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Abstract: In this study, an edge-preserving nonlinear filter is proposed to reduce multiplicative
noise by using a filter structure based on mathematical morphology. This method is called the
minimum index of dispersion (MID) filter. MID is an improved and extended version of MCV
(minimum coefficient of variation) and MLV (mean least variance) filters. Different from these
filters, this paper proposes an extra-layer for the value-and-criterion function in which orientation
information is employed in addition to the intensity information. Furthermore, the selection function
is re-modeled by performing low-pass filtering (mean filtering) to reduce multiplicative noise. MID
outputs are benchmarked with the outputs of MCV and MLYV filters in terms of structural similarity
index (SSIM), peak signal-to-noise ratio (PSNR), mean squared error (MSE), standard deviation,
and contrast value metrics. Additionally, F Score, which is a hybrid metric that is the combination
of all five of those metrics, is presented in order to evaluate all the filters. Experimental results
and extensive benchmarking studies show that the proposed method achieves promising results
better than conventional MCV and MLV filters in terms of robustness in both edge preservation
and noise removal. Noise filter methods normally cannot give better results in noise removal and
edge-preserving at the same time. However, this study proves a great contribution that MID filter
produces better results in both noise cleaning and edge preservation.

Keywords: non-linear filters; MCV and MLYV filters; de-noising; noise removal; edge preserving

1. Introduction

Edge-preserving smoothing is an image processing method that smooths away textures while
preserving sharp edges. Most smoothing methods are generally linear low-pass filters that effectively
reduce noise at the same time wipe out edges. Since the edges might concern important image
information, they have to be protected in smoothing. Non-linear filters are employed for this purpose;
however, most of these techniques focus on the problem of reducing additive noise from images, since
it is by far the most popular type of corrupting multiplicative noise.

In the literature, there is various research on edge-preserving noise reduction algorithms.
Chinrungrueng et al. have presented a study based on edge-preserving noise reduction on ultrasound
images. They have introduced a modified 2D weighted Savitzky Golay filter based on the least-squares
fitting in a polynomial function to image intensities [1]. Petryniak has described a dynamic image
filter using both linear and non-linear image smoothing, based on the Gaussian function. Their filter
removes noises in the graphic while preserving information on edges [2]. Yuan and Wang have
suggested an edge-preserving and signal-preserving noise removing method based on a Bayesian
framework. This filter reduces the number of noises and also adaptively protects edges on signals [3].
Hofheinz et al. have introduced a novel study, which is suitable for bilateral filtering for noise reduction
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and edge-preserving in the PET image dataset. Bilateral filtering exhibits a successful increase in
the smoothing of the PET images while preserving spatial resolution at edges in order to maintain
the quantitative accuracy and obtain an acceptable signal-to-noise ratio (SNR) [4]. Pal et al. have
presented a survey of benchmark edge-preserving smoothing methods, presented in the literature for
computational photography. In their study, they have discussed various effects of the edge-preserving
filters also within their optimized modifications and extensions according to their mathematical
analysis [5]. Wang et al. have presented a study about a smoothing method with edge preservation for
single-image de-hazing (removing haze from image). A novel variational model (VM) that optimizes
the transmission in the dark channel has been proposed. This model has an effective linear time
complexity in performing transmissions [6]. Storath et al. have introduced a reconstruction framework
of edge-preserving and noise reducing for emerging medical imaging, magnetic particle imaging
(MPI). Tikhonov regularization, a basic image reconstruction method, is used for MPIs to handle
efficiently because of the high temporal resolution of 3D volumes. In their study, they improved
an efficient noise removing and edge-preserving reconstruction technique for MPI, giving higher
quality in reconstruction for the prototypical medical application of angioplasty [7]. A book chapter
for edge-preserving smoothing filters has been written by Burger and Burge. In this detailed and
extended study, they have presented noise reduction methods, adaptive smoothing filters for both
color and grayscale images. They have especially stressed three conventional types of edge-preserving
filters based on different strategies. These are the Kuwahara-type filters, the bilateral filters, and the
anisotropic diffusion filters [8]. Additionally, Muhammad et al. have proposed a Bayesian method
in which there is a hybrid filtering framework for images having more noises with an unknown
variance. The framework, including an automatic parameter selection mechanism, removes noises
by enabling an appropriate smoothing and feasible sharpening [9]. In another study, proposed by
Gonzalez-Hidalgo et al., a salt and pepper noise removal system is implemented by a special filter
based on a fuzzy mathematical morphology [10]. Luengo et al. have studied noise removal differently
by using a supervised learning approach. Specifically, their filter, named CNC-NOS (class noise
cleaner with noise scoring), is designed on a noise scoring basis by using ensemble classifiers [11].
A noise-cleaning method for colorful images has been introduced by Pérez-Benito et al. A graph
structure is constructed for each of the image pixels in the image by considering some constraints and
criterions in order to characterize the pixels as the link cardinality of their connected components [12].
Tang et al. have prepared a detailed study of a smoothing method for edge-aware image manipulations
by using a minimization formula of a convex objective function in order to regularize edge and texture
pixels in the image [13]. Furthermore, Huang et al. have proposed a technique using an NP-hard
method, rank minimization with matrix ranks for regularization in order to remove white Gaussian
additive and Gamma multiplicative noises in an image [14].

Apart from those mentioned above, non-linear MCV (minimum coefficient of variation) and
MLV (mean least variance) filters are proposed by Schulze et. al. [15] in which multiplicative noise is
reduced while preserving the edge contours by employing sliding windows around the central pixel
and selecting the pixel that has the minimum amount of coefficient of variation (MCV) and variance
(MLV) in terms of intensity within its surrounding window to be low-pass filtered. By this approach,
the varying contours, edge lines, and textures are preserved while multiplicative noise is reduced.

In this paper, an extended version of MCV and MLV filters are proposed by modifying its value,
criterion, and selection functions to be better than MCV and MLV filters in terms of robustness in noise
reduction and edge preservation.

This paper has five sections. There is an introduction with a literature review related to this
proposed method in the first section above. Explanations and details of the suggested technique are
placed in the second chapter. There are validations of experimental results using statistical metrics and
discussion in the third section. Availability of the study is demonstrated in the fourth section. In the
last summary section, future work is presented and the contributions are summarized.
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2. Methods

In the literature, MCV and MLV filters are well-known filters, which eliminate noises in an image
while preserving edges. All these methods similarly use a certain kernel (mask) size, which represents
the size and shape of the neighborhood to be sampled while computing the corresponding value.
The kernel is a g X g square matrix where g is a small odd number, generally 3, 5, or 7.

2.1. MCV and MLV Filters

The MCV and MLYV filters are edge-preserving noise removing filters based on the concepts of
mathematical morphology [16]. They are value-and-criterion filters that are aimed to filter an image
only over regions that are generally homogeneous, have low contrast and contain less amount of
edges or textures [16]. The difference between MCV and MLV filters is that MCV filter uses the
coefficient of variation as the criterion function whereas MLV employs the variance to perform better
on multiplicative noise [16].

The idea is basically sliding windows around each central pixel and finding the sub-window,
which has the minimum criterion function output, and apply the value function (mean value) of
the window belonging to the central pixel [17]. The coefficient of variation over a sliding kernel is
calculated by the ratio of the standard deviation to the mean over the sliding kernel. If the image is
uniform within the kernel, the variation coefficient becomes very low [17].

On the other hand, if the image has high amount of edge and texture within the kernel, both the
coefficient of variation and the standard deviation will return high values [18]. The selection function
of MCV and MLV filters is designed as the minimum so that the filtering operation can completely
be done over the kernel, which has the smallest output of the criterion function [18]. In other words,
the noise smoothing function only acts over these kernels with the smallest coefficient of variation for
MCV filter or the variance for the MLV filter [18].

As the value function, mean value is employed over the regions that have the minimum amount
of criterion function: The coefficient of variation for the MCV and variance for the MLV filters [18].
The filter structure and detailed explanation of filter design are explained in Section 2.2 within the
proposed method.

2.2. Proposed Method: Minimum Index of Dispersion (MID) Filter

The MID filter uses the same morphological structure with MCV and MLV filters to direct low-pass
filtering operation to only execute over regions decided to be most nearly constant by calculating the
index of dispersion as the criterion function. As previously explained in Section 2.1, MCV and MLV
filters employ the coefficient of variation and variance as the criterion function, MID filter employs the
index of dispersion as the criterion function. The index of dispersion is the ratio of the variance of a
random process to its mean and defined as in Equation (1).

:{%ify;to "

0 otherwise

where ¢ is the standard deviation and u is the mean value of given elements of a set. For an image that
is corrupted only by stationary multiplicative noise, the index of dispersion in terms of intensity and
orientation in theory is constant at every point. Estimates of the index of dispersion show whether
a region is nearly constant under the multiplicative noise or it includes important features. Regions
that contain edges or other features generate higher estimates of the index of dispersion in terms of
intensity and orientation than areas that are approximately constant. Value, criterion, and selection
functions are defined as follows:

w(x) = ¢{f(x); N} @
y(x) = o{f(x); N} ®)



Electronics 2019, 8, 936 4 0f 15

P(x) = o(fx": x" € Nri; y(x') = Bly(x);N'}}) @

where w is the value function, y is the criterion function, and ¢ is the selection function. Additionally,
f(x) denotes the intensity function that gets the intensity values of each pixel in each window that has
N number of elements (pixels) within the window. g is another value function that gets the value of
intensity with the minimum index of dispersion. x” denotes the pixels within each sub-window around
the central pixel of x and N’ is the number of pixels in each sub-window. This filter structure can be
described as having a set of sub-windows within an overall filter window. The value-and-criterion
filter operation at a point is equivalent to examining each sub-window within the overall window
centered at that point and finding which sub-window has the output of optimal criterion function as
described by the selection function. Then, the value function output over this sub-window becomes
the final filter output for the current point. Value functions are interpreted in Equations (5) and (6)
as follows:

o) = 5o Y, FW) )

Yy € Ny

00 = 7 X, &) ®)

Y € Ny

where w represents the mean value of intensity and 6 denotes the mean value of orientation. As the
second metric, in addition to intensity value, normalized gradient orientation values are employed
within their magnitudes defined as in Equation (7).

G
g(x) = arctan(G—y) X A|Gy? + Gy? (7)
X

where Gy, is the vertical gradient vector’s normalized magnitude and Gy is the horizontal one. A 3 X3
Sobel operator is employed to find the gradient vectors for each pixel of the input image. The regions
that have a chaotic distribution of orientations are also defined as noise since regular patterns of
orientation distributions land on the regions without noise. Therefore, orientation dispersion is also
employed as the second metric in the proposed filter. Less dispersion in the orientation will have more
impact on the intensity distribution. Thus, the criterion function is re-modeled as follows:

w1 Ly en [f(y) = w(0)]? N m Ly e v [8(y) = 0(x)]

r) = w0 o)

®)

Elimination of multiplicative noise from images is commonly more difficult than additive noise
since the noise intensity varies with the signal intensity. In order to avoid this, selection function is
re-modeled by adding an alpha parameter, which adds a low-pass value to the output of selection
function. Alpha is a normalized parameter and it transforms the filter into a fully mean filter when it is
set to 1. The proposed selection function is defined as follows:

Y(x) = w({x" :x" € N'y; y(x') = min[y(y); y € N'x]}) ©)

MID{f(x);N} = Y(x) x (1—- a) + w(x) X a (10)

The sample mean is accepted as the value function for the MID filter. Thus, the MID filter uses the
sample mean for a value function, the index of dispersion as a criterion function, and the minimum as
a selection function. This value-and-criterion filter is particularly designed to remove multiplicative
noise. Theoretically, index of dispersion in the images corrupted by noises is minimum in structuring
elements where there is the constant signal. The MID filter in images both preserves sharp edges
between flat areas and enhances the edges, which are not perfect step edges.
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This study especially indicates a structural design of a special filter, which is the extended version
of MCV, and MLV architectures. This filtering method is an edge-preserving noise reduction technique
designed for reducing multiplicative noise by using the structure of the value-and-criterion filter.
The theoretical mechanism of this method stands on the well-known fundamentals of geometrical
properties. The advantage of this method is that it successfully preserves edges in the regions corrupted
by the multiplicative noise and enhances them while preserving the morphological structures of
the image.

3. Experimental Results and Analysis

Mainly, all of the experiments have been performed on the Computational and Subjective Image
Quality (CSIQ) benchmark dataset [19] by using a normal computer. MID filtering is implemented
using Processing in Java and testing is performed in the MATLAB environment.

3.1. CSIQ Image Quality Database Specifications

The CSIQ database is a popular image quality-benchmark test set in order to evaluate algorithms.
The database includes 30 original images at the resolution of 512x512 pixels. The set is distorted
using one of six distortions with four to five different distortion levels. CSIQ images have been tested
based on linear image displacements on four calibrated LCD screens placed side by side with equal
viewing distance. This database contains 5000 subjective evaluations from 35 different observers and
the assessment are presented in the form of difference mean opinion scores (DMOS) in which a larger
one indicates greater visual impairments compared to the corresponding reference image.

3.2. Performance Measurement Criterions

De-noising a picture requires a successful method providing that edges are to be preserved.
In order to evaluate the performances of the methods, some quality metrics are preferred. Evaluation
of de-noising quality is performed five fundamental metrics. These are mean squared error (MSE),
peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), contrast, and standard
deviation [20]. Additionally, F Score, which is an original hybrid metric for comparison, is proposed in
this study by using the combinations of the basic measurements.

3.2.1. Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)

Both MSE and PSNR are used to evaluate the performance for image manipulation algorithms.
They are similar to each other and derived from signal processing. Implementation and calculation are
straightforward, but the results are not always considered reliable as they show aspects in various
situations. Nevertheless, they have a great role in the performance evaluation domain.

The MSE between the two signals is described as seen in Equation (11).

N-—

1
MSE = NxM;j

—_

X(i, )= Y(i, j)) (11)

0

where X and Y are two arrays of size N X M. The closer Y is to X, the smaller MSE will be. When the
MSE is equal to zero, apparently, the maximum similarity is achieved.
The PSNR (in dB) accordingly is defined as follows:

LZ

In Equation (12) above, L is the maximum fluctuation in the data type of the input image.
For instance, if the input image has a double-precision floating-point data type, then L is defined as 1.
Similarly, if the input image has an 8-bit unsigned integer data type, L is defined as 255. Logarithm
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transforms the ratio into a decibel (dB) scale, which is a common scale operation in signal processing.
PSNR in decibels units calculates the PSNR between original and filtered images. The lower the PSNR
value, the worse the quality of de-noised image. MSE and PSNR are the two-error measurement
metrics used to compare the image de-noising quality.

MSE shows the cumulative squared error between filtered and original images. PSNR displays
the measure of the peak error. In a little while, the higher the MSE value, the higher the error. If there
are two identical images (in the absence of artificial noise), the MSE value becomes 0 and the PSNR
value becomes infinite [21].

3.2.2. The Structural Similarity Index Measurement (SSIM)

The SSIM measurement is a common and well-known quality criterion to determine the similarity
between two images. The SSIM index gives a similarity percentage in the interval of [0, 1].

This measurement style compares two images in the same size, the de-noised picture, and the
original picture. The original picture is assumed as it has perfect quality. The de-noised one is for test
and the original is for verification. SSIM index is defined as follows:

(Zyxyy + Cl)(Zoxy + Cz)

SSIM(x, y) =
o) (1 + 1y + C1)(0x + 0y + Ca)

(13)

where x and y are the two different images with y, and iy, mean values of intensity and standard
deviations of oy and o, with contrast values C; and C; for the two images separately. When comparing
two images, MSE does not indicate highly perceived similarity while implementation is simple.
Structural similarity is aimed at addressing this hardship.

3.2.3. Contrast

Contrast of an image might be simply explained as the difference between the minimum and
maximum pixel intensity. Shortly, it is the difference in color or luminance for a group of objects. In this
project, edge-based contrast measure (EBCM) for image quality evaluation is selected as a performance
metric [22]. This metric is based on the fact that an enhanced image normally has more edge pixels
than the original image. The EBCM metric calculates the intensity of edge pixels in small windows of
the image.

3.2.4. Standard Deviation

The standard deviation of the pixel intensity values is used to quantify the amount of variation or
dispersion of a grayscale image. It is calculated by Equation (14).

Z
=

o= \Wm (v =)’ (14)
j=0

i

Il
<}

where o is the standard deviation of matrix elements. N and M are the vertical and horizontal sizes of
the image. x;; is the pixel of the ith line and jth column. u is the arithmetic mean. A low standard
deviation value displays that the pixels tend to be close to the mean of the image, while a high value
shows that the pixels are spread out over a wider range of values.

3.2.5. A Hybrid Assessment Metric: F Score

Handling each of the metrics separately in image quality assessment might be difficult. A hybrid
approach is proposed to evaluate each of the filter methods as shown in Equation (15).

PSNR x SSIM x Contrast
F Score = 100 x 514 Dev X MSE (15)
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An optimal edge-preserving and noise-reducing filter should increase the PSNR, SSIM, and contrast
values while reducing the standard deviation and MSE values. Therefore, a compact formula of F
is generated in order to benchmark the filters. Higher values of PSNR, SSIM, and Contrast values
indicate that there is a successful smoothing operation.

In contrast, higher values of standard deviation and MSE shows poor smoothing results. In other
words, PSNR, SSIM, and contrast have a positive effect on image quality, whereas the others have a
negative impact.

In the experiments, F scores result in very tiny values, even very close to zero. Hence, the F score
results are multiplied by a constant value of 100 so as to optimize the outputs. A regularly higher F
score rate indicates the successful filtering performance.

3.3. Comparison Steps of Experimental Outputs

In the experimental, the overall procedural steps are illustrated in Figure 1.

Comparison
Original » (SSIM, MSE, PSNR,
images Contrast, Std.Dev., F Score)

Filters
De-noised

(MCV, MLV, MID)

images

Figure 1. Procedural steps for overall comparisons.

Firstly, the original images are synthetically noised with the multiplicative noise option, using
Equation (16) for an image I.
J=I+nxI (16)

where 7 is evenly distributed random noise with mean 0 and variance v. The default value for v is set
to 0.04. Then, each of the filtering methods (MCV, MLV, and MID) is employed to de-noise the noised
images. In other words, the noised images are filtered by the 3 filtering methods in order to clean the
noises. Each method produces individual outputs. Lastly, the outputs are compared with the original
images using the metrics of PSNR, MSE, SSIM, contrast, standard deviation, and F score.

As the experimental setup, artificial multiplicative noise is added to the 30 CSIQ images in order
to quantify the performance of filters in terms of robustness to noise and edge preservation. Filtered
images are compared with the original images with respect to five main metrics: PSNR, SSIM, MSE,
standard deviation, and contrast. Table 1 illustrates an original image and a multiplicative noise
added image.

In Table 1, the first image is the original gray-scale form of the CSIQ “1600.png” image, which
has a contrast value of 74.19 and standard deviation of 66.21. The second one is the multiplicative
noise-added gray-scale form of the CSIQ “1600.png” image, which has a contrast value of 67.25
and standard deviation of 75.83. After adding noise, standard deviation is increased and contrast is
decreased since the noise factor increases the deviation from the mean while it wipes out the edges,
which lowers the contrast accordingly.
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Table 1. Original and artificially noised “1600.png” image (the v variance parameter for multiplicative
noise is set to 0.04).

Original Picture Noisy Picture

Std.Dev.: 66.21 Std.Dev.: 75.83
Contrast: 74.19 Contrast: 67.25

3.4. Numerical Outputs and Discussion

As the experimental setup, pictures are compared with the original gray-scale pictures so that
selected metrics can be examined. For this purpose, pictures filtered out by MCV, MLV, and MID filters
are compared with respect to selected six metrics: PSNR, MSE, SSIM, standard deviation, contrast,
and F Score. In the performance assessments, it is observed that PSNR and SSIM values increase while
MSE decreases. Standard deviation decreases if the amount of noise is decreased. Also, the contrast is
increased if the edge contours are enhanced. F Score demonstrates the overall success rate. Table 2
demonstrates a set of sample experimental results for the selected gray-scale form of the “1600.png”
image as follows.

Table 2. Sample experimental results for a gray-scale picture taken from filters with 5 X 5 kernel size.

MCYV Filter MLYV Filter MID Filter («x = 0.00)

PSNR: 14.16 PSNR: 14.24 PSNR: 14.56
MSE: 527.36 MSE: 487.06 MSE: 466.09
SSIM: 0.54 SSIM: 0.55 SSIM: 0.56
Contrast: 65.51 Contrast: 63.36 Contrast: 64.48
Std.Dev.: 62.58 Std.Dev.: 64.89 Std.Dev.: 63.89
F Score: 1.45 F Score: 1.55 F Score: 1.74

According to the experimental outputs shown in Table 2, the highest F Score is obtained in the
MID Filter with the parameter (alpha = 0.0) when the comparison is performed among all filters.
It indicates that the highest amount of noise reduction occurs with the MID Filter.

Figure 2 demonstrates the MSE, PSNR, SSIM, contrast, standard deviation, and F score bar charts
of each filter as follows:
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Figure 2. Average peak signal-to-noise ratio (PSNR) rates in decibel (dB) (a), average mean squared
error (MSE) values (b), average structural similarity index (SSIM) rates (c), average contrast values
(d), average standard deviations (e), and average F scores (f) for the gray-scale computational and
subjective image quality (CSIQ) dataset.



Electronics 2019, 8, 936 11 of 15

According to Figure 2, when MCV, MLV, and MID filters are compared in terms of PSNR, MSE,
and SSIM, MID filter leads in the group. It has the highest rate of SSIM, and the lowest amount of MSE
and the highest rate of PSNR.

Furthermore, the success rate of MID filter will increase when the alpha parameter is increased.
However, too much increment in alpha will ruin the structural similarity and reduce the contrast;
therefore, the optimal value of the alpha should be determined which will balance the ratio between
SSIM and contrast. According to experimental tests, optimal alpha value, which yields the best results,
is discovered as 0.30.

Observations through experiments are performed with respect to six metrics: PSNR, MSE, SSIM,
Standard Deviation, Contrast, and F Score. The most determinant metrics appear as PSNR and SSIM,
which indicates the percentage of noise reduction and similarity with the original pictures. Table 3
indicates the overall results with alternative values of alpha.

Table 3. Total average results of filtering experiments when the kernel size is set to 5.

PSNR MSE SSIM Std. Dev. Contrast F Score

MCV 15.44 437.0 0.635 56.81 84.4 542
MLV 15.16 512.6 0.609 55.71 91.6 5.67
MID (x = 0.0) 15.79 424.6 0.644 56.60 88.0 6.21
MID (x =0.1) 16.00 401.5 0.655 56.12 87.3 6.78
MID (x =0.2) 16.23 381.7 0.664 55.72 87.2 7.42
MID (x =0.3) 16.42 365.7 0.672 55.34 87.0 8.00
MID (x =0.4) 16.57 353.4 0.678 55.00 86.9 8.53
MID (x = 0.5) 16.70 344.5 0.682 54.70 86.9 8.99
MID (x = 0.6) 16.75 339.9 0.683 54.40 86.6 9.22
MID (o« = 0.7) 16.75 338.9 0.681 54.14 86.4 9.30
MID (x =0.8) 16.72 3414 0.677 53.94 86.3 9.23
MID (x = 0.9) 16.62 347.8 0.671 53.75 86.2 8.97
MID (o« = 1.0) 16.52 356.6 0.661 53.63 86.5 8.68

In Table 3, the average PSNR value with MID filter is obtained as 16.42 while MCV and MLV
filters attain 15.16 and 15.44, respectively. This proves that the MID filter is superior to the MCV and
MLYV filters in terms of robustness to noise and the SSIM value is calculated as 0.672 while the MCV and
MLYV filters reach 0.609 and 0.635, respectively. This also proves that the MID filter is better than the
MCV and MLV filters in terms of similarity with the original pictures, which means MID filter cleans
the noise while preserving the structural similarity with the original pictures. Mean squared error
(MSE) is also observed as lower than the MCV and MLV filters where the MSE of MCYV is observed
as 512.6 and MSE of MLV is observed as 437.0, which is much higher than the MSE of the MID filter
obtained as 365.7 through the experiments. This also proves that the MID filter’s outputs are much
more similar to the original pictures and cleans the noise better than the MCV and MLV filters. As an
overall evaluation, the MID filter is better than the MCV and MLV filters in terms of robustness to
noise while preserving the edges.

Additionally, the rows of Table 4 contain some cropped sections from original and filtered images
of CSIQ “1600.png”, “family.png”, “turtle.png”, and “trolley.png”, respectively. These gray-scale
pictures are from the original picture, MCV, MLV, and MID filters using a kernel size of 5x5 matrix.
Table 4 demonstrates the visual performances of filters on edge preservation.

According to Table 4, in the first image in the first row, there are iron fences behind the people.
The fence is a good representation (sample) of edges. As it is seen, the fence in MCV is thinner than
in MLV. Edge contours of the fence are not well preserved by both MCV and MLV filters, whereby
MCV makes edges thinner and MLV makes thicker than normal. Furthermore, in the first and second
images in the first and second rows, the heads of people in MCV almost disappear since the mean
method shrinks the edges. On the other hand, the heads of people in MLV are oversized since the
method expands the edges [23]. However, the heads of people in the MID filtered image looks neither
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oversized nor shrunken since the proposed method employs orientation information that optimizes
the size of contours. In the third row, the head of the turtle loses its texture when MCV is applied,
and contours become thicker when MLV is applied. However, both edge contours and textures become
normal when the MID filter is applied. Additionally, in the fourth row, humans on the trolley almost
disappear when MCV is applied and contours become extremely thicker when MLV is applied. On the
other hand, both contours and texture look normal when the MID filter is executed.

Table 4. Some small cropped image sections from the outputs of filters.

Original Section MCV MLV MID

PSNR: 10.60 PSNR: 10.65 PSNR: 11.49

1600.png SSIM: 0.570 SSIM: 0.638 SSIM: 0.630

PSNR: 9.44 PSNR: 11.29 PSNR: 11.82

family.png SSIM: 0.430 SSIM: 0.600 SSIM: 0.617

PSNR: 11.37 PSNR: 13.03 PSNR: 13.82

turtle.png SSIM: 0.531 SSIM: 0.640 SSIM: 0.670

PSNR: 10.78 PSNR: 11.37 PSNR: 12.24

trolley.png SSIM: 0.507 SSIM: 0.582 SSIM: 0.605
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Asitiswidely accepted, preserving edgesis a great issue in noise reduction operations. The primary
orientation of this study stands on two main principles, edge preservation and noise reduction.
Measuring the quality of edge preservation might be performed by the SSIM index. The performance
of noise-cleaning might be also assessed by the F score.

As it is seen in the experimental results above, the MID filter gives better results than the MCV
and MLV filters starting from when the alpha is set to 0.30 according to SSIM index. Since the SSIM
index indicates structural similarity of objects in the pictures, it also gives a sign about the rate of edge
preservation. The more alpha is increased, the more the filter behaves like a mean filter, which ruins
the edge preservation. Therefore, a minimum optimal value of alpha is necessary to get better results
in terms of both edge preservation and noise reduction. For this reason, 0.30 might be determined as
the optimum value of alpha. Even though the highest SSIM is gained when the alpha is set to 0.70,
the edges partly disappear since MID behaves like a mean filter. As the main purpose of the study is to
protect edges from deformations, the alpha parameter should be lessened as much as possible.

As a result, the shape of the objects changes with respect to type of filters. While MCV filters ruin
the object boundaries, the MLV filter over-blurs the edge contours, which results in thick borderlines
of the objects. However, the MID filter preserves the original contours of objects since the MID filter
employs orientation information as the criterion function. This is the most prominent contribution of
this study. This improvement can be recognized with the SSIM metric, which indicates the structural
similarity of objects within the image pairs. Additionally, F score is presented as a novel comparison
metric, which separates the filters in terms of edge preservation and robustness to noise.

4. Availability

This presented MID filtering model has been implemented in the Java Processing and tested
in MATLAB platforms. For examinations, further studies, and citations, all of the written original
codes, benchmark datasets, test images, outputs, and total experimental results including SSIM, MSE,
PSNR, contrast, standard deviations, and F scores for all cases can be publicly reachable at the website:
https://sites.google.com/site/bulutfaruk/study-of-mid-filtering.

5. Conclusions

In this paper, an extended version of MCV (minimum coefficient of variation) and MLV (mean least
variance) filters are proposed. The proposed approach is the MID (minimum index of dispersion) filter,
which employs orientation information of pixels in order to support value-criterion structure of the
MCYV and MLV filters. The dispersion of orientations is employed as the criterion function, which yields
better results against multiplicative noise. Moreover, the value function is modified by adding an alpha
parameter, which acts as low-pass filtering by the amount of alpha. Experimental results show that the
proposed approach produces better results than MCV and MLV filters against multiplicative noise
and eliminates the weaknesses of MCV and MLYV filters. As the metric for measuring the robustness
to noise, SSIM (structural similarity index), MSE (mean squared error), PSNR (peak signal-to-noise
ratio), standard deviation, and contrast values are employed. Additionally, F Score, a hybrid metric
that is the combination of five metrics is introduced in order to compare the filters. Benchmarking
study indicates the MID filter is superior to the MCV and MLV filters. By the increment of the alpha
parameter, the noise is blurred but the contrast is decreased, which acts by blurring the edges as well.
Therefore, a balanced alpha parameter value is necessary, which will enhance the edges and at the same
time blur the multiplicative noise. As the optimal value of the alpha parameter, 0.30 is determined
according to experimental tests. This study might be an innovative guide for those who are interested
in MCV and MLV filters and able to output different studies on the topic in the future.
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