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Abstract: A gastric acid battery and its charge storage in a capacitor are a simple and safe method
to provide a power source to an ingestible device. For that method, the electromotive force of the
battery should be boosted for storing a large amount of energy. In this study, we have proposed an
all-p-channel metal-oxide semiconductor (pMOS)-based cross-coupled voltage multiplier (CCVM)
utilizing single-well CMOS technology to achieve a voltage boosting higher than from a conventional
complementary MOS (CMOS) CCVM. We prototyped a custom integrated circuit (IC) implemented
with the above CCVMs and a ring oscillator as a clock source. The characterization experiment
demonstrated that our proposed pMOS-based CCVM can boost the input voltage higher because it
avoids the body effect problem resulting from an n-channel MOS transistor. This circuit was also
demonstrated to significantly reduce the circuit area on the IC, which is advantageous as it reduces
the chip size or provides an area for other functional circuits. This simple circuit structure based on
mature and low-cost technologies matches well with disposal applications such as an ingestible device.
We believe that this pMOS-based CCVM has the potential to become a useful energy harvesting
circuit for ingestible devices.

Keywords: ingestible device; gastric acid battery; cross-coupled voltage multiplier; charge pump;
body effect

1. Introduction

An ingestible device has been developed as an ideal device for diagnosis and healthcare for use
in the near future [1–3]. Various ingestible devices implemented with temperature [4,5], pH [6], and
gas [7] sensors have been released or developed thus far. However, most devices generally use a button
battery as the power source. This has a significant risk of accidentally injuring the inside of the body,
and thus, has been one of the barriers for such ingestible devices to be widely supplied for consumer
applications. Its lifetime and expiry are also inconvenient factors. Recently, a wireless power supply
based on induction from outside of the body was proposed [8]. However, the ingestible device remains
at a deep position in the body and moves along the gastrointestinal tract. Therefore, it is difficult to
efficiently supply power to the device. The exposure dose amount of the body might be increased if
the fed power is increased for forcibly providing a rapid energy charge.

Recently, a gastric acid battery using galvanic couples has received considerable attention as a safe
power source for ingestible devices. However, a drawback is that the power is basically generated only
in the stomach while the battery electrode survives. The generated power decreases significantly in the
intestinal fluids even if galvanic electrodes operable in the intestine are employed [9]. Moreover, the
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generated power might become unstable in the intestine owing to the contamination of the electrode
surface by stool. This feature of the gastric acid battery significantly limits its applications, although it
is apparently suitable for medication management devices which are intended to operate only in the
stomach [10,11].

Therefore, we have proposed to store the generated energy in a storage medium such as a
multi-layer ceramic capacitor (MLCC) for device operation even in the intestines, as shown in
Figure 1 [12,13]. First, in the energy harvesting domain, the power generated by the gastric acid
battery operates an oscillator and a voltage-boosting circuit. Then, the generated energy is stored in
the capacitor at a boosted voltage permitted by the hardware specifications while the device remains in
the stomach. In the sensing, processing, and communication domain, the stored energy is distributed
to other components such as the sensor, processing circuit, and driver circuit for telecommunication.
This method allows device operation until the voltage of the storage capacitor falls below the operable
voltage of the electrical components. Following this principle, and unlike a typical battery, a voltage
regulator, which is associated with power loss, is not needed. A short time charge is also expected.
Using this method, we tune the number of voltage-boosting stages to store greater energy in the MLCC,
but not to exceed the hardware specifications.
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Figure 1. Schematic of an ingestible sensor system based on a stored charge as a power source utilizing
a gastric acid battery via a voltage-boosting circuit.

In our previous study, a conventional complementary metal-oxide semiconductor (CMOS)-based
cross-coupled voltage multiplier (CCVM) was used for the voltage boosting of a gastric acid
battery [12,13]. Figure 2a shows one stage of the CCVM. Vgen corresponds to the output voltage
generated by the gastric acid battery. CLK_1 and CLK_2 are two-phase clocks and have amplitudes of
Vgen. These clocks are symmetrically connected to pumping capacitors and pump Vgen up alternatively.
We prototyped a four-stage cascaded CCVM and successfully demonstrated that it boosted the output
of the gastric acid battery.

However, for the above-mentioned CCVM, the boosting performance gradually decreases with
the number of stages [14,15]. This is caused by the body effect of the n-channel MOS (nMOS) transistor.
One approach to compensate the degradation in the boosting performance is to increase the transistor
size or parallel number in the latter stages. However, this approach increases the occupied area of the
CCVM in an integrated circuit (IC), which will limit the usable areas for other circuits or enlarge the
chip size. Another method is to use a special process such as a double-well structure or a silicon on
insulator (SOI) process for separating the p-well in each stage. However, the fabrication process cost
increases significantly. An IC cost should be inexpensive for such a disposal device.

Consequently, p-channel MOS (pMOS)-based charge pumps were proposed for eliminating this
body effect problem of an nMOS transistor. For example, a charge pump with four-phase clocks is
reported to exhibit a highly efficient voltage boosting [16–18]. However, such a multiple-clock-based
charge pump requires a circuit with a complex design. By contrast, charge pumps utilizing twin- or
triple-well CMOS technologies have been reported [19–21]. However, these multiple-well technologies
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are generally more expensive than a single-well CMOS technology. A low cost is more important than
efficiency for a disposal ingestible device.
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Figure 2. Schematic of (a) a conventional CMOS-based CCVM and (b) an all-p-channel metal-oxide
semiconductor (pMOS)-based CCVM.

Therefore, we have proposed a pMOS-based CCVM operated by two-phase clocks in a single-well
CMOS technology, which is assumed in this study to be utilized for an ingestible device application.
We prototyped this pMOS-based CCVM and a conventional one in the same IC die and compared their
voltage-boosting performances. A two-phase-clock generator based on an oscillating circuit was also
fabricated and characterized. Finally, we demonstrated the operation of these circuits and the boosting
of the electromotive force of a pair of Mg and Pt electrodes acting as a gastric acid battery by dipping
them in an artificial gastric juice.

2. Fabrication of the CCVM Circuits in a Custom IC

Figure 2b shows the schematic of a single stage of the pMOS-based CCVM. Here, M1 and M2 as
the pMOS transistors are focused on to easily explain the boosting procedure. During the first half
cycle, CLK_1 changes from 0 to Vgen and CLK_2 changes from Vgen to 0, and then, M1 and M2 turn
OFF and ON, respectively. Thus, the coupling capacitor, C2, is charged by Vgen via the M2 and N2

nodes. Next, in the second half cycle, when CLK_1 and CLK_2 respectively change to 0 and Vgen, M1

and M2 turn ON and OFF, respectively. At this instant, node N2 is ideally boosted to 2 × Vgen by the
coupling of C2. Therefore, the storage capacitor is charged at the boosted voltage. A similar circuit
composed of M3, M4, and N1 nodes is fabricated and driven by the same CLK_1 and CLK_2 but in a
reversed phase for dual-phase charge pumping. The voltage can be boosted up further by cascading
the stages. The ideal output voltage of a circuit with n stages is shown as follows:

Vout = Vgen + n × Vgen. (1)

In practice, Vout is decreased by certain factors such as the parasitic stray capacitance at each
pumping node, undesired leakage current, time constant, and threshold voltage of the transistors.

Figure 3a shows the circuit schematic of the pMOS-based CCVM as designed and prototyped
in this study. In this figure, the expression “P: W/L = 20/0.6 × 10” implies that 10 pMOS transistors
with a gate width and length of 20 and 0.6 µm, respectively, are connected in parallel. The N-wells of
the transistors, which are surrounded by the dashed blue lines, are separated for applying a different
potential to each transistor. MLCCs of 0.1 µF (C11, C12, C13, C14, C21, C22, C23, C24) are used as the
coupling capacitors. The charge is stored in the intermediate storage capacitors (Cs1, Cs2, Cs3) of 0.1 µF
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MLCC at the intermediate boosted voltage at each stage and eventually in the final storage capacitor
(Cs4). A 22 µF electrolytic capacitor is used as the final storage capacitor (Cs4). The transition of the
boosting at each stage was observed by monitoring the voltage at the intermediate and the final storage
capacitors (Cs1, Cs2, Cs3, Cs4), which is described using a symbol of voltage meter V1–V4 in this figure.
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and 0.6 µm, respectively, are connected in parallel. The N-wells of the transistor, which are surrounded
by dashed blue lines, are separated.

A conventional CCVM circuit was also fabricated for comparison of the boosting performance,
as shown in Figure 3b. The number of nMOS transistors was gradually increased with the increase
in the stages to suppress the degradation of the boosting performance due to the body effect. In this
study, the number of transistors in the pMOS-based CCVM in each stage was kept the same because of
no body effect problem inherently found in this circuit.

A ring oscillator circuit was also implemented in the IC for generating two-phase clocks to operate
these CCVMs, as shown in Figure 4. The output port of the ring oscillator, OSC out, and the input port
of the buffer circuit, Buf in, are separated for characterizing these circuits independently. These are
connected in the practical use for generating the two-phase clocks, CLK_1 and CLK_2. The ring
oscillator is operated by the power generated from a gastric acid battery and then drives the charge
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pumping process. Its duty ratio and period are tuned by tuning the R and C values. Figure 5 shows
the photograph of the prototyped IC chip implemented with these circuits. It is clearly seen that the
occupied area of the pMOS-based CCVM is half of the conventional CMOS-based CCVM.
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3. Results and Discussion

3.1. Evaluation of the Voltage-Boosting Performance of the CCVMs

Figure 6 shows the evaluation setup of the voltage-boosting performances of these CCVMs. Here, to
characterize the CCVMs independently from the characteristics of the ring oscillator circuit, square wave
patterns with 50% duty ratio signals were supplied from a pattern generator to the buffer circuit on the IC.
Its high-level voltage was set to the same with Vgen as an input voltage. We also simulated the operation
behaviors of the CCVMs using LTspice® (version IV, Analog Devices, Inc., Norwood, MA, USA).
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Figure 7 plots the typical simulation result of the voltage-boosting behavior for each CCVM and
dependency on the clock frequency when Vgen was set as 1.3 V. V1 of the conventional CMOS-based
CCVM is always higher than those of the pMOS-based CCVMs. The boosting performance from V1

to V2 is also relatively high. However, the boosting performance worsens gradually as the stages
increase owing to the body effect of the nMOS transistors even when the number of nMOS transistors
is intentionally increased in the latter stages. The final boosted voltage i.e., V4 in the conventional
CCVM is less than 4 V. By contrast, the ratio of the boosting voltage at each stage is nearly constant
and approximately 1.0 V in the pMOS-based CCVMs. Thus, the final boosted voltage, V4, reaches 5 V,
which is typically higher than that of the conventional CCVM for any clock frequency. In addition,
the boosting time shortens as the clock frequency increases.
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Figure 7. Typical simulation result of the voltage-boosting behavior for each CCVM and dependency
on the clock frequency when Vgen is set as 1.3 V. V1 to V4 correspond to the measured voltage of the
intermediate or final storage capacitors at each stage, as shown in Figure 3.

Figure 8 plots the measurement result of the voltage transition for the prototyped circuits.
The tendencies are practically the same as those of the simulated result. The voltage-boosting
performance is apparently slightly lower than that obtained from the simulation result for the
pMOS-based CCVM. Thus, V4 is also lower than the simulation result value. This may be owing to the
mismatch between the actual and assumed characteristics of the transistors.

Figure 9 plots the dependence of the reached voltage of V4 at 40 s after the boosting process starts,
which is symbolized as V4_40s, on Vgen (0.85, 1.0, or 1.3 V) and the clock frequency (100 Hz, 300 Hz, 1 kHz,
3 kHz, or 10 kHz). V4_40s increases as Vgen increases for both the CCVMs. On the other hand, it is almost
independent on the frequency in both the simulation and measurement. The pMOS-based CCVM
typically achieves a higher voltage boosting under any condition compare to the conventional CCVM.
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The dependence of the boosting quickness on Vgen and the frequency was also investigated, as
plotted in Figure 10. The quickness is defined as the required time until V4 reaches 63.2% (i.e., 1 − 1/e) of
V4_40s. When Vgen is 0.85 V for the measurement results, the required time is significantly longer
compared to that under other conditions. This voltage is near the threshold voltage of the transistors.
This low Vgen probably induced an unperfect switching of transistors and thus resulted in an ineffective
boosting process owing to a large leakage current. For both the CCVMs, the times are practically
saturated when the frequency is more than 1 kHz. This implies that the amount of the carried charge per
unit of time is nearly constant and depends on the conductance of the transistors when the frequency
is sufficiently high. The quickness of the pMOS-based CCVM appears to be slower than that of the
conventional CMOS-based CCVM with the present circuit constructions. In particular, this is obvious
at Vgen = 0.85 V. The quickness is improved by optimizing the circuit, such as in terms of the number
of pMOS transistors in each stage. Considering that the ionization tendency of Mg is nearly −1.6 V and
the previous characterization result of a Mg–Pt battery [13], we can operate the CCVMs at a sufficiently
high voltage of more than 1 V. The energy efficiencies of these CCVMs were estimated from simulation
to be approximately 15–20% at 1.0–1.3 V as Vgen.
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3.2. Characterization of the Ring Oscillator Circuit

Next, the dependency of the characteristics of the ring oscillator circuit on the RC values was
investigated, as shown in Figure 11. It is clearly seen that the frequency and duty ratio decreased as the
supply voltage became lower. Finally, when Vgen is below 0.6 V, the oscillation stops. In accordance
with the characteristics, the RC combination of 1.2 kΩ/1 nF yields the highest frequency. As mentioned
above, this is preferable for rapid boosting. However, the duty ratio is relatively smaller than other RC
combinations and will not reach 50% with Vgen generated by the Mg–Pt battery. Ideally, it should be
approximately 50% for an effective boosting process. In addition, unlike a general button battery, the
output voltage of the gastric acid battery in an actual stomach will vary within a certain level because
the acid condition will be unstable. Thus, robust parameters for the duty ratio of nearly 50% are
preferable for actual use. Therefore, the combination of 120 kΩ/10 nF appears to be best in this study.
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3.3. Demonstration of the Voltage Boosting with the Mg–Pt Gastric Acid Battery and CCVMs

Actual voltage boosting was performed with an artificial gastric acid juice and the CCVMs. A pair
of Mg–Pt electrodes with diameters of 2 mm was formed by masking these electrode plates with a
water-resistant masking tape, as shown in Figure 12. These electrodes were connected with the energy
harvesting domain of the system, as shown in Figure 1. In this experiment, the same capacitors were
used for the CCVM as shown in Figure 3. Then, the electrodes were dipped in an artificial gastric juice
(pH: ≈1.4). The resultant generated power was supplied to the CCVMs and ring oscillator circuit.
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Figure 12. A pair of Mg–Pt electrodes with diameters of 2 mm as a gastric acid battery for the
demonstration of energy harvesting via the CCVMs.

In our previous experiment [13], the output power of a pair of Mg–Pt thin films with 6 mm2

squares measured 500–1000 µW in a gastric acid at the output voltage of more than 1 V. Thus, the
output power of the electrode in this study was estimated to be 250–500 µW. Figure 13 shows the
boosted voltage transitions. The pMOS-based CCVM achieves a high voltage charge at 5.3 V within
15 s. The frequency and duty ratio of CLK are approximately 70 kHz and 60%, respectively. By contrast,
the conventional CMOS-based CCVM provides a lower voltage of 4.8 V in the same manner as for the
above-described results.
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Figure 13. Voltage-boosting behavior at V1–V4 for each CCVM in the Mg–Pt gastric acid battery dipped
in an artificial gastric acid juice.

Therefore, we successfully demonstrated that the pMOS-based CCVM based on single-well
CMOS technology with two-phase clocks can provide a higher voltage and also a smaller circuit
occupied area compared to the conventional CMOS-based CCVM. The saved area on the IC can be
implemented with other functional circuits or contribute to miniaturizing the chip size. This CCVM
balances well the boosting performance and cost and, thus, will be usable in energy harvesting based
on a gastric acid battery. In our previous study, we successfully demonstrated voltage boosting with a
conventional CMOS-based CCVM and Mg–Pt gastric acid battery in a dog’s stomach [22]. Therefore,
the pMOS-based CCVM promises to demonstrate superior performance.

4. Conclusions

In this study, we prototyped an all-pMOS-based CCVM operated by two-phase clocks with
single-well CMOS technology for an energy harvesting application based on a gastric acid battery used
in an ingestible device. In the evaluation experiment, the proposed pMOS-based CCVM successfully
boosted the input voltage and achieved a higher output voltage than the conventional CMOS-based
CCVM under any predetermined condition, due to the elimination of the body effect of the nMOS
transistors. In addition, this pMOS-based CCVM was demonstrated to be able to significantly save
the occupied footprint on an IC. This is advantageous for implementing other functional circuits on
the saved area or reducing the chip size. This superior boosting performance was also confirmed by
an experiment using a Mg–Pt gastric acid battery in an artificial gastric juice. We believe that this
pMOS-based CCVM with a low-cost standard single-well CMOS process has tremendous potential to
become a useful circuit for energy harvesting based on gastric acid power generation.
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