9089 29.7046/0.9321 30.2355/0.9499
M-FB_WM-A_I 29.6708/0.8918 30.0833/0.9215 30.5120/0.9424 31.0667/0.9574 31.6899/0.9697
M-FB_WM-A_V 29.5370/0.8957 30.0891/0.9253 30.5379/0.9456 31.0922/0.9607 31.8011/0.9724
M-FB_WM-A_S 29.7786/0.8975 30.1482/0.9272 30.5689/0.9472 31.1310/0.9622 31.8379/0.9736

Cameraman

M-B_C 28.5347/0.7787 29.0078/0.8559 29.3971/0.9051 29.9417/0.9379 30.6612/0.9592
M-B_S 31.1796/0.8763 31.4929/0.9121 31.9203/0.9391 32.3009/0.9581 32.7879/0.9704
M-FB_MIE 31.1487/0.8782 31.5067/0.9123 31.8644/0.9403 32.3170/0.9577 32.7946/0.9703
M-FB_WM 31.2118/0.8675 31.4645/0.9072 31.8130/0.9365 32.2050/0.9559 32.6811/0.9686
M-B_C-A_I 28.5669/0.7852 28.8807/0.8612 29.3928/0.9164 29.9924/0.9461 30.6130/0.9639
M-FB_WM-A_I 31.2554/0.8901 31.5975/0.9296 32.0955/0.9533 32.6859/0.9701 33.4007/0.9802
M-FB_WM-A_V 31.2869/0.9085 31.8762/0.9550 32.5052/0.9746 33.3531/0.9848 34.4449/0.9904
M-FB_WM-A_S 31.3916/0.9287 31.9731/0.9621 32.6508/0.9790 33.6779/0.9877 34.8958/0.9918

Couple

M-B_C 28.6592/0.7582 29.0162/0.8557 29.5471/0.9109 30.2260/0.9440 30.9136/0.9640
M-B_S 30.1529/0.8912 30.6910/0.9289 31.2853/0.9541 31.9693/0.9695 32.7464/0.9796
M-FB_MIE 30.1920/0.8895 30.7257/0.9282 31.2948/0.9531 31.9509/0.9692 32.7424/0.9794
M-FB_WM 30.1357/0.8917 30.6890/0.9259 31.3185/0.9539 31.9520/0.9691 32.7622/0.9793
M-B_C-A_I 28.5694/0.7428 29.0442/0.8589 29.5828/0.9088 30.2127/0.9444 30.9839/0.9642
M-FB_WM-A_I 30.2105/0.9027 30.7783/0.9413 31.4680/0.9630 32.3143/0.9759 33.2604/0.9840
M-FB_WM-A_V 30.1896/0.9099 30.8541/0.9454 31.4990/0.9670 32.3769/0.9792 33.3260/0.9864
M-FB_WM-A_S 30.3340/0.9117 30.9047/0.9475 31.5496/0.9686 32.3788/0.9798 33.3561/0.9869

Figure 3 shows the reconstructed images of Cameraman using the above eight BCS algorithms
and multimode filter at the overall sampling rate of 0.5. Compared with other algorithms, the graph
(i) reconstructed by the proposed algorithm has good quality both in performance indicators and
subjective vision. Adding multimode filtering has improved the performance of the above eight
BCS algorithms. While comparing the corresponding data (SR = 0.5) in Figure 3 and Table 1, it was
found that PSNR has a certain improvement after adding multimode filtering, and so as to SSIM
under the first six BCS algorithms except the latter two algorithms. The reason is that the adaptive
sampling rates of the latter two algorithms are both related to the variance (the more variance, the
more sampling rate), and SSIM is related to both the variance and the covariance. In addition, to
filter out high-frequency noise, the filtering process will also lose some high-frequency components (a
contribution to the improvement of SSIM) of signal itself. Therefore, the latter two algorithms will
reduce the value of SSIM for images with a lot of high-frequency components (SSIM value of graph
(h) and (i) of Figure 3 is a little smaller than the corresponding value in Table 1), but for most images
without lots of high-frequency information, the value of SSIM is improved.
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Figure 3. Reconstructed images of Cameraman and performance indicators with different BCS
algorithms (TSR = 0.5).

Secondly, in order to evaluate the effectiveness and universality of the proposed algorithm, in
addition to the OMP reconstruction algorithm as the basic comparison algorithm, the IRLS and BP
reconstruction algorithms were also adopted and combined with the proposed method to generate
eight BCS algorithms, respectively. Table 2 shows the experimental data records of the above two types
of algorithms tested with the standard image Lena. From the resulting data, the proposed method has
a certain improvement for the BCS algorithm based on IRLS and BP, although it will bring a slightly
higher cost in computation time due to the increase of the proposed algorithm’s complexity itself.
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Table 2. The PSNR and SSIM of reconstructed images with eight BCS algorithms based on iteratively
reweighted least square (IRLS) and basis pursuit (BP).

Restoring
Method Algorithms

TSR = 0.4 TSR = 0.6

PSNR SSIM GMSD CT PSNR SSIM GMSD CT

IRLS

R-B_C 32.38 0.9361 0.1943 5.729 33.42 0.9790 0.1348 13.97
R-B_S 32.67 0.9634 0.1468 5.928 35.08 0.9843 0.0987 14.94
R-FB_MIE 32.14 0.9593 0.1658 5.986 34.44 0.9825 0.1094 13.79
R-FB_WM 32.46 0.9631 0.1441 6.071 34.80 0.9841 0.0992 14.25
R-B_C-A_I 30.55 0.9460 0.1882 6.011 34.08 0.9825 0.1238 14.46
R-FB_WM-A_I 33.05 0.9714 0.1346 6.507 36.01 0.9894 0.0863 14.98
R-FB_WM-A_V 33.25 0.9751 0.1216 6.994 36.71 0.9914 0.0691 17.34
R-FB_WM-A_S 33.59 0.9787 0.1188 7.456 37.23 0.9927 0.0661 19.38

BP

P-B_C 30.56 0.9380 0.1984 33.47 33.35 0.9787 0.1378 69.67
P-B_S 32.72 0.9638 0.1484 34.22 34.61 0.9823 0.1072 71.00
P-FB_MIE 32.00 0.9531 0.1627 34.04 34.14 0.9810 0.1149 68.78
P-FB_WM 32.82 0.9635 0.1512 35.08 34.57 0.9832 0.1070 69.48
P-B_C-A_I 30.72 0.9428 0.1973 33.84 33.57 0.9795 0.1335 70.27
P-FB_WM-A_I 33.01 0.9705 0.1442 35.63 35.70 0.9884 0.0888 70.73
P-FB_WM-A_V 33.32 0.9750 0.1277 36.98 36.37 0.9909 0.0742 72.59
P-FB_WM-A_S 33.49 0.9773 0.1210 37.85 37.45 0.9932 0.0662 74.41

Furthermore, comparative experiments of the proposed algorithm combined with different image
reconstruction algorithms (OMP, IRLS, BP, and SP) have also been carried out. Figure 4 is the data
record of the above experiments tested with the standard image Lena under the conditions of TSR
= 0.4 and TSR = 0.6, respectively. The experimental data shows that the proposal using these four
algorithms has little difference between the PSNR and SSIM performance index. However, in terms of
the GMSD index, the IRLS and BP algorithms are obviously better than the OMP and SP. In terms of
calculation time, BP is based on the l1 norm, its performance is significantly worse than the other three,
which is also consistent with the content of Section 1.Electronics 2019, 8, x FOR PEER REVIEW 18 of 27 
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5.1.2. Parametric Analysis of the Proposed Algorithm

The main points of this proposed algorithm involves the design and verification of weighting
coefficients (cTS, λ1, λ2) and minimum sampling rate factor (ηmin). The design of the three weighting
coefficients of the algorithm in this paper was introduced in Section 4.2, and its effect on performance
was reflected in the comparison of the eight algorithms in Section 5.1.1. Here, only the selection
and effect of ηmin need to be researched, and the influence of ηmin on the PSNR under different TSR
is analyzed.

Figure 5 shows the analysis results of the test image Lena on the correlation between PSNR, TSR,
and MSRF (ηmin). It can be seen from Figure 5 that the optimal value (maximizing the PSNR of Lena’s
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recovery image) of minimum sampling rate factor (OMSRF) decreases as the TSR increases. In addition,
the gray value in Figure 5 means the revised PSNR of the recovery image (PSNR∗= PSNR−PSNR).
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Then, many other test images were analyzed in this paper to verify the relationship between TSR

and OMSRF (ηopt =

ηmin

∣∣∣∣∣∣argmax
ηmin

(PSNR(x, ηmin))

), and the experimental results of eight typical test

images are shown in Figure 6. According to the data, the reasonable setting of MSRF (ηopt) in the
algorithm can be obtained by the curve fitting method. The baseline fitting method (a simple curve
method) is used in the proposed algorithm of this article (ηopt = 0.1 + 6× (0.8− TSR)/7).Electronics 2019, 8, x FOR PEER REVIEW 19 of 27 
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5.2. Experiment and Analysis Under Noisy Conditions

5.2.1. Effect Analysis of Different Iteration Stop Conditions on Performance

In the case of noiseless, the larger the iterative number (v) of the reconstruction algorithm, the
better the effect of the reconstructed image. But in the noisy condition, the quality of the reconstructed
image does not become monotonous with the increase of v, which has been carefully analyzed in
Section 3.3. The usual iteration stop conditions are: (1) using the sparsity (ς) of signal as the stopping
condition, i.e., fixed number of iterations (vstop1 = ς·m), and (2) using the certain differential threshold
(γ) of the recovery value as the stopping condition, i.e., the difference between the adjacent two

results of the iterative output less than the threshold (vstop2 ==
{

v
∣∣∣∣argmin

v

(
‖y∗

v−1
− y∗v‖ ≤ γ

)}
). Since
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the above two methods could not guarantee the optimal recovery of the original signal in the noisy
background, the innovation of the FE-ABCS algorithm is to make up for the above deficiency and
propose a constraint (vopt) based on error analysis to ensure the best iterative reconstruction. Then
the rationality of the proposed scheme would be verified through experiments in this section, and
without loss of generality, OMP is used as the basic reconstruction algorithm, just like what was done
in Section 5.1.

The specific experimental results of test image Lena for selecting different iteration stop conditions
under different noise backgrounds are recorded in Table 3. The value of Noise-std represents the
standard deviation of additional Gaussian noise signal. From the overall trend of Table 3, selecting
vopt has better performance than selecting vstop1 as the stop condition for iterative reconstruction. This
advantage is especially pronounced as the Noise-std increases.

Table 3. The experimental results of Lena at different stop conditions and noise background (TSR = 0.4).

Sparsity
vς=0.1 vς=0.2 vς=0.3 vς=0.4 vς=0.5 vopt

Noise-std
PSNR and SSIM and GMSD and BEI and CT

5

32.95 32.71 32.39 32.12 31.96 32.48
0.961 0.965 0.961 0.957 0.955 0.960
0.165 0.160 0.169 0.173 0.178 0.171
10.63 10.25 10.04 9.92 9.98 10.09
0.741 0.949 1.166 1.567 1.911 1.481

10

32.40 31.81 31.30 31.07 30.92 32.23
0.957 0.955 0.949 0.941 0.937 0.956
0.169 0.179 0.190 0.194 0.200 0.177
10.29 10.04 10.14 10.15 10.20 10.21
0.741 0.922 1.233 1.637 1.961 0.926

15

31.63 30.87 30.46 30.27 30.12 31.81
0.948 0.937 0.926 0.917 0.912 0.949
0.180 0.202 0.213 0.220 0.223 0.185
10.32 10.25 10.32 10.38 10.39 10.25
0.727 0.933 1.154 1.550 2.063 0.798

20

30.97 30.08 29.83 29.66 29.61 31.48
0.936 0.916 0.898 0.887 0.879 0.941
0.197 0.219 0.236 0.244 0.247 0.191
10.45 10.34 10.39 10.43 10.43 10.50
0.720 0.914 1.203 1.476 2.348 0.739

30

30.03 29.34 29.04 28.94 28.89 30.75
0.901 0.862 0.832 0.816 0.803 0.920
0.227 0.257 0.266 0.272 0.275 0.204
10.59 10.52 10.54 10.55 10.67 10.62
0.901 0.947 1.237 1.500 1.996 0.690

40

29.38 28.77 28.57 28.50 28.45 30.14
0.856 0.795 0.756 0.734 0.717 0.899
0.252 0.277 0.286 0.290 0.291 0.221
10.79 10.57 10.71 10.68 10.67 10.72
0.736 0.791 1.169 1.534 2.047 0.678

In addition, in order to comprehensively evaluate the impact of different iteration stop conditions
on the performance of reconstructed images, this paper combined the above three indicators to form a
composite index PSB (PSB = PSNR × SSIM/BEI) for evaluating the quality of reconstructed images.
The relationship between PSB and Noise-std of the reconstructed image under different iterations
was researched in this article, so as to explore the relationship between PSB and TSR. Figure 7 shows
the corresponding relationship between the PSB, Noise-std, and TSR under the above six different
iteration stop conditions of Lena. It can be seen from Figure 7a that compared with the other five
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sparsity-based (ς) reconstruction algorithms, the vopt-based error analysis reconstruction algorithm
generally has relatively good performance under different noise backgrounds. Similarly, Figure 7b
shows that the vopt-based error analysis reconstruction algorithm has advantages over other algorithms
at different total sampling rates.
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Furthermore, the differential threshold (γ)-based reconstruction algorithm and the vopt-based error
analysis reconstruction algorithm were compared in this article. Two standard test images and two
real-nowadays images are adopted for the comparative experiment at the condition of Noise-std = 20
and TSR = 0.5. Experimental results show that the vopt-based error analysis reconstruction algorithm
has a significant advantage over the γ-based reconstruction algorithm in both PSNR and PSGBC
(another composite index: PSGBC = PSNR × SSIM/GMSD/BEI/CT), which can be seen from Table 4,
although there is a slight loss in BEI. Figure 8 shows the reconstruction images of these four images
with differential threshold (γ) and error analysis (vopt) as the iterative stop condition.

Table 4. The performance indexes of test images under different iterative stop condition.

Images Lena Baboon Flowers Oriental
Gate

Index
Stop

Condition

γ = 300

32.17 29.84 31.40 33.05 PSNR
0.9562 0.8703 0.9744 0.9698 SSIM
0.1661 0.2095 0.1812 0.1636 GMSD
10.16 10.72 9.866 8.845 BEI

0.8310 0.855 0 0.844 0 1.050 CT
21.93 13.52 20.28 21.09 PSGBC

γ =1

31.99 29.75 31.50 32.66 PSNR
0.9574 0.8731 0.9768 0.9693 SSIM
0.1638 0.1738 0.1571 0.1459 GMSD
10.01 10.58 9.583 8.745 BEI
2.905 2.704 2.823 3.578 CT
6.429 5.224 7.240 6.934 PSGBC

vopt

32.75 30.03 31.78 33.15 PSNR
0.9603 0.8729 0.9771 0.9637 SSIM
0.1471 0.1956 0.1538 0.1471 GMSD
9.898 10.68 9.693 9.025 BEI

0.7630 0.8900 0.8500 0.8740 CT
28.31 14.10 24.50 27.53 PSGBC
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TSR = 0.5.

5.2.2. Impact of Noise-Std and TSR on vopt

Since vopt is important to the proposed algorithm in this paper, it is necessary to analyze its
influencing factors. According to Equation (44), vopt is mainly determined by the measurement
dimension of the signal and the added noise intensity under the BIC condition. In this section, the test
image Lena is divided into 256 sub-images, and the relationship between the optimal iterative recovery
stop condition (vi

opt) of each sub-image, the TSR and the Noise-std is analyzed, and the experimental
results are recorded in Figure 9. It can be seen from Figure 9a that the correlation between vopt and TSR
is small, but it can be seen from Figure 9b that vopt has a strong correlation with Noise-std, that is, the
larger the Noise-std, the smaller the vopt.
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5.3. Application and Comparison Experiment of FE-ABCS Algorithm in Image Compression

5.3.1. Application of FE-ABCS Algorithm in Image Compression

Although the FE-ABCS algorithm belongs to the CS theory which is mainly used for reconstruction
of sparse images at low sampling rates, the algorithm can also be used for image compression after
modification. The purpose of conventional image compression algorithms (such as JPEG, JPEG2000,
TIFF, and PNG) is to reduce the amount of data and maintain a certain image quality through
quantization and encoding. Therefore, the quantization and encoding module are added to the
FE-ABCS in Figure 2b to form a new algorithm for image compression, which is shown in Figure 10
and named FE-ABCS-QC.
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In order to demonstrate the difference between the proposed algorithm and the traditional image
compression, without loss of generality, the JPEG2000 algorithm is selected as the comparison algorithm
and is shown in Figure 11. Comparing Figures 10 and 11, it is found that the modules of FDWT and
IDWT in the JPEG2000 algorithm are replaced by the observing module and the restoring module in
the proposal respectively, and the dimensions of the input and output signals are both different in
the observing and restoring module (M < T1 × n = N), that is different from the modules of FDWT
and IDWT in which dimensions of the input and output signals are the same (both T1 × n = N). These
differences make the proposed algorithm have a larger compression ratio (CR) and smaller bits per
pixel (bpp) than JPEG2000 under the same quantization and encoding conditions.
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5.3.2. Comparison Experiment between the Proposed Algorithm and the JPEG2000 Algorithm

In general, the evaluation of image compression algorithms is performed by rate-distortion
performance. For the comparing of the FE-ABCS-QC and JPEG2000 algorithms, the indicators of PSNR,
SSIM, and GMSD are adopted in this section. In addition, the definition of Rate (bpp) in the above two
algorithms is as follows:

Rate =
K∗

N
(56)

where, K* is the number of bits in the code stream after encoding, and N is the number of pixels in the
original image.

In order to compare the performance of the above two algorithms, multiple standard images are
tested, and Table 5 records the complete experimental data for the two algorithms at various rates
when using Lena and Monarch as test images. At the same time, the relationship between PSNR (used
as the main distortion evaluation index) and the Rate of the two test images is illustrated in Figure 12.
Based on the objective data of Table 5 and Figure 12, it can be seen that, compared with the JPEG2000
algorithm, the advantage of the FE-ABCS-QC algorithm becomes stronger with the increase of the rate,
that is, at the small rate, the JPEG2000 algorithm is superior to the FE-ABCS-QC algorithm, while at
medium and slightly larger rates, the JPEG2000 algorithm is not as good as the FE-ABCS-QC algorithm.

Table 5. The comparison results of different test-images under the various conditions (bits per pixel
(bpp)) based on the JPEG2000 algorithm and the FE-ABCS-QC algorithm.

Method
JPEG2000

(PSNR/SSIM/GMSD)
FE-ABCS-QC

(PSNR/SSIM/GMSD)
∆P/∆S/∆GTest Image

Lena

bpp = 0.0625 31.64/0.9387/0.1842 30.58/0.7341/0.2478 −1.06/−0.2046/0.0636
bpp = 0.125 33.38/0.9697/0.1399 32.79/0.9413/0.1702 −0.59/−0.0284/0.0303
bpp = 0.2 34.59/0.9807/0.1161 34.20/0.9710/0.1339 −0.39/−0.0097/0.0178
bpp = 0.25 35.25/0.9850/0.0996 37.80/0.9932/0.0612 2.55/0.0082/−0.0384
bpp = 0.3 35.73/0.9875/0.0917 38.28/0.9941/0.0554 2.55/0.0066/−0.0363

Monarch

bpp = 0.0625 30.56/0.8184/0.2335 27.52/0.3615/0.2726 −3.04/−0.4569/0.0391
bpp = 0.125 31.31/0.9074/0.1881 29.12/0.6388/0.2568 −2.19/−0.2686/0.0687
bpp = 0.2 32.49/0.9466/0.1554 32.91/0.9473/0.1507 0.42/0.0007/−0.0047
bpp = 0.25 32.81/0.9572/0.1476 35.77/0.9886/0.0682 2.96/0.0314/−0.0794
bpp = 0.3 33.40/0.9679/0.1305 36.17/0.9896/0.0664 2.77/0.0217/−0.0641
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Finally, the following conclusions could be gained by observing experimental data and 
theoretical analysis. 

• Small Rate (bpp): the reason why the performance of the FE-ABCS-QC algorithm is worse than 
the JPEG2000 algorithm at this condition is that the small value of M which changes with Rate 
causes the observing process to fail to cover the overall information of the image. 

• Medium or slightly larger Rate (bpp): the explanation for the phenomenon that the performance 
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certain image compression ratio to generate a better basis for quantization and encoding. 

• Large Rate (bpp): this case of the FE-ABCS-QC algorithm is not considered because the algorithm 
belongs to the CS algorithm and requires M << N itself. 
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Based on the traditional block-compression sensing theory model, an improved algorithm (FE-
ABCS) was proposed in this paper, and its overall workflow and key points were specified. 
Compared with the traditional BCS algorithm, firstly, a flexible partition was adopted in order to 
improve the rationality of partitioning in the proposed algorithm, secondly the synthetic feature was 
used to provide a more reasonable adaptive sampling basis for each sub-image block, and finally 

Figure 12. Rate-distortion performance for JPEG2000 and FE-ABCS-QC: (a) Lena, (b) Monarch.

Furthermore, the experiment results are recorded in the form of images in addition to the objective
data comparison. Figure 13 shows the two algorithms’ comparison of the compressed image restoration
effects in the case of bpp = 0.25 when using Bikes as the test image. Comparing (b) and (c) of Figure 13,
the image generated by the FE-ABCS-QC algorithm is slightly better than the one of the JPEG2000
algorithm, either from the perception of objective data or subjective sense.
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Figure 13. The two algorithms’ comparison of test image Bikes at the condition of bpp = 0.25: (a)
original image, (b) JPEG2000 image (PSNR = 29.80, SSIM = 0.9069, GMSD = 0.1964), (c) image by the
FE-ABCS-QC algorithm (PSNR = 30.50, SSIM = 0.9366, GMSD = 0.1574).

Finally, the following conclusions could be gained by observing experimental data and
theoretical analysis.

• Small Rate (bpp): the reason why the performance of the FE-ABCS-QC algorithm is worse than
the JPEG2000 algorithm at this condition is that the small value of M which changes with Rate
causes the observing process to fail to cover the overall information of the image.

• Medium or slightly larger Rate (bpp): the explanation for the phenomenon that the performance
of the FE-ABCS-QC algorithm is better than the JPEG2000 algorithm in this situation is that the
appropriate M can ensure the complete acquisition of image information and can also provide a
certain image compression ratio to generate a better basis for quantization and encoding.

• Large Rate (bpp): this case of the FE-ABCS-QC algorithm is not considered because the algorithm
belongs to the CS algorithm and requires M << N itself.

6. Conclusions

Based on the traditional block-compression sensing theory model, an improved algorithm
(FE-ABCS) was proposed in this paper, and its overall workflow and key points were specified.
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Compared with the traditional BCS algorithm, firstly, a flexible partition was adopted in order to
improve the rationality of partitioning in the proposed algorithm, secondly the synthetic feature was
used to provide a more reasonable adaptive sampling basis for each sub-image block, and finally error
analysis was added in the iterative reconstruction process to achieve minimum error between the
reconstructed signal and the original signal in the noisy background. The experimental results show
that the proposed algorithm can improve the image quality in both noiseless and noisy backgrounds,
especially in the improvement of a reconstructed image’s composite index under a noisy background,
and will be beneficial to the practical application of the BCS algorithm, and the application of the
FE-ABCS algorithm in image compression.
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