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Abstract: An overview of the recent advancements in the development of microwave imaging
procedures based on the exploitation of the regularization theory in Lebesgue spaces is reported in
this paper. Such inversion schemes have been found to provide accurate results in several microwave
imaging scenarios, thanks to the different geometrical properties that Lebesgue spaces can exhibit
with respect to the more classical Hilbert ones. Moreover, the recent extension to the more general
case of variable-exponent Lebesgue spaces is also addressed. Experimental results involving reference
data are shown for supporting the theoretical description of the approaches.
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1. Introduction

Microwave imaging is attracting an ever-growing interest in several applicative areas, ranging
from non-destructive evaluation of civil and geophysical structures to biomedical diagnostics [1–11].
Such an interest is due mainly to the attracting features of microwave techniques. Actually, they are
in principle able to provide a reconstruction of the physical and geometrical properties of the targets
under test, e.g., the distributions of the dielectric properties, which cannot be directly obtained by other
more consolidated systems. Moreover, microwaves are non-ionizing radiations and, consequently,
since the power required for the inspection is usually quite low, they are safe for the operators and
the inspected bodies. Finally, from a technological point of view, the imaging systems share many
components with other apparatuses, such as the ones used in telecommunications, making it possible
to use relatively cheap and off-the-shelf components.

Taking a mathematical point of view, it is required to “invert” the relationship that maps the
dielectric properties of the inspected region with the measured electric field. Such a relationship
is, in general, nonlinear and strongly ill-posed. Consequently, proper inversion procedures need to
be devised, to consider both these theoretical problems. To this end, several approaches have been
proposed in the last years [12–26]. They have been investigated in the context of Hilbert spaces, in
most cases. Furthermore, in this case it is possible to use the spectral theory to analyze the convergence
and regularization properties of the solving method. However, despite this potential advantage that
highly simplifies the mathematical study, regularization methods in Hilbert spaces in several cases
lead to smoothed solutions, due to the filtering effects produced by regularization. This kind of
behavior may be problematic in numerous imaging applications, especially when small targets needs
to be retrieved. Compressive sensing strategies, which allow to retrieve sparse solutions, have been
proposed recently to mitigate this drawback. More recently, regularization methods developed in the
framework of the regularization theory in the more general Banach spaces also have been introduced
in the mathematical literature [27–29] and investigated for microwave imaging applications [30–33].
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Due to the geometrical properties of specific Banach spaces, these regularization methods allow one to
obtain solutions endowed with lower over-smoothness and ringing effects, which results in a better
localization of targets and restoration of the discontinuities between different media. However, the
choice of the norm parameter is still an open issue, since no theoretical rules exist. To overcome such a
problem, the use of variable-exponent Lebesgue spaces has also been recently explored for microwave
imaging applications [34], leading to the development of an adaptive procedure that requires less
a-priori information.

An overview of the recent advancements in the development of Lebesgue-space inversion
procedures for microwave imaging is reported in this article. Particularly, the theoretical aspects
are described and discussed in a unified framework, together with some examples showing the
effectiveness of the different Lebesgue-space inversion schemes. The paper is organized as follows.
Section 2 provides a brief outline of the considered inverse-scattering problem. Section 3 describes,
with both mathematical theory and inversion examples, the developed Lebesgue-space Newton-type
inversion procedure with fixed exponent. Section 4 presents the extension to multi-frequency data
processing. The enhancements introduced by the novel approach in variable-exponent Lebesgue
spaces are detailed in Section 5. Finally, conclusions follow in Section 6.

2. Overview of the Inverse-Scattering Problem Formulation

Let us consider the imaging configuration sketched in Figure 1. An unknown target, characterized
by a complex relative dielectric permittivity ε∗r(r) = εr(r)− jσ(r)/ωε0, being r the position vector, εr the
real part of the relative dielectric permittivity, and σ the (equivalent) electric conductivity, is located in
a known investigation domain Ω. Briefly, the single-view case is described in the following, being the
extension to multi-view multi-illumination configurations straightforward. The target is illuminated
by an incident electric field Einc, and the total electric field Etot resulting from the interactions between
the objects and the interrogating radiation is collected in a set of points rmeas,m, m = 1, . . . , M, located in
a predefined observation domain Γ. A time-harmonic dependence is assumed and the exp( jωt) term
is omitted in the following.
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As it is well known, the relationship between the scattered electric field Escatt(r) = Etot(r) −
Einc(r) and the dielectric properties of the inspected region can be written in terms of the following
integral equation:

Escatt(r) = −k2
b

∫
Ω

c
(
r
′
)
Etot

(
r
′
)
·
=
G

(
r, r

′
)
dr
′

, r ∈ Γ (1)

where c(r) = ε∗r(r)/εb − 1, r ∈ Ω, is the contrast function, εb is the relative dielectric permittivity of the
background medium, which is assumed to be constant, k2

b = ω2µεb is the squared wavenumber in the
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background medium, and
=
G is the corresponding dyadic Green’s function. It is worth remarking that

(1) is nonlinear with respect to the contrast function c, since the total electric field E
(
r
′
)

inside Ω itself
depends on the dielectric properties of the inspected region and it is given by a relationship similar to
(1) [7]. For sake of simplicity, a tomographic configuration is considered from now on. Particularly, it is
assumed that the targets have cylindrical symmetry, i.e., c(r) = c(rt), rt being the position vector in the

transverse plane, and the incident electromagnetic field is transverse magnetic, i.e., Einc(r) = Einc(rt)
^
z.

Under such hypotheses, only the z-component of the total electric field is different from zero and the
scattering problem reduces to a two-dimensional and scalar one, i.e.,

Escatt(rt) = −k2
b

∫
Ωt

c
(
r′t
)
Etot

(
r′t
)
g
(
rt, r′t

)
dr′t︸                              ︷︷                              ︸

Gdata(cEtot)(rt)

, rt ∈ Γ, (2)

where g is the two-dimensional Green’s function for the background configuration. It is worth noting
that Etot(rt) is still unknown inside the two-dimensional cross-section Ωt and, thus, a second equation
is needed, i.e.:

Einc(rt) = Etot(rt) + k2
b

∫
Ωt

c
(
r′t
)
Etot

(
r′t
)
g
(
rt, r′t

)
dr′t︸                              ︷︷                              ︸

Gstate(cEtot)(rt)

, rt ∈ Ωt. (3)

Combining the data Equation (2) and the state Equation (3), the following nonlinear functional
equation is obtained [7]:

Escatt(rt) = Gdatac
(
I−Gstatec

)−1
Einc(rt), rt ∈ Γ, (4)

where I denotes the identity operator. Equation (4) can be formally written in compact form as:

F (x) = y (5)

where x ∈ X is the unknown function to be retrieved (the contrast function inside the investigation
domain Ωt), y ∈ Y represents the data of the problem (the scattered electric field in the observation
domain Γ), and F : X→ Y is the nonlinear operator defined by (4).

3. Newton-Type Methods in Banach Spaces

The nonlinear functional Equation (5) is often solved by performing an iterative minimization of a
residual (or cost) functional Φ : X→ R , such as:

Φ(x) =
1
2
‖F (x) − y‖2Y, (6)

where F : X→ Y is a (Fréchet) differentiable operator between the two functional spaces X and Y. The
basic minimization approach is the one-step gradient method, which is based on iterated linearizations
of the nonlinear functional F .

3.1. Classical Mathematical Foundations in Hilbert Spaces

Taking the simplest case, that is, in the Hilbertian (i.e., Euclidean) spaces of the square integrable
functions X = L2(Ωt) and Y = L2(Γ), starting from a (suitable) initial guess x0 ∈ X, the gradient
method provides a sequence (xn)n∈N ⊂ X that approximates a solution of (5) and is computed by the
following one-step iterative scheme:

xn+1 = xn − τnpn, (7)
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where τn > 0 is a suitable step size and pn is the gradient of the residual functional Φ at xn, that is:

pn = ∇Φ(xn) = ∇
(1

2
‖F (xn) − y‖2Y

)
. (8)

Recalling that ∇Φ(xn) is the direction of steepest increase of the residual functional Φ in a
neighborhood of xn, the iterative step (7) gives rise to a reduction of Φ, provided that a suitable step
size τn > 0 is used. Moreover, since in any Hilbert space ∇

(
1
2‖u‖

2
Y

)
= u, by using the chain rule for

derivatives of composite functions, pn can be computed as follows:

pn = ∇
(1

2
‖F (xn) − y‖2Y

)
= F ∗xn(F (xn) − y), (9)

where F ∗xn : Y→ X denotes the adjoint operator of the Fréchet derivative at point xn, indicated as Fxn .
The method (7) consequently reads as follows:

xn+1 = xn − τnF
∗

xn(F (xn) − y), (10)

where the step size has to be chosen to induce a decrease of the residual functional Φ, that is, to
allow that Φ(xn+1) < Φ(xn) [29]. When F : X→ Y is linear, the Fréchet derivative coincides with F
itself, that is, Fxn ≡ F , and hence (10) reduces to the Landweber method when a constant step-size
τn ≡ τ ∈

(
0, 2/‖F‖22

)
is fixed, or to the Steepest Descent method when the Cauchy optimal step size

τn =
‖∇Φ(xn)‖

2
2

‖F∇Φ(xn)‖
2
2
=

‖F
∗(F xn−y)‖22

‖F F ∗(F xn−y)‖22
is used [35]. We remark that, by different choices of the ascent direction

pn, we obtain other iterative minimization schemes, such us the conjugate gradient method [35], which
is generally more powerful than the basic and simplest ones we briefly review here.

The one-step method (10) for the nonlinear Equation (5) is intrinsically related to the local first
order linearization Fxn of the nonlinear operator F , and it can be viewed as the simplest application of
an (inexact) Newton scheme for non-linear equations. Indeed, let us consider the Taylor expansion
of center xn and increment hn, that is F (xn + hn) = F (xn) + Fxn hn + O

(
‖hn‖

2
)
. Using the first order

approximation, rather than solving the nonlinear functional Equation (5), we can consider the associated
linear equation F (xn) +Fxn hn = y w.r.t. the unknown hn as follows:

Fxn hn = y−F (xn). (11)

Using the Newton method, the least squares solution of the linear equation (11) gives rise to a
new element:

xn+1 = xn + hn, (12)

which, in general, is a better approximation of the solution x of the nonlinear Equation (5), and the
procedure is then iterated according to a certain stopping rule. It is interesting to notice that, in real
applications, the linear Equation (11) of the n-th Newton method is solved by means of iterative
minimization methods. This way, the full solution algorithm is made of two nested iterative schemes,
that is, the whole algorithm involves an outer–inner iterative procedure, since each outer Newton step
is solved by means of a sequence of inner minimization steps. As a basic example, in the following we
explicitly consider a Newton method with inner Landweber iterations, described in Algorithm 1.
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Algorithm 1. Two level (outer–inner iterations) inexact Newton method for the nonlinear Equation (5)

(I) Let X and Y be two Hilbert spaces, and X0 ∈ Y be an initial guess (X0 = 0 is used when no a-priori
information is available). Set the initial outer iteration index to n = 0.

(II) OUTER STEP: Linearize (5) by means of the Fréchet derivative Fxn at point xn and consider the
associated linearized system (11), that is Fxn hn = Y −F (xn), with respect to the unknown hn.

(III) INNER STEP: Find a (regularized) solution of the linear Equation (11) by means of an iterative

minimization, with respect to h, of the n-th residual 1
2 ‖Fxn h− (y−F (xn))‖

2
Y. Specifically, let hn,0 = 0 ∈ X

be the inner initial guess. Then, for k = 0, 1, 2 . . ., compute:

hn,k+1 = hn,k − τnF
∗
xn

(
Fxn hn,k − (y−F (xn))

)
, (13)

until a certain stopping rule is satisfied (e.g., a maximum number of inner iterations KLW is reached or
the norm of the functional 1

2 ‖Fxn hn,k+1 − (y−F (xn))‖
2
Y falls below a specified threshold). The obtained

regularized solution of the n-th linear system (11) is denoted as hn,k̂.

(IV) Update the current (outer step) solution by setting:

xn+1 = xn + hn,k̂ (14)

(V) IF a predefined stopping rule (e.g., based on the discrepancy principle [36]) on the outer iteration xn+1 is
satisfied THEN return xn+1 (and STOP); ELSE continue with the subsequent outer iteration, by setting
n = n + 1 and going to step II.

The outer-inner inexact Newton scheme (13)–(14) for the nonlinear functional equation (5) in the
classical Hilbert space setting is a regularization algorithm that has been widely applied to nonlinear
inverse scattering problems [37,38]. We recall that the Newton scheme is called “inexact” because each
linear system is not solved exactly, but its solution is just iteratively approximated. It is interesting
to notice that the outer–inner inexact Newton scheme (13)–(14) is an extension of the (single-step)
Landweber iterative method (10). Indeed, if the inner iterations of (13) are always stopped at the very
first iteration, that is, if the number of inner iteration is always fixed to kmax ≡ 1 (which means that
the linearized equation (11) is solved with a first, and very low, level of accuracy), then the two-steps
scheme (13)–(14) coincides with the one-step scheme (10). Hence, it is quite evident that the method
(13)–(14) overcomes (10) in both speed and quality, because at each Newton iteration (11), the associated
linear equation is solved with a higher level of accuracy.

3.2. Extension to Banach Spaces

The extension of the Newton method to Banach spaces is not straightforward. Generally, given a
linear operator L : X→ Y between two Banach spaces X and Y, its adjoint operator L∗ acts between
the associated dual spaces Y∗ and X∗, that is, L∗ : Y∗ → X∗ . Generally speaking, we recall that the
dual space B∗ of a Banach space B is the space of all the linear functionals from B to the real values,
that is, B∗ = {b∗ : B→ R, linear}. When the Banach space is a Hilbert space, by virtue of the Riesz
representation theorem [27], given a linear functional b∗ ∈ B∗, we can identify uniquely b∗ with the
unique vector b ∈ B such that b∗(z) = 〈b, z〉, ∀z ∈ B, being 〈·, ·〉 the scalar product of the Hilbert space B.
Hence, in this case, the dual space B∗ is isometrically isomorph to the space B. This is the reason why
the adjoint operator L∗ in Hilbert spaces is always represented as L∗ : Y→ X (rather than the formal
correct definition L∗ : Y∗ → X∗ ), since both the isometric isomorphisms IY : Y→ Y∗ and IX : X∗ → X
are implicitly applied.

Let us come back to the Landweber iterations (10) or (13), which are therein defined onto Hilbert
spaces X and Y, so that F ∗xn : Y∗ → X∗ can be identified with F ∗xn : Y→ X . Regarding this, (10) is
well defined, since the operator F ∗xn : Y→ X acts rightly on the residual F (xn) − y ∈ Y. The same
holds true for (13), since Fxn hn,k − (y−F (xn)) ∈ Y. Moreover, the subtraction in (10) is performed
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between the two operands xn and τnF
∗

xn(F (xn) − y), both belonging to X. The same applies for (13),
where hn,k and τnF

∗
xn

(
Fxn hn,k − (y−F (xn))

)
belong to X. However, to extend the iterations (10) and

(13) to Banach space setting, their forms need to be modified, since the terms F ∗xn(F (xn) − y) of (10)
as well as F ∗xn

(
Fxn hn,k − (y−F (xn))

)
of (13) are no longer correct, because now the adjoint operator

F
∗

xn : Y∗ → X∗ cannot be applied to F (xn) − y ∈ Y , Y∗ or to Fxn hn,k − (y−F (xn)) ∈ Y , Y∗.
The key tools for the generalization to Banach spaces are the so-called duality mappings [27].

Usually, a duality map is a special function that associates an element of a Banach space B with
an element of its dual B∗, and it is useful when B is not isomorph to B∗. The duality map has an
illustrative meaning in the context of minimization of convex functionals, as explained by the Asplund
Theorem [27]. To this aim, given a convex functional f : B→ R , we recall that the subdifferential of f
is the multi-valued operator ∂ f : B→ 2B∗ such that:

b∗ ∈ ∂ f (b)⇔ f (c) ≥ f (b) + 〈b∗, c− b〉 , ∀c ∈ B, (15)

where, for any s ∈ B and s∗ ∈ B∗, we have used the so-called pairing notation s∗(s) = 〈s∗, s〉 = 〈s, s∗〉.
The subdifferential extends the concept of gradient to general Banach spaces. Indeed, if the convex
functional is differentiable, then is b∗ ∈ B∗ is unique and can be identified as its gradient, since it holds
that f (c) ≥ f (b) +

〈
∇ f (b), c− b

〉
. The Asplund theorem states that the subdifferential JB

r : B→ 2B∗ of
the convex functional f : B→ R defined as f (b) = 1

r ‖b‖
r
B is a duality map of B, which is then defined

as follows:
JB
r = ∂ f = ∂

(1
r
‖·‖

r
B

)
. (16)

We recall that, if the Banach space is a Hilbert space, then JB
2 is simply identified with the identity

operator, since JB
2 (b) = ∂

(
1
2‖b‖

2
B

)
= ∇

(
1
2‖b‖

2
B

)
= b. Generally, this is not true in Banach spaces. However,

thanks to the Asplund Theorem, from (16) and by using again the chain rule for the derivatives of
composite functions as in (9), the subgradient of the residual functional 1

r ‖F (xn) − y‖rY at point xn in
Banach spaces can be computed explicitly as:

∂
(1

r
‖F (xn) − y‖rY

)
= F ∗xn JY

r (F (xn) − y). (17)

We can notice that, differing from the well-known least square term F ∗xn(F (xn) − y) of (9) in
Hilbert space, we have now the term F ∗xn JY

r (F (xn) − y), which is well defined in Banach spaces since
F
∗

xn : Y∗ → X∗ and JY
r (F (xn) − y) ∈ Y∗. Anyway, to obtain a well-defined generalization of the iterative

step (10) in Banach spaces, we have to consider also that the addendum F ∗xn JY
r (F (xn) − y) now belongs

to X∗, that is, the dual space of X. Hence, the sum has to be computed into the space X∗ as follows:

x∗n+1 = x∗n − τnF
∗

xn JY
r (F (xn) − y), (18)

where now x∗n = JX
r (xn) ∈ X∗. Subsequently, it is necessary to return to the original space X, i.e.:

xn+1 = JX∗
r∗

(
x∗n+1

)
. (19)

During this iteration, it is required that the space X is reflexive, that is, X∗∗ is isomorph to X, so
that JX∗

r∗
(
x∗n+1

)
⊆ X. Additionally, we point out that, in general, any duality map is a multi-valued map,

and an arbitrary choice of a single element is implicitly assumed in both JY
r and JX∗

r∗ . Anyway, in our
application, the Banach spaces are always Lp(Ωt) with 1 < p < +∞, and any duality map is always
single-valued in these functional spaces [27].

The same arguments of (18) and (19) apply to the inexact Newton approach too, leading to a new
version of the inner iterations (13) in Banach spaces, involving the duality maps JY

r and JX∗
r∗ . Specifically,

Step III of Algorithm 1 now reads:
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(III) INNER STEP: Find a (regularized) solution of the linear Equation (11) by means of an iterative minimization,
with respect to h, of the n-th residual 1

2‖Fxn h− (y−F (xn))‖
2
Y. Specifically, let hn,0 = 0 ∈ X be the inner

initial guess. Then, for k = 0, 1, 2, . . ., compute:

hn,k+1 = JX∗
r∗

(
h∗n,k+1

)
= JX∗

r∗
(
JX
r

(
hn,k

)
− τnF

∗
xn JY

r

(
Fxn hn,k − (y−F (xn))

))
, (20)

until a certain stopping rule is satisfied (e.g., a maximum number of inner iterations KLW is reached or
the norm of the functional 1

2‖Fxn hn,k+1 − (y−F (xn))‖
2
Y falls below a specified threshold). The obtained

regularized solution of the n-th linear system (11) is denoted as hn,k̂.

3.3. The Role of the Exponent Parameter p in the Lp Lebesgue Spaces Solution

The Landweber inner method (20) for the linearized outer system (11) is conceived in the
framework of the regularization theory in Banach spaces. Considering our applicative case, X and Y
are the Banach spaces of the Lebesgue p-summable functions, Lp(Ωt), with 1 < p < +∞. Any Lp space
with 1 < p < ∞ is reflexive, smooth and strictly convex [27], so that:

(i) since r > 1, the “cost” functional 1
r ‖Fxn h− (y−F (xn))‖

r
Lp is convex, consequently no other local

minima arise in the context of Lp regularization, and differentiable;
(ii) the duality maps JY

r and JX∗
r∗ are always single-valued.

Based on this, recalling that the Lp-norm is defined as:

‖u‖Lp =

(∫
Ω

∣∣∣u(rt)
∣∣∣pdrt

)1/p

, (21)

the duality map JLp
r , which is the differential of 1

r ‖u‖
r
Lp , for 1 < p, r < ∞, can be explicitly computed as [28]:

JLp

r (u) = ∂
(1

r
‖u‖rLp

)
= ‖u‖r−p

Lp |u|p−1sign(u), (22)

where the sign function is defined as sign(u) = u/|u| when u , 0 and zero otherwise. If u ∈ Lp(Ωt)

then JLp
r (u) ∈ (Lp)∗(Ωt), which is isometrically isomorph to Lp∗(Ωt), and the function on the right-hand

side of (22) effectively belongs to Lp∗(Ωt) [28], being p∗ the Hölder conjugate of p, that is, 1
p + 1

p∗ = 1.

Moreover, if the Banach space is the Hilbert space L2, then JL2

2 reduces to the identity operator, that is,

JL2

2 (u) = u, ∀u ∈ L2(Ωt), as expected due to the isometric isomorphism between (L2)
∗ and L2.

Differing from the power parameter r, which acts merely as a scaling factor, the parameter p > 1
of the chosen Lp space has a crucial meaning. Indeed in (22), the value of p gives rise to different
amplifications of the small and large components of its argument u. As an example, let us consider a
value 1 < p < 2: Then |ul|

p−1
� |ul| for small |ul| < 1, and |ul|

p−1
� |ul| for large |ul| > 1, which means that

the duality map JLp
r of (22) emphasizes the small components and reduces the large ones (and obviously

the behavior is the opposite for p > 2). As a general comment, solving the functional Equation (5) in the
framework of a Lp space gives rise, just heuristically, to a Tikhonov-like regularization algorithm Rα by
considering α = p− 1, where α > 0 is the regularization parameter. This means that we obtain low
regularization (i.e., low filtering and low smoothness), for small p > 1 close to 1, corresponding to a
regularization parameter α close to 0, and high regularization (i.e., high filtering and high smoothness),
for large p� 1, corresponding to a regularization parameter α� 0. Indeed, the numerical examples
in the next Subsection briefly will show that, for p ≥ 2, some oversmoothing effects appear and
discontinuities between different scattering media are not well reconstructed, as generally happens
with too large Tikhonov regularization parameters α� 0. Quite the opposite, with smaller p � 1, the
restoration of the discontinuities is more accurate, although some instability and noise amplification
may arise, as usually encountered with a too small choice of the Tikhonov regularization parameter
α � 0.



Electronics 2019, 8, 945 8 of 18

3.4. A Reconstruction Example

An example of reconstruction obtained by applying the fixed-exponent Lebesgue space inversion
procedure presented above is reported here. In particular, the FoamDielExtTM target from the reference
measured data provided by the Institut Fresnel is considered [39]. Such a target is composed by two
adjacent cylinders: The first one has center in (0, 0) cm, radius 4 cm, and relative dielectric permittivity
1.45, whereas the second one is centered in (−5.55, 0) cm, has radius 1.55 cm, and relative dielectric
permittivity 3 (in both cases, the electric conductivity is negligible). The object is illuminated by
horn antennas located in S = 8 positions uniformly spaced on a circumference of radius 1.67 m,
and, for each view, the scattered field is collected in 241 points uniformly spaced on an arc of 270◦

on the same circumference. Data acquired at different frequencies are also available in the range
[2–10] GHz, with 1 GHz step. The details of the measurement setup can be found in [40]. During
the inversion procedure, the assumed investigation region is a square domain of side 20 cm, which
has been discretized into 63 × 63 square subdomains. The maximum number of outer and inner
iterations have been fixed to NIN = 50 and KLW = 10, respectively. Moreover, to test the approach in
optimal conditions, the loops are stopped when the variations of the normalized root mean square
error NRMSE = ‖c− c̃‖/‖̃c‖, c̃ being the actual value of the contrast function, fall below 0.5%.

The reconstructed distribution of the relative dielectric permittivity for some of the available
working frequencies are shown in Figure 2. The results obtained with the optimal value of the norm
parameter p are reported in the first row, whereas the corresponding Hilbert-space reconstructions
are provided for comparison in the second row. As can be seen, the Lebesgue-space method is able
to reconstruct correctly the inspected scenario in all cases, providing a quite accurate reconstruction
of the cylinders’ cross section, both in terms of dimensions and dielectric permittivity. Using the
Hilbert-space procedure it still is possible to identify both targets, but a significant over-smoothing
effect is present (which prevents a good reconstruction of the small cylinder) and the ringing in the
background is higher. This basic numerical example confirms the behavior of the inversion procedure
in Lp Lebesgue spaces, with respect to different choices of the exponent p parameter, as briefly discussed
at the end of the previous Subsection. Indeed, in Figure 2d–f, where p = 2, oversmooting effects are
quite evident, whilst in Figure 2a–c, where p = 1.2 and 1.3, the reconstructions are less oversmoothed
(but some numerical instabilities may occur, especially for smaller p, not shown here). These two
kinds of results usually are associated with too high and too low regularization in classical Tikhonov
Hilbertian approaches, respectively.

Such considerations are also supported by the values of the mean relative errors reported in
Table 1, defined as:

e
inv
obj
bg

=
1

Ωt

Ωobj
Ωbg

∫
Ωt

Ωobj
Ωbg

ε∗r(r) − ε̃∗r(rt)

ε̃∗r(rt)
drt (23)

where ε̃∗r denotes the reconstructed dielectric permittivity, and Ωobj, Ωbg are the subdomains occupied
by the target and by the background, respectively.

Table 1. Reconstruction errors, outer iteration numbers, and computational times.
Lebesgue-space inversion.

Frequency
[GHz]

Lebesgue (Optimal Norm) Hilbert

popt einv eobj ebg N*
in tm [s] einv eobj ebg N*

in tm [s]

2 1.2 0.060 0.14 0.047 5 11.78 0.11 0.16 0.098 6 12.54
3 1.3 0.082 0.13 0.074 10 17.26 0.12 0.13 0.12 12 16.93
4 1.3 0.096 0.13 0.091 8 18.62 0.16 0.15 0.17 21 21.50
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Figure 2. Reconstructed distribution of the relative dielectric permittivity. FoamDielExtTM target.
Upper row: Lebesgue-space inversion for (a) f = 2 GHz (popt = 1.2), (b) f = 3 GHz (popt = 1.3),
and (c) f = 4 GHz (popt = 1.3). Lower row: Hilbert-space inversion (i.e., p = 2) for (d) f = 2 GHz,
(e) f = 3 GHz, and (f) f = 4 GHz.

Table 1 also reports the computational data for the considered cases (on a computer equipped
with an Intel i5-8265u CPU and 16 GB of RAM). Specifically, the numbers of performed outer iterations,
N∗in, and the corresponding average computational time per iteration, tm, are provided. As expected,
the time needed for performing a single outer iteration is similar between the optimal norm and the
Hilbert-space approaches. However, in all cases, less iterations are needed when considering the
optimal Lebesgue-space procedure, allowing a faster reconstruction.

It is worth remarking that the over-smoothing effect in the Hilbert-space solution can be reduced
by varying the regularization parameter, which in the present approach is represented by the number
of iterations. Table 2 reports the reconstruction errors obtained with different values of the parameters
KLW in the case f = 2 GHz (the threshold on the NRMSE is not set). As can be seen, the object error
decreases when higher values of KLW are used (i.e., a lower regularization is performed), becoming
comparable with the ones provided by the optimal value of the norm parameter (in particular, the peak
value of the dielectric permittivity is closer). However, the background error increases significantly,
producing a greater overall reconstruction error.

Table 2. Reconstruction errors for different values of the number of inner iterations KLW. f = 2 GHz.
Lebesgue-space inversion.

KLW einv eobj ebg

25 0.13 0.16 0.13
50 0.14 0.15 0.14
75 0.14 0.15 0.14

100 0.14 0.14 0.14

As an example, Figure 3 shows the mean relative reconstruction errors versus the norm parameter
p for the case of the lowest frequency (i.e., f = 2 GHz). The overall reconstruction error einv presents a
minimum value corresponding to the optimal norm parameter popt. Following that, the error increases
monotonically with p. Moreover, as expected, the background error is always increasing, since low
values of p produce sparser solutions. Concerning the object error, in this case a minimum is present at
popt, and after an initial increase it becomes almost constant. Similar trends can be observed for the
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other frequencies. To summarize, Figure 4 shows the behavior of the residual functional (Figure 4a)
and of the normalized root mean square error (Figure 4b) versus the outer iteration number for the case
f = 2 GHz. As can be seen, for all values of p the algorithm converges after few iterations (between 5
and 8).Electronics 2019, 8, x FOR PEER REVIEW  10 of 19 
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4. Multifrequency Lebesgue-Space Inversion

To increase the available information, multi-frequency data can be exploited. It is assumed to
have at our disposal the scattered-field data collected for a set of F values of the angular frequencies ω f ,
f = 1, . . . , F. Subsequently, a subscript ω is added to the frequency-dependent functions and operators
to specify at which frequency they refer. However, since the contrast function depends upon the
frequency, it is necessary to modify the problem formulation [31,41]. To explain, let us assume that the
dielectric permittivity and the electric conductivity do not depend on the frequency (i.e., dispersion is
neglected). The contrast function cω(rt) in this case can be rewritten as:

cω(rt) =
[

1 − jω0
ω

] εr(rt)
εb
− 1

σ(rt)−σb
ω0ε0εb

︸         ︷︷         ︸
xMF(rt)

= TωxMF(rt) (24)



Electronics 2019, 8, 945 11 of 18

where ω0 is a reference frequency and the new unknown, which does not depend on the frequency, is
given by xMF. The inverse scattering problem at a single frequency ω can be then described by the
following equation:

Fω(TωxMF) = yω (25)

where Fω is given by (4).
It is worth noting that now xMF is a real-valued function, whereas the electric fields are

complex-valued. To work with all real-valued functions, the data are split into their real (<)
and imaginary (=) parts. Applying (25) to all the available F frequencies and stacking all the resulting
functional equations, the multi-frequency operator equation to be inverted can be then formally
written as:

FMF(xMF) =



<

{
Fω1(Tω1xMF)

}
=

{
Fω1(Tω1xMF)

}
...

<

{
FωF(TωF xMF)

}
=

{
FωF(TFxMF)

}


=



<

{
yω1

}
=

{
yω1

}
...

<

{
yωF

}
=

{
yωF

}


= yMF (26)

Concerning the Fréchet derivative of the new operator, needed in the outer linearization step, it
can be written in terms of the derivative of the complex single-frequency operator as:

FMF,xn
=


F
ω1

MF,xn
...

F
ωF

MF,xn

 (27)

with

F
ω

MF,xn
=

 <
{
F
ω

xn

}
ω0
ω =

{
F
ω

xn

}
=

{
F
ω

xn

}
−
ω0
ω <

{
F
ω

xn

}  (28)

It is worth remarking that the multifrequency inversion technique is based on the use of the
Lebesgue-space theory discussed in Section 3. Consequently, the same value of the norm parameter p
is used for all the elements of the data vector yMF (i.e., the scattered fields at the different frequencies).
A possible future extension of the approach would be to use different values of p for the different
frequencies (i.e., for different parts of the data vector) by exploiting the variable-exponent Lebesgue
space theory discussed in Section 5.

A Reconstruction Example

To show the effectiveness of the multi-frequency approach combined with the Lebesgue-space
inversion procedure, the FoamDielExtTM target considered in Section 3.4 has been used again as
a reference target. As previously described, the Fresnel data are available in the range 2–10 GHz.
Consequently, the F frequencies considered in the inversion are fi = 2 + (i− 1) GHz, i = 1, . . . , F.
Figure 5 shows the results obtained by considering F = 2, F = 4, and F = 7. As can be seen, increasing
the number of processed data allows one to improve the reconstruction quality with respect to the
single-frequency inversion procedure, especially concerning the edges of the two cylinders. This
improvement is also confirmed by the reconstruction errors reported in Table 3. As expected, all
the reconstruction errors decrease when F increases, although for F higher than about 5 a slower
improvement can be observed. Even in this case, the use of a norm with an exponent lower than
2 always produces better reconstructions than the corresponding standard Hilbert-space approach.
However, when a high number of frequencies are used, the advantages of using lower exponent
parameters become less significant (although always present). It is worth remarking that, in this case,
the Hilbert-space approach could provide results comparable to the optimal Lebesgue-space procedure
by considering a higher number of frequencies. As an example, the reconstruction errors obtained with
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the Hilbert-space approach with 7 frequencies are comparable to the ones of the optimal Lebesgue-space
procedure with 4 frequencies. However, the computational cost is significantly higher (the needed
time per iteration is doubled and the number of iterations is three times higher). Concerning the
computational times, it should also be noted that in the multifrequency case they are higher than the
single-frequency case and increase with the number of processed frequencies. Such an increase is due
to the higher dimensions of the involved matrices. Moreover, in the current implementation, several
sub-matrix and sub-vector extractions are performed for building the Fréchet derivative in (27)–(28),
leading to an additional computational burden.
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Table 3. Reconstruction errors, outer iteration numbers, and computational times. Multi-frequency
Lebesgue-space approach.

Number of
Frequencies

Lebesgue (Optimal Norm) Hilbert

popt einv eobj ebg N*
in tm [s] einv eobj ebg N*

in tm [s]

2 1.3 0.057 0.12 0.047 4 117.87 0.083 0.13 0.076 13 133.57
3 1.3 0.049 0.088 0.043 6 205.97 0.066 0.098 0.061 16 221.65
4 1.4 0.045 0.075 0.040 10 313.20 0.059 0.081 0.055 21 330.66
5 1.4 0.041 0.066 0.036 19 454.80 0.052 0.074 0.048 24 451.44
6 1.4 0.039 0.062 0.036 17 611.34 0.049 0.071 0.045 27 592.21
7 1.5 0.038 0.060 0.034 19 772.71 0.046 0.068 0.042 28 744.73

5. The Novel Variable-Exponent Approach

To summarize, the inverse scattering results obtained by using the inexact Newton method as a
regularization algorithm for the nonlinear Equation (5) in some Lp Lebesgue spaces show less presence
of over-smoothing in the reconstructed properties of the targets. Naturally, this is an interesting
property for all the applications in which an accurate dielectric reconstruction is required. Despite
these advantages, a critical issue should be tackled, related to the selection of the value of p that gives
rise to the best results. This parameter is essential, since it allows the definition of the Lp space in
which the algorithm operates and, thus, the corresponding norm. Confirmed by heuristic analyses, it
turns out that the background of a dielectric reconstruction obtained by an Lp-space inversion with
low values of the exponent p > 1 is cleaner from ringing effects. Additionally, discontinuities in the
dielectric properties of the targets are retrieved with a higher level of accuracy. Conversely, values of
p ≈ 2 are more suitable for reconstructing the internal part of scatterers with homogeneous dielectric
characteristics. Taking the point of view of applications, a sort of compromise between these trends has
to be found. Some indications have been derived from numerical and experimental analyses, in which
this parameter has been studied with regard to different target typologies, their dielectric properties,
size, and the amount of data signal-to-noise ratio [30,41]. Despite this, with the tools described so far,
only an a-posteriori selection of the optimal p has been done. Clearly, such an optimal choice is feasible
only in controlled conditions, when the actual solution is known.

To overcome such a limitation, an innovative approach working in Lebesgue spaces Lp(·) (i.e.,
where the exponent is a non-constant function) has been recently devised in [42]. The key point of this
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method is the possibility to have a variable parameter p(·) in the investigation domain, which is not
limited anymore to be a unique constant value. The considered functional spaces are different from the
Lebesgue spaces of p-integrable functions Lp (in which p is constant) and the power p turns out to be a
function of the position, in other words. The result is the freedom of defining a different value of p
for each point inside the region under inspection: This way, the sparsity of the background can be
enforced with low values of p, whereas values of p closer to 2 can be used to achieve a more accurate
reconstruction of the properties inside the scatterers.

The price to pay is a more complex mathematical structure of the Lebesgue spaces with variable
exponents Lp(·) compared to the Lebesgue spaces Lp (i.e., with constant exponent). An example is the
computation of the Lp(·)-space norm. First, to calculate the norm, the evaluation of the modulus ρp(·) is
necessary, i.e.:

ρp(·)(v) =
∫

Ωt

∣∣∣v(rt)
∣∣∣p(rt)drt, (29)

which generalizes the argument of the (constant-value) p-root of (21) to an exponent function 1 < p(rt) <
+∞, rt ∈ Ωt [42]. The p-root is required in the definition (21) for guaranteeing that the homogeneity
property of any norm holds, that is ‖αv‖Lp = |α|‖v‖Lp for any real value α. Moreover, the p-root of the
constant case cannot be directly extended to the non-constant case, because there is not a unique value
to use. The Lp(·)-norm, which extends the Lp-space definition (21) and also is known as a Luxemburg
norm [42], is found, thus, by solving a one-dimensional minimization problem, that is:

‖v‖Lp(·) = inf
{
γ > 0 : ρp(·)

(
1
γ

v
)
≤ 1

}
. (30)

When the exponent p(rt) is a constant value (denoted as p̂), it clearly results that:

‖v‖Lp(·) = inf
{
γ > 0 : ρp(·)

(
v
γ

)
≤ 1

}
= inf

γ > 0 :
(

1
γ

)p̂

ρp̂(v) ≤ 1

 =
(
ρp̂(v)

)1/p̂
= ‖v‖Lp̂ , (31)

where the identity ρp(·)

(
v
γ

)
=

(
1
γ

)p̂
ρp̂(v) holds only in this constant case (otherwise it cannot be

formally written).
Considering the above concepts, the extension of the Landweber-type iterations in (20) to the

variable-exponent Lebesgue space X = Lp(·) relies on the calculation of the Lp(·)-space duality maps
and has the following form:

hn,k+1 = JLq(·)

r∗

(
JLp(·)

r

(
hn,k

)
− τnF∗xn JLp(·)

r

(
Fxn hn,k − (y− F(xn))

))
(32)

where JLp(·)
r and JLq(·)

r∗ are the duality maps of Y = Lp(·) and Lq(·), and the function q(·) represents the
Hölder conjugate of p(·), defined as 1

p(rt)
+ 1

q(rt)
= 1. This iterative algorithm, although formally

similar to (20), has relevant differences inside the expression of the duality map JLp(·)
r (v), which is now

defined as:

JLp(·)

r (v)(rt) =
p(rt)

∣∣∣v(rt)
∣∣∣p(rt)−1

sign(v(rt))‖v‖
2−p(rt)

Lp(·)∫
Ωt

p(r′t)
∣∣∣v(r′t)

∣∣∣p(r′t )
‖v‖

p(r′t )

Lp(·)

dr′t

(33)

This expression has been found by exploiting the Fréchet derivative of the norm in Lp(·) spaces [43]
and needs to evaluate the Luxemburg norm (30) of v. Taking a purely theoretical point of view, it is
important to note that, differing from the conventional constant exponent case, the duality map JLq(·)

r∗ is
only an approximation of the respective duality map of the dual space of Lp(·) which is used in the
iterative scheme.



Electronics 2019, 8, 945 14 of 18

5.1. Strategies for Choosing the Variable Exponent Function

The possibility of arbitrarily selecting the exponent p(·), which is a function with values 1 < p(·) <
+∞, can be exploited to apply different exponent parameters to different regions of the investigation
domain. However, the choice of such a function p(·) has not been discussed yet in this survey. The
basic idea behind our proposal has been explained in the previous subsection: Exponents p close to
1 are useful in the background (to improve the sparsity and reduce the ringing phenomena), while
exponents p close to 2 are useful inside the scattering objects (to estimate the true values of their
dielectric distribution). Although background and location of the objects are not known as prior
information, but rather their retrieval is the aim of the proposed algorithms, an estimate can be obtained
by the first iterations of any classical methodology. This way, we can consider the first reconstruction
(even if really poor) as basic information for constructing the exponent function p(·) for the space of
unknown X. Concerning the data space Y, the norm parameter p is kept constant and equal to the
average value of p(rt), rt ∈ Ωt.

Based on this paradigm, we have developed an adaptive and automatic iterative procedure for
defining the nonconstant exponent p(·). An improved accuracy, as well as a greater stability compared
to reconstruction algorithms in constant-exponent Lp spaces, characterize the novel procedure. To
detail more, a map of the values of p(rt), for rt ∈ Ωt, is updated at each Newton iteration on the basis of
the retrieved values of the contrast function inside the investigation domain Ωt. The exponent function
is chosen such that pmin ≤ p(rt) ≤ pmax (with pmin > 1 and pmax > pmin), where pmin and pmax are two
values fixed before starting the inversion process, which identify the range of variation. The update
equation of the exponent p(rt) is given by:

pn+1(rt) = (pmax − pmin)Υ


∣∣∣xn(rt)

∣∣∣
max
r∈D

∣∣∣xn(rt)
∣∣∣
+ pmin (34)

in which n denotes the current inexact-Newton iteration. The mapping function Υ(·) has values from
[0, 1] to [0, 1] and presents a monotonic increase. The application of (34) results in a non-linear scaling
of the values of the contrast function magnitude (divided by its maximum value) in the given interval
range for the exponents, [pmin, pmax]. Since the background region (i.e., the set of points of Ωt where no
targets are present) is characterized by low values of |xn|, the corresponding values of p(rt) given by
(34) will approach the minimum of the range pmin. In this way, the region outside targets would present
a reduction of background ringing and artifacts. Conversely, in the regions internal to the scattering
targets (where |xn| is close to its maximum) p(rt) will approach pmax, providing a good retrieval of the
properties of large regions without overestimation peaks.

Equation (34) defines p(rt) by exploiting the reconstructed contrast function, which is typically
available after the first outer step of the inexact-Newton loop. To start the inexact-Newton iterations,
different strategies can be followed based on the availability of a-priori information. When an initial
guess is available before executing the inversion (that is, we know a starting approximate solution
x0 , 0), (34) can still be applied considering such an estimated value of the unknown. Alternatively,
when this kind of information is not available, a constant function p(·) = pstart can be considered,
obtaining the same initial iteration as the fixed-exponent approach (20).

5.2. A Reconstruction Example

To give an example, the FoamDielExtTM target considered in Section 3.4 has been reconstructed
by using the variable-exponent approach. The parameters of the outer and inner loops are the same as
in the constant exponent case. The power function p(·) has been defined with pmin = 1.4 and pmax = 2.
Five different typologies of mapping functions are experimented:

1. Linear→ Υ(u) = u
2. Square→ Υ(u) = u2
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3. Square root→ Υ(u) =
√

u
4. Arcsin→ Υ(u) = 1

πarcsin(2u− 1) + 1
2

5. Sine→ Υ(u) = 1
2 sin

(
πu− π

2

)
+ 1

2

The reconstruction results are summarized in Table 4, which reports the reconstruction errors
obtained with the variable-exponent procedure when considering the data at 2, 3 and 4 GHz. Regarding
this configuration, the different mapping functions provide comparable errors. Moreover, the obtained
results are similar to the ones provided by the optimal norm parameter in the fixed-exponent algorithm.
The corresponding computational times are reported in Table 5. As can be seen, the time needed
for performing a single outer iteration is only slightly higher than the corresponding time for the
fixed exponent case (see Table 1). Such a small increase is due to the increased complexity in the
computation of the Luxemburg norm. However, the number of needed iterations is still comparable to
the fixed-exponent case, thus the overall computational burden is only slightly greater. It is worth
remarking that, although the reconstruction quality (both in terms of computational cost and errors)
is comparable, the main advantages of the proposed variable Lp approach are related to the fact
that it does not require an a-priori selection of the norm parameter p, whose optimal value can be
selected only a-posteriori and with some knowledge of the expected results. Actually, the user is only
required to select a range of values for this parameter, whose choice is far less critical. Figure 6 shows
the reconstructed distribution of the relative dielectric permittivity for a linear mapping function.
Observing the results, we notice a correct retrieval of the properties of both targets. Additionally, the
Lp(·)-space reconstructions look very similar to the ones obtained when considering the fixed-exponent
method with an optimal choice of the exponent p. This is further confirmed by the cuts of the relative
dielectric permittivity along the x axis reported in Figure 7.

Table 4. Reconstruction errors. Variable-exponent Lebesgue-space approach.

Map Type
2 GHz 3 GHz 4 GHz

einv eobj ebg einv eobj ebg einv eobj ebg

Linear 0.076 0.15 0.064 0.073 0.12 0.065 0.085 0.10 0.082
Sine 0.076 0.15 0.064 0.071 0.12 0.062 0.11 0.12 0.10

Quadratic 0.079 0. 16 0.066 0.070 0.11 0.063 0.098 0.11 0.095
Square root 0.077 0.14 0.065 0.077 0.13 0.069 0.088 0.11 0.084

Arcsin 0.077 0.15 0.066 0.078 0.12 0.070 0.092 0.11 0.090

Table 5. Outer iteration numbers and computational times. Variable-exponent
Lebesgue-space approach.

Map Type
2 GHz 3 GHz 4 GHz

N*
in tm [s] N*

in tm [s] N*
in tm [s]

Linear 11 12.61 8 17.41 6 19.05
Sine 9 12.98 4 16.19 8 21.80

Quadratic 7 12.74 7 16.71 6 18.98
Square root 11 13.06 8 17.75 7 19.83

Arcsin 10 12.72 8 17.59 7 19.60
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6. Conclusions

An overview of the recent advancements in the development of microwave imaging methods
based on inversion procedures in Lebesgue spaces has been reported. First, an introductory description
of the inverse-scattering problem formulation has been provided. Subsequently, the application of
Newton-based techniques combined with regularization strategies in Hilbert and fixed-exponent
Lebesgue spaces has been reviewed, including multi-frequency approaches. Next, the more recent
variable-exponent space methods have been detailed. The adaptive procedure used to define, iteration
by iteration, the power function of the variable-exponent spaces removes the need for choosing a fixed
Lp space exponent value. Previously, the choice of the “best” fixed exponent was possible only with an
a-posteriori error analysis, based on known configurations. Therefore, the applicability of this kind of
inversion methods in real environments is now significantly increased, in particular when no a-priori
information about the target is available. The considered inversion techniques have been analyzed
and compared by considering experimental data, confirming their effectiveness also under realistic
operating conditions.
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