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Abstract: With the rise of Internet of Things (IoT), low-cost resource-constrained devices have to
be more capable than traditional embedded systems, which operate on stringent power budgets.
In order to add new capabilities such as learning, the power consumption planning has to be revised.
Approximate computing is a promising paradigm for reducing power consumption at the expense
of inaccuracy introduced to the computations. In this paper, we set forth approximate computing
features of a processor that will exist in the next generation low-cost resource-constrained learning
IoT devices. Based on these features, we design an approximate IoT processor which benefits from
RISC-V ISA. Targeting machine learning applications such as classification and clustering, we have
demonstrated that our processor reinforced with approximate operations can save power up to 23%
for ASIC implementation while at least 90% top-1 accuracy is achieved on the trained models and test
data set.
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1. Introduction

Internet of Things (IoT) is the concept of connecting devices so as to improve the living standards
of its users by studying the data fed by these devices. In the early examples of IoT, data used to
be processed at computationally powerful data centers known as cloud. However, the number of
connected devices increases swiftly. Current research shows that even though there were 7 billion
IoT devices in 2018, it is estimated that there will be 21.5 billion IoT devices in 2025 [1]. Inefficiency
in processing all data on the cloud due to network latency and processing energy have pushed
researchers to shift the learning algorithms from cloud to fog which consists of devices that can locally
process IoT data [2]. Recent study has shown that even simple learning actions such as clustering
and classification can be used for various purposes like abnormal network activity detection [3], IoT
botnet identification [4], just to name a few. Embedded machine learning brings down the learning to
resource-constrained IoT end-devices.

Employing machine learning algorithms at embedded devices is challenging, because even the
simplest algorithm makes use of limited resources such as memory, power budget. Since most IoT
end-devices interact with other devices and people, the response time also becomes important, especially
when real-time action is required [5]. Hence, in this paper, we propose to include an approximate
data-path on the embedded processor to reduce the latency and power consumption overhead of
machine learning algorithms on resource-constrained programmable IoT end-devices. Approximate
computing [6] is a promising paradigm as it reduces energy consumption and improves performance
at the cost of introducing error into its computations. It is beneficial for the applications that can
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tolerate a predefined error. Machine learning (ML) is clearly one of the applications that benefit from
approximate computing. A study on classification in an embedded system shows that erroneous
computations do not matter as long as the data points appear in the correct class [7]. In another
research, it has been demonstrated that deep neural networks are resilient to numerical errors resulting
from approximate computing [8].

Both scientific and commercial attempts exist for designing approximate processors [9,10].
However, none of them is targeted to machine learning applications. The basic novelty in our approach
relies on the method that we handle accuracy adjustment. Existing approximate processors correct
the precision of arithmetic operations by observing the error at the output of the arithmetic operator.
However, this is not the case in our approach. In our processor, the precision of the arithmetic
operations is corrected by receiving the feedback from the IoT device user or other components in
the IoT ecosystem. A not-too-distant future use case is shown in Figure 1 which depicts a smart
cooker. In this scenario, a neural network model for cooking can be stored in the IoT processor or it
can be downloaded from the IoT ecosystem such as fog, cloud, or other devices. The cooker senses
the ingredients via the sensors (Step 1) and combines them with user preferences to decide on the
cooking profile and duration by making approximate computations (Step 2). After the cooking time is
over, the food is cooked either properly or not (Step 3). The quality feedback from the user (Step 4)
can be done either consciously or unconsciously. In the conscious case, a simple button on the cooker
or a home assistant can be used for reporting user satisfaction to the cooker as a feedback. In the
unconscious case, the user actions will provide the feedback: If the food is undercooked, the user will
ignorantly report the error in cooking by continuing to cook on the stove. If the food is overcooked,
then the user will report it to the customer service via a home assistant. In both cases there will be
a feedback to the cooker either from the user (undercooked case) or from the customer services via
IoT ecosystem (overcooked case). Based on the feedback, the processor will adjust its accuracy level
(Step 5). This scenario can be enhanced as follows: During cooking, the energy consumption of the IoT
processor on the cooker must be minimized so as to be able to conduct the cooking profile during the
cooking period. As a result, reducing the energy by approximating the computations is important.
Besides, the processor can be put to sleep time-to-time to monitor the cooking process and make
instant adjustments during cooking. It should be noted that quality of service is of extreme important
for the IoT products that interact with people. Hence, a low accuracy cannot be tolerated. With our
Approximate IoT processor, we observed at least 90% top-1 accuracy on the trained models and test
data set.
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While designing our Approximate IoT processor, we follow a guideline that we derived from
various studies in the literature: Firstly, approximate low-power computing at resource-constrained IoT
processors needs to be handled at the instruction set level that supports approximate operations [11,12].
Besides, precision of the computations needs to be adjustable to serve different application
requirements [6,13,14]. Finally, there should be an application framework support to map user-defined
regions of software to approximate computing modules [9]. So, in this paper, we propose an embedded
processor, which has approximate processing functionality, with the following properties:

• In machine learning, the majority of operations are addition (ADD), subtraction (SUB) and
multiplication (MUL). In our processor, we extend base 32-bit Reduced Instruction Set Computer-V
(RISC-V) Instruction Set Architecture ISA [15] only with XADD, XSUB and XMUL for approximate
addition, subtraction and multiplication, respectively (Section 3.1). Code pieces that can benefit
from approximate instructions are handled via the plug-in that we developed for GCC compiler [16]
(Section 4.1).

• We propose a coarse-grain control mechanism for setting accuracy of approximate operations
during run-time. In our proposal, number of control signals is minimized by setting each control
signal to activate a group of bits. To achieve this, we design a parallel-prefix adder and a wallace
tree multiplier. We present three approximation levels to control the accuracy of the computations
(Section 3.2).

• To reduce the power consumption, we adjust the size of the operands of the approximate operators
dynamically at the data-path. Since approximate operators are faster than the exact ones, dynamic
sizing does not deteriorate the performance (Section 3.2.1).

• For monitoring quality of the decisions resulting from the ML algorithms running on our
approximate processor, we rely on the interaction of the IoT device with the IoT user or other
constituents of IoT ecosystem (Section 2.3).

The paper is organized as follows: Section 2 discusses the similarities and differences between our
work and existing studies. The core structure is explained in Section 3. In Sections 4 and 5, we evaluate
our CPU on some classification algorithms on various data sets and discuss our findings. Conclusions
are presented in the last section.

2. Related Works

In this section, we will set forth related research under four subsections. We make comparisons
between existing approximate processors and our proposal in the first subsection. In the second part,
we discuss our approximate adder design with existing methods. In the third subsection, dynamic
accuracy control is examined. In the last subsection, we mention about studies that implement
clustering and classification algorithms on IoT devices.

2.1. Approximate Processors

In a recent work [11], it has been clearly mentioned that approximate computing at
resource-constrained IoT processor still needs to be explored carefully. Proposed implementations
of the approximate computing techniques within processors in the literature should be reconsidered
in this manner. In [12], approximate building blocks for all stages of the processor including cache
exist parallel to the exact blocks. In order to activate approximate operations, new instructions are
added in the instruction set. In [17], the data memory is partitioned into several banks so that the
memory controller can distribute data to the correct memory bank by observing the output of the data
significance analyzer. Though all of these contributions significantly improve the power consumption
of desktops or servers, they cannot be used directly in embedded systems due to non-negligible area
overhead and cost. In another approach [18], we see approximate data types which should reside in
approximate storage. Partitioning a storage for approximate and exact data causes under-utilization
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of the both partitions. Besides, memory access time dramatically increases due to the software and
hardware incorporated in data distribution.

The idea of carrying the approximate operations into action by means of a processor is also realized
in [9]. In Quora [9], vector operations are approximately executed, but scalar operations are handled
with exact operators. Main hardware approximation methodologies in Quora are clock gating, voltage
scaling and truncation. The first method is actually a common low-power technique used in ASIC
designs. The second one is also a low-power technique but can also be used in approximation in the
sense that voltage can be dynamically lowered too much to diminish the power consumption at the cost
of some error. They truncates LSBs to control precision dynamically, but as they stressed in [9], there
does not exist a hardware module that calculates results directly in an approximate fashion. They have
a quality monitor unit which follow the error rate and truncates LSBs accordingly. In our design, we
implement scalar operations with approximate and exact operators which can be selected by software.
Separate hardware blocks exist for calculating the result approximately, and controlling the accuracy
dynamically. Hence, two designs have different approach in terms of approximate CPU design.

A patented work [10] about an approximate processor design can also be found to show the
increasing interest on translating approximate design methodologies into processor systems. Proposed
processor in [10] includes execution units, such as an integer unit, a single issue multiple data (SIMD)
unit, a multimedia unit, and a floating point unit. Considering a resource-constrained low-power
IoT devices, using all of these blocks creates too much area overhead together with an important
increase in energy consumption. We simplify architecture of the core by putting execution blocks
for only logic and integer operations to minimize power consumption and to make it suitable for
resource-constrained IoT end devices. Basic integer addition, subtraction and multiplication operations
can be approximately executed via an additional data-path, namely approximate data-path, added to
our CPU with small area overhead.

2.2. Circuit-Level Approximate Computing

Approximation at circuit level for adders covers a general implementation flow, which is generating
larger approximate blocks by using smaller exact or inexact sub-adders. In [19], 8-bit approximate
sub-adders are reconfigured to create 32-bit, 64-bit more efficient approximate designs in terms of critical
path delay, area and power consumption. In [20], fixed sub-adders are used to create a reconfigurable
generic adder structure. In [21], pipeline mechanism is used to generate an approximation methodology
by implementing sub-adders. Using sub-adders can provide a good opportunity to reconfigure the
structure and diminish critical path delay to a degree. However, critical path delay can still harm the
performance of the operation, especially in high performance applications.

At this point, we believe that proposing an approximation methodology for parallel prefix adders
would be useful to implement to reduce critical path length, because these type of adders have
a better latency than the others [22]. There is a study in the literature which uses parallel-prefix
adders in the approximate adder design [23]. Their approximation method includes precise and
approximate parts, but parallel-prefix adders are used only in the precise part. Thus, there is no
approximation methodology for parallel-prefix adders. As a result, approximation methodology for
this type adders should be investigated to propose energy-efficient ways for high performance and
error resilient applications. To address this need, we introduce a simple approximation methodology
for parallel-prefix adders which can be further improved for other applications. In our scenario,
we specialized the approximate adder to add coarse-grain dynamic accuracy control mechanism.
We used Sklansky adder as a case study, which has a moderate area and the best delay among
parallel-prefix adders. We control only gray cells in the tree for approximation in order to lower the
energy consumption, reduce critical path and still have an acceptable accuracy. This method can be
generalized to convert other parallel-prefix adders into approximate ones. For example, Brent-Kung,
Kogge-Stone and other parallel-prefix adder structures share the similar structure with Sklansky, hence
this idea can also be directly implemented on them.
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2.3. Dynamic Accuracy Control

Our approximate processor offers dynamic accuracy control functionality as a programmable
feature because each IoT application may require a different accuracy. Fine-grain control as proposed
in [14], offers fine tuning of the accuracy at the cost of increased latency, size, and power consumption
of the controller. However, applying approximate computing in low-cost and resource-constrained
IoT processors should come with no or very little overhead in terms of area while reducing power
consumption and lowering the execution time, if possible. Hence, we have preferred to use coarse-grain
accuracy control. We create certain power saving levels by putting three approximation levels for each
approximate block. Accuracy levels can be adjusted by users or IoT ecosystem in accordance with
their power and accuracy requirements as shown in Figure 2. Approximation Level Control Unit can
be configured for IoT end devices.
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dynamic accuracy control is applied only on the approximate ALU that is augmented in the data-path.
Hence the accuracy control circuit need not be big. Its overhead on the entire CPU is much less than 1%
in our design. If we calculate the area overhead due to dynamic accuracy control on each approximate
block as calculated in [24,25], then it becomes about 4% at most which is still very small compared to
their overhead. Another advantage of our design is that accuracy control takes less than a cycle when
switching between different levels of approximation or between one of the approximation levels and
exact mode. Since our approximate operators execute faster than the exact ones, dynamic accuracy
control circuit does not cause an additional latency.

2.4. IoT Applications

In our CPU, we have specifically focused on classification, clustering and artificial neural network
algorithms for ML applications in which Multiply and Accumulate (MAC) loops are densely performed.
We have conducted experiments on K-nearest neighbor, K-means and neural network codes to show
that an important energy can be saved by our approximate CPU in the ML applications in which
these codes are widely used. There are several applications that uses K-nearest neighbor [3,26,27],
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In the literature, dynamic accuracy control is also achieved via dynamic voltage scaling
(DVS) [24,25]. There is no dedicated approximate operation block in DVS, the selected parts of
the processor are forced to behave inexactly by lowering the supply voltage. In DVS, accuracy control
takes longer than a cycle, especially when an accuracy change is required from approximate mode
to exact mode. Besides it comes with 9%–20% area overhead in the related studies. In our approach,
dynamic accuracy control is applied only on the approximate ALU that is augmented in the data-path.
Hence the accuracy control circuit need not be big. Its overhead on the entire CPU is much less than 1%
in our design. If we calculate the area overhead due to dynamic accuracy control on each approximate
block as calculated in [24,25], then it becomes about 4% at most which is still very small compared to
their overhead. Another advantage of our design is that accuracy control takes less than a cycle when
switching between different levels of approximation or between one of the approximation levels and
exact mode. Since our approximate operators execute faster than the exact ones, dynamic accuracy
control circuit does not cause an additional latency.

2.4. IoT Applications

In our CPU, we have specifically focused on classification, clustering and artificial neural network
algorithms for ML applications in which Multiply and Accumulate (MAC) loops are densely performed.
We have conducted experiments on K-nearest neighbor, K-means and neural network codes to show
that an important energy can be saved by our approximate CPU in the ML applications in which
these codes are widely used. There are several applications that uses K-nearest neighbor [3,26,27],
K-means [28,29] and neural networks [30,31] at IoT devices in such a way that classification, clustering
and deep learning processes used in IoT systems can also be carried out on the resource-constrained IoT
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devices, not only on the cloud. So, an approximate CPU can help them to decrease power consumption
while calculating intensive computation loads of these algorithms.

3. Core Description

3.1. General Description of the Core

Our RISC-V core has been developed in C++ and synthesized with 18.1 version of Vivado High
Level Synthesis (HLS) tool. Although [32] indicates that HLS is not the best solution to develop
programmable architectures like CPUs, we can benefit from HLS tools for fast prototyping of complex
digital hardware in a simpler way by using a high-level or modeling language [33]. Hence, our
concern in this paper is to study the effects of approximate arithmetic units in the data-path of
a processor. We focus on improving the power efficiency for selected ML applications via simply
configurable, and adaptable CPU design in which operations can be approximately executed to save
power. Our 32-bit core is able to implement all instructions of RV32IM, which is the base integer
instructions of RISC-V ISA plus integer multiplication and division instruction sets, except f ence and
ecall instructions. This simple core aims specific applications where the operations can be handled
by using only integer implementations. We followed a similar approach with Arm Cortex M0 and
M3 and did not add a floating point unit (FPU) to reduce area and lower the energy consumption for
low-cost IoT devices.

Figure 3 shows the general structure of the core. Execute stage consists of two distinct parts,
i.e., exact and approximate blocks, plus conventional exact shifter block. Exact Part perform
exact calculations arithmetic and logic instructions. Approximate Part contains XADD, XSUB and
XMUL operations, which stand for approximate addition, approximate subtraction and approximate
multiplication, respectively. There are not any instructions in RISC-V ISA for approximate operations.
New instructions are needed for integrating designed approximate hard blocks to the architecture at
instruction level, for the best implementation as stressed in [12]. New instructions, shown in Figure 4,
are introduced in such a way that they do not overlap with the existing instructions of the entire RISC-V
ISA. Both MUL, SUB and ADD instructions can be converted to approximate instructions by only
changing the most significant bit (MSB). This small change also facilitates our work in control unit of
the core where the MSB of the instruction is just controlled to determine the operation is approximate
or not.
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Figure 4. R-type RISC-V instruction structure and modification for approximate ( XADD, XSUB and
XMUL) operations.

3.2. Approximate Units

We introduce new approximate designs for enabling coarse-grain dynamic accuracy configuration
and dynamic sizing that we propose in this paper. In approximate module designs, we mainly
focus on circuit level approximation, while integrating these blocks with a softcore to execute some
chosen instructions in approximate mode will be a kind of architecture level approximation. In our
design, the precision of the approximate hardware modules is controlled by approximation levels.
Our approximation is based on bypassing selected sub-blocks that exist in the proposed hardware
modules. Hence, our approach is different than truncating the least significant bits of the results as
applied in [18,34]. Approximate operations of our core are addition, subtraction and multiplication.
However, further approximate modules can also be added to the data-path as shown in Figure 5.

Figure 5. C code for XALU block in HLS. op_1 and op_2 refer to two operands and XLEN is the length
of a register which is 32.

An HLS tool takes the design description in a high-level language as the input and generates
the hardware by synthesizing the program constructs to the primitives of the target architecture.
HLS provides a fast prototyping and design space exploration for the target hardware. The quality
of the design is strongly dependent on the vendor-specific library primitives and user-selected
directives that are applied during the code development. Attempting to design an RTL circuit with a
high-level language and applying HLS usually produces an inefficient hardware. Hence, approximate
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An HLS tool takes the design description in a high-level language as the input and generates
the hardware by synthesizing the program constructs to the primitives of the target architecture.
HLS provides a fast prototyping and design space exploration for the target hardware. The quality
of the design is strongly dependent on the vendor-specific library primitives and user-selected
directives that are applied during the code development. Attempting to design an RTL circuit with
a high-level language and applying HLS usually produces an inefficient hardware. Hence, approximate
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adder/subtractor and multiplier of our core are designed with Verilog Hardware Description Language
(HDL) instead of C++. However, at the time of writing this manuscript, Vivado HLS does not support
introducing blocks designed in HDL to the core designed with a high-level language such as C/C++ [35].
We solve this issue by using stub codes for the functions that correspond to the approximate operations.

In the code given in Figure 5, a C function, namely approx_add is defined to conduct the approximate
addition/subtraction operation when it is called. However, approx_add function only contains stub
code. Consequently, the synthesized core contains the synthesized stub codes which we replace by the
approximate blocks developed in Verilog. In this way, the system integration is achieved.

We design a dynamically sizeable 32-bit Sklansky Parallel-prefix Adder and a 16 × 16 bit Booth
Encoded Wallace Tree Multiplier with Verilog HDL as an exact adder and an exact multiplier. Structural
coding style is used in order to facilitate the control of each sub-block more conveniently although it is
more difficult to write the codes in this way. These exact blocks are modified to make approximate
calculations. Both approximate designs consist of approximate levels which can be individually
arranged to act as selective-precision approximate operators at run-time. These approximation
levels are stored in registers. Each register can be controlled from a circuit, which is out of the core.
Thus, the user or the IoT ecosystem can adjust the approximation levels while the system is running.
We give a direct control for these registers that the approximate levels can be controlled independent of
the operation. We only put coarse-grained three levels of approximation for each approximate design
to create distinct three levels for power saving modes. Dynamic sizing for unused leading zeros of the
operands is controlled directly by data-path. A diagram for approximation level control and dynamic
sizing flow is shown in Figure 6. Subsections below will describe their dynamically sizeable structure
first and then each approximate design separately.
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dramatically, as highlighted in [18]. We considered to adjust the size of our approximate blocks
in hardware in accordance with the size of the operands at run-time just before the execution stage
to improve power efficiency a bit more. Dynamic sizing produces the minimum size for a block for
the exact realization of an operation. Minimum size can be obtained by determining the number of
bits that are actively used to represent the values at the operands. We call these bits as active bits.
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3.2.1. Dynamic Sizing

Data size and dynamically adjustable operations may affect consumed power amount, dramatically,
as highlighted in [18]. We considered to adjust the size of our approximate blocks in hardware in
accordance with the size of the operands at run-time just before the execution stage to improve power
efficiency a bit more. Dynamic sizing produces the minimum size for a block for the exact realization
of an operation. Minimum size can be obtained by determining the number of bits that are actively
used to represent the values at the operands. We call these bits as active bits. The number of active bits
in an operand can be evaluated by subtracting the number of the leading zeros from the register size
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which is 32 for RV32IM. In Section 4.4.1, we demonstrate that dynamically adjusting the size of the
approximate blocks significantly affects the power, but has no effect on the accuracy of the result.

GNU Compiler Collection (GCC) provides __builtin_clz() function, which can be synthesized by
Vivado HLS, to count the leading zeros. After approximate operation is received, the active bits of the
operands are determined as shown in Figure 5. Resized operands are processed by the approximate
operators that are adjusted accordingly to perform the desired operation more efficiently. It should be
noted that there is no dynamic sizing operations for signed negative values as they have no leading
zeros. Dynamic sizing operation for signed values requires comparison of the two operands. In case of
having negative operands, it is necessary to know which absolute value is greater so as to know whether
the result will have leading ones or zeros. Thus, it results in a more complex control mechanism.
During our experiments, we found that this complex hardware does not contribute to power reduction.
Thus, we use dynamic sizing for operands when they have leading zeroes.

3.2.2. Approximate Adder/Subtractor

In this study, we propose a new approximation methodology for parallel-prefix adders.
We designed a 32-bit signed Sklansky adder [36] and modified it for approximate addition and
subtraction operation. Parallel-prefix adders create a carry chain by taking Propagate (P) and Generate
(G) signals as inputs. P values represent XOR of two inputs calculated for each bit of two operands,
and G values AND of each bit of two operands. As shown in Figure 7, each row in the tree includes
32-bit P and G values created by the cells. There are two types of cells, namely black cell and gray cell.
Black cell performs ANDOR operation for G value of the next row and AND operation for P value of
the next row. The gray cells are used to determine the last values of G bits. Hence there is no need for
further computations of P values. As a result, they perform only ANDOR operation to find the last G
value for each column. In white cells, P and G are directly buffered to the next row. After all final carry
values are obtained, they are XORed with P values calculated from the inputs and final result of the
32-bit addition operation is obtained.
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cells, they can be omitted for the sake of power efficiency although the final result may be inaccurate.
Three approximation levels are defined to control the accuracy. First level omits the gray cells used for
the least significant byte. Second level controls the gray cells used for the next eight bits and third level
gives the decision about the gray cells used last sixteen bits. It should be highlighted that this operation

Figure 7. Sklansky adder tree used for approximate adder design.

We perform approximation on gray cells. In Figure 7, gray cells are the last cells to determine the
final G value for a column in the adder tree. Instead of performing this last ANDOR operation of gray
cells, they can be omitted for the sake of power efficiency although the final result may be inaccurate.
Three approximation levels are defined to control the accuracy. First level omits the gray cells used for
the least significant byte. Second level controls the gray cells used for the next eight bits and third level
gives the decision about the gray cells used last sixteen bits. It should be highlighted that this operation
is different than truncating LSBs [18,34], because we do not remove these bits, instead, we bypass the
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gray cells and directly use the input value of the gray cells as the tree outputs, hence it still affects the
final results.

Subtractor is implemented by negating the second operand and using the same adder block when
approximate subtraction (XSUB) operation comes. This provides us an approximate subtractor without
consuming any additional resources on chip.

3.2.3. Approximate Multiplier

16x16 bit booth encoded Wallace tree exact multiplier is designed. We computed partial products
(PP) as radix-4 booth [37]. After partial products are obtained, Wallace tree structure depicted in Figure 8
is built to sum all partial products. For the CSAs, we used an approximation methodology described
in [38] to realize approximate (3:2) and (4:2) compressors. In final adder, designed approximate Sklansky
adder are used. So, the same approximation levels and structure are also valid for this multiplier.
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is also important to measure the effectiveness of the design. We chose K-nearest neighbor (KNN),
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these codes on our core with different types of datasets to make a proof-of-concept study. We mainly
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4. Experiments

We synthesized a sample core for Zynq-7000 (xc7z020clg484-1) Field Programmable Gate Array
(FPGA) by using Xilinx Vivado HLS 18.1. It can run safely with a clock frequency of 100 MHz. This CPU
occupies about 3% of on-chip resources in Zynq-7000 FPGA. Resource utilization on the target FPGA
can be seen in Table 1. For memories, we use 40 KB BRAM for instruction memory and 90 KB BRAM
for data memory.

Table 1. Resource utilization in target FPGA for our CPU without approximate blocks.

Resource Utilization Available Utilization (%)

LUT 1725 53,200 3.24
LUTRAM 2 17,400 0.01

FF 938 106,400 0.88
DSP 6 220 2.72

We implemented some basic ML algorithms on our CPU to evaluate power consumption at the
expense of accuracy. Besides, the degree of accuracy loss relative to the amount of saved energy
is also important to measure the effectiveness of the design. We chose K-nearest neighbor (KNN),
K-means (KM) and artificial neural network (ANN) codes as benchmark algorithms. We executed
these codes on our core with different types of datasets to make a proof-of-concept study. We mainly
compared the results obtained by running the codes in Exact part with the results in Approximate part.
While running this code approximately, we only calculate specific part of the codes approximately,
not all ADD, MUL, and SUB instructions as will be explained in Section 4.3. In Approximate Block,
we also used different approximate adders and multipliers proposed in literature to show that other
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approximate designs can also be used in the proposed CPU as approximate unit and different accuracy
and energy saving can be obtained from different approximate modules.

4.1. Experimental Setup

The synthesized core including approximate blocks is obtained in Verilog HDL. C codes for
the benchmark algorithms are compiled with 32 bit riscv-gcc [16] for exact and approximate For
approximate executions, approximate portions are determined and necessary modifications are done
on the code as described in the following paragraphs.

To mark approximate regions of code, we have built a plugin for GCC 9.2.0. The plugin adds
a number of pragma directives and an attribute. An example usage of this plugin can be seen in
Figure 9. The pragma directives are used when only some operations should be implemented with
approximate operators as shown in Figure 9a. The attribute, Figure 9b, is helpful for declaring whole
functions as approximate.
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code to find addition, subtraction and multiplication operations. These operations are found as
PLUS_EXPR, MINUS_EXPR and MULT_EXPR nodes in the GIMPLE code. The plugin simply checks
if these operations are in an approximable region defined by the pragma directives and attributes.
If they are, then these GIMPLE statements are replaced with GIMPLE_ASM statements, which are the
intermediate form of inline assembly statements in C. The replacements done are shown in Figure 10.
Because we set the “r” restriction flag in the inline assembly statements, which hints the compiler to
put the operand into a register, non-register operands of an operation (e.g., immediate values) are
automatically loaded into registers by GCC.

Figure 10. Replaced assembly statements for XADD, XSUB and XMUL in GIMPLE.

riscv-binutils [40] provides a pseudo assembly directive “.insn” [41] which allows us to insert
our custom instructions into the resulting binary file. This directive already knows some instruction
formats. So we choose to have an R-type instruction with the same opcode as a normal arithmetic
operation. In our implementation, funct3 field is always zero and funct7 has its most significant

Figure 9. Implementing KNN by using (a) pragmas and (b) attributes for approximable regions.

The plugin implements a new pass over the code. This pass is done after the code is transformed
into an intermediate form called GIMPLE [39]. In this pass, our plugin traverses over the GIMPLE
code to find addition, subtraction and multiplication operations. These operations are found as
PLUS_EXPR, MINUS_EXPR and MULT_EXPR nodes in the GIMPLE code. The plugin simply checks
if these operations are in an approximable region defined by the pragma directives and attributes.
If they are, then these GIMPLE statements are replaced with GIMPLE_ASM statements, which are the
intermediate form of inline assembly statements in C. The replacements done are shown in Figure 10.
Because we set the “r” restriction flag in the inline assembly statements, which hints the compiler to
put the operand into a register, non-register operands of an operation (e.g., immediate values) are
automatically loaded into registers by GCC.
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riscv-binutils [40] provides a pseudo assembly directive “.insn” [41] which allows us to insert
our custom instructions into the resulting binary file. This directive already knows some instruction
formats. So we choose to have an R-type instruction with the same opcode as a normal arithmetic
operation. In our implementation, funct3 field is always zero and funct7 has its most significant
bit flipped. We enter these numbers and let the compiler fill the register fields itself according to
our operands.
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We used riscv-gnu-toolchain [42] to test this plugin and verified its functionality. After achieving
the specialization of the compiler for our approximate instruction, we can directly use the machine
code created by this compiler in our core.

For accuracy measurement, exact benchmark codes are executed by using behavioral simulator of
Xilinx Vivado HLS. The files that contain the results of exact executions are regarded as the golden
files. Then, the same codes are executed on the synthesized core to verify that its results are the same
with the ones in the golden files. Then approximate codes are run on the synthesized core and the
results are compared with the true results in the golden file and the accuracy is computed. Accuracy
metrics here is top-1 accuracy which means that the test results must be exactly the expected answer.
Let n denote the number of tests carried out in both exact CPU and approximate CPU, which uses
approximate operators only in the annotated regions. Approximate CPU tries to find exactly the same
class as the exact CPU model finds. We compare all the results obtained from both parts for n tests and
the percentage of matching cases in all tests gives us the accuracy rate. Simulations are performed in
Xilinx Vivado 18.1 tool and a Verilog testbench is written to run the tests and write the results into
a text file automatically for each case.

Power estimation results are obtained with Power Estimator tool of Xilinx Vivado 18.1. For the
best power estimation with a high confidence in the tool, post implementation power analysis option
with a SAIF (Switching Activity Interchange Format) file is obtained from the post-implementation
functional simulation of the benchmark codes.

In experiments, we report dynamic power consumption on the core, because the main difference
between the exact and approximate operation can be observed with the change in the dynamic activity
of the core. We omit static power consumption, because we realize that static power consumption in
the conventional FPGAs mainly stemming from the leakages that are independent of the operation.
On the other hand, due to domination of static power in FPGA, it may not be convenient to design
final product as an FPGA, hence presented power savings here are just to verify the idea. An ASIC
implementation where static power is negligible (<1%) may be more beneficial to save significant total
power in these applications. To see the difference, an ASIC implementation results are also presented
in Section 5.1.

TSMC 65 nm Low Power (LP) library and Cadence tools are used to synthesize our core for ASIC
implementations. We have used TSMC memories for our data and instruction memories with the same
sizes as in our FPGA design. We calculate the power consumption with the help of tcf file, which is
similar to SAIF, created from the simulation tool to count toggle amounts of the all signals.

4.2. Datasets and Algorithms

KNN, KM and ANN algorithms are implemented with different datasets to observe the change
in the results in accordance with the data with different lengths and attributes. Three datasets are
chosen from UCI Machine Learning Repository [43]. In total, we have five datasets obtained from three
different sources of the given repository as shown in Table 2.

Table 2. Implemented datasets and their properties.

Datasets # of Test Points # of Attributes # of Class max. Bit-Length

Wifi Localization Data Short Version 200 7 4 8
Wifi Localization Data Long Version 2000 7 4 8

Robot Sensor Data Short Version 200 4 4 16
Robot Sensor Data Long Version 2000 4 4 16

Banknote Authorization Data 300 4 2 16

KNN is one of the most essential classification algorithms in ML. Distance calculations in KNN
are multiply-and-accumulate loops that are quite suitable to implement approximately. KNN is
an unsupervised learning algorithm. However, we put some reference data points with known classes
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into the data memory so that incoming data can be classified correctly and in real-time. K parameter in
KNN which is used to decide group of the testing point is defined as three for all datasets. We followed
the same approach for KM, which is a basic clustering algorithm. In KM, k-value, which determines
how many clusters will be created for the given dataset, is chosen as the number of the class in the
datasets. Our last algorithm is ANN which is also very popular in ML. We trained our ANN models
with our datasets and obtained weights for each dataset. Then we used these model weights and the
model itself in our code. In ANN algorithm, the input number is the attribute number of the used
dataset, 4 and 7, hidden layer is one which has two units for the datasets that have four attributes,
and four units for the datasets that have seven attributes. Two units for the output layer are used to
determine the classes of the test data. Loop operations in all layers of neural network are operated
approximately to make case study for our work.

4.3. Approximate Regions in the Codes

In this study, we have specifically focused on classification, clustering and artificial neural network
algorithms for ML applications in which multiply and accumulate (MAC) loops are densely performed.
We also add subtraction operations in the same loops to carry the idea of the approximate operation one
step further when it is possible. It is worth to note that we are not doing any approximate operation for
datasets as proposed in [18]. We can create approximable regions in the code with the help of pragma
and attribute operations in C as we previously mentioned in Section 4.1. Hence, we can decide which
regions should be approximated in the codes at high level. In KNN and KM, approximate operations
are only implemented on the specific distance calculation loops that contains addition, subtraction
and multiplication operations in each iteration. An example of approximable region creation in KNN
code can be seen in Figure 9. As it can be seen from the given codes in Figure 9a, we only calculate the
operations for distance calculation in the loop approximately, not the addition and compare operations
for the loop iteration (i = i + 1& i < n). Figure 9b does exactly the same thing as part (a), because
knn_approx, which is the body of the loop in classifyAPoint, is approximated with an attribute.
Both approaches have their own advantages. Approach in part (a) enables the application developer
to selectively decide on the approximate operations. For example, the application developer may
want to use approximate addition and subtraction but exact multiplication. In that case, the pragmas
due to approximate multiplication should be removed. Approach in part (b) helps the application
developer to use all approximate operators available in the processor. It should be noted that, in ANN
experiments, weight calculations contains only addition and multiplication operations. Thus, we
confined our approximation level only to addition and multiplication in this code. That is the reason
why we can observe the impact of the approximate subtraction operations on the power consumption
in only KNN and KM tests.

4.4. Experiments

4.4.1. Dynamic Sizing

First experimental point is to measure the effect of dynamic sizing on the power consumption.
To see the effect of dynamic sizing on power saving, we set approximation level of the approximate
operators as zero which means that the operations are realized as if they are running at the exact
part. Hence, accuracy is not studied in this part. Table 3 shows that dynamic sizing can provide up
to 12.8% power savings. Here, ApANew refers to the case when approximate operation is confined
to addition but the approximate adder is running in exact mode. The same approach is followed for
our approximate multiplier, ApMNew. Finally, ApAMNew represents when both of the approximate
operators are running in exact mode with only dynamic sizing operation is activated. As we discussed
before, there is no dynamic sizing operation for the subtraction and signed operations.
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Table 3. Contributions of dynamic sizing to the power saving percentages of the new approximate
blocks, given as the average and maximum of the results from different datasets for each algorithm.

KNN KM ANN

Approximate
Design Name

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

ApANew 3.1 5.2 2.1 2.9 1.8 2.5
ApMNew 4.5 7.6 4 5.2 4.9 6.5
ApAMNew 8.2 12.8 5.8 7.9 7.3 10.1

4.4.2. Approximate Addition/Subtraction and Exact Multiplication

In this part, we have confined the approximate operation to the approximate addition and
subtraction with XADD and XSUB, and executed multiplication on the exact multiplier with MUL
instructions. We also tested another approximate adder from the literature. We used 32-bit AA7 type
of adder in DeMAS [44], which is an open source approximate adders library designed for FPGAs.
We obtained two approximate adders from AA7: ApA1, has 28 exact and 4 approximate bits. ApA2
has 24 exact and 8 approximate bits. In our design ApANew represents only approximate addition
and ApASNew refers to approximate addition and subtraction operations that are implemented on our
adder design. Approximation level of our adder is modified according to the bit-length of the datasets.
For 8-bit datasets, it is 2 and for 16-bit, it is 3. Then, we obtain four approximate modules. These blocks
actually cause area overhead on the CPU. The area overhead for ApA1, ApA2 and ApANew is reported
as 2.2%, 2% and 3.5%, respectively. Area overhead for ApASNew is the same with ApANew, because it
uses the same design. The accuracy of the results and the percentage of power gain compared to the
operation implemented fully on Exact part are given in Table 4.

Table 4. Accuracy and power saving percentages of the approximate blocks, given as the average and
maximum of the results from different datasets for each algorithm.

KNN KM ANN

Approximate
Design Name

Avg.
Accuracy
(%)

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

Avg.
Accuracy
(%)

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

Avg.
Accuracy
(%)

Avg.
Power
Saving
(%)

Max.
Power
Saving
(%)

ApA1 99 4.3 6.7 97.6 3.8 5.2 91.6 5.5 7.9
ApA2 90.8 8.2 12.1 92.4 6.2 8 87.4 8.9 10.4
ApANew 98 9.8 13.7 97.9 9.3 12.5 94.8 11.7 14.3
ApASNew 92 19.5 24.1 94.3 18.5 23.5 - - -
ApM1 89.2 7.8 11.5 88.8 8.9 12.5 86.4 8.5 10.5
ApM2 88.5 8.7 12.1 87.4 10.1 13.2 85 9.2 13.1
ApMNew 95 13.1 17.9 95.6 14.1 17.7 92 14.7 17.8
ApAM1 87.6 11.3 16.2 86.1 11.1 14.5 84.2 12.7 15.2
ApAM2 86.5 16.1 20.2 84.2 14.9 19.8 82.3 16.7 20.8
ApAMNew 93 22.1 27.5 94 21.5 27.6 90.2 23.4 29.8
ApASMNew 90 31.7 40.3 91.8 30.6 35.2 - - -

4.4.3. Exact Addition/Subtraction and Approximate Multiplication

In this part, we have confined the approximate operation to the approximate multiplication with
XMUL and executed addition and subtraction on the Exact Part with ADD and SUB instructions.
Two 16 × 16 bits approximate multipliers, ApM1 and ApM2, are chosen in SMApproxLib [45] which is
an open-source approximate multiplier library designed for FPGAs by considering the LUT structure
and carry chains of modern FPGAs. Approximation level of our multiplier is again 2 for 8-bit dataset,
3 for 16-bit dataset. Our multiplier design, ApMNew, together with these two multipliers are added to
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our core and target ML codes with chosen datasets are separately run on the system. ApM1, ApM2 and
ApMNew create 8.4%, 8.7% and 9.3% area overhead for the design, respectively. Test results are shown
in Table 4.

4.4.4. Approximate Addition and Approximate Multiplication

In this part, We used XADD, XSUB and XMUL together to observe the maximum power gain
and the quality of results. ApA1 and ApM1 are combined as ApAM1, while ApA2 and ApM2 are
used together and marked as ApAM2. Our approximate modules are also combined as ApAMNew,
and ApASMNew, they are used together with two different combinations, approximate addition and
multiplication, and approximate addition, subtraction and multiplication, to show the improvement in
terms of power. The results can be observed in Table 4. ApAM1, ApAM2 and ApAMNew have 10.6%,
10.7% and 12.8% area overhead, respectively. All area overheads are shown in Table 5.

Table 5. Resources for approximate blocks and their area overhead on the CPU.

Approximate Module LUT Amount Area Overhead on the Core (%)

ApA1 58 2.2
ApA2 52 2

ApANew 95 3.5
ApASNew 95 3.5

ApM1 227 8.4
ApM2 235 8.7

ApMNew 250 9.3
ApAM1 285 10.6
ApAM2 287 10.7

ApAMNew 345 12.8
ApASMNew 345 12.8

4.4.5. Approximation Level Modification at Run-time

The last experiments are about changing the approximation level while codes are running on
the CPU. In previous experiments, we fixed the approximation level for the whole codes, but in this
part we split each experiment into three equal parts. In the first part, the codes begin with the first
approximation level. In the second, we set the approximation level to two while codes are running.
When the last interval comes, the approximation level is set to three. These experiments will show
us whether we can save power or not for dynamically controllable (programmable) approximations.
The results shown in Figure 11 verify that changing the approximation level dynamically in the
course of execution does not give too much overhead on our system, and it can give the similar
accuracy and power saving rates with the other experiments that we fixed the approximation level.
These experiments are implemented in only our designs due to inability to control the other designs in
this setup. Figure 11 gives the average results for all codes implemented with 16-bit datasets.
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Figure 11. Approximation level modification at run-time (a) accuracy and (b) power saving results.

5. Discussions

Test results are shown in Tables 3 and 4 in terms of averages of the results obtained from different
datasets for a specific approximate block type. We also add maximum power savings to the tables to
indicate the utmost power saving point reached in these experiments.

As seen in Table 4, approximate adders usually gives the best accuracy of the result with the
least power gain. We have observed that, in KNN and ANN, using longer dataset can provide better
accuracy because of having more reference data in the data memory. In KM this relation become
reverse due to the more points needed for the clustering process. Accuracy of the ANN is generally
the lowest accuracy achieved with the same dataset and the same adder, because the longest datasets
which have 2000 points may still not be large enough to yield the best result from the ANN algorithm.
Longer data has also good impact on the improvement in power gain, because increasing the amount
of the data leads the MAC loops to dominate the codes, hence most of the running time is covered by
these operations which are performed approximately. Generally, datasets with lower bit-length may be
less accurate due to the difficulties of the convergence in smaller intervals for approximate calculations.
It may also provide less power saving percentage, because used hardware blocks may be much smaller
than the longer one, however it still depends on the length of the dataset and approximate adder type.

ApANew provides the best power saving rates with almost fully accurate results for almost all
cases in the approximate addition and exact multiplication operations. ApA1 and ApA2 provides
a good example of accuracy and power efficiency trade-off. ApA1 gives very accurate results with
less power saving, but ApA2 may improve the power efficiency significantly with tolerable error
rate which may be more desirable. Making subtraction operations also approximate has yielded an
important power saving. ApASNew can save power up to 24.3% which can be regarded a dramatic
power improvement without having an extra subtraction block.

Approximate multipliers reduce power more than the adder because of the fact that the multiplier
hardware blocks are generally much bigger than the adders. However, the accuracy of the results are
generally worse than the adder case, since the possibility of the large deviation from the real result is
higher in the multiplication process. It is possible to reach 18% power saving together with the 95%
accuracy rate. Bit-length of the data and the number of data in the dataset are observed to have an
effect on the accuracy and the power consumption similar to the approximate adder cases. ApMNew
generally provides the best accuracy for all cases together with the best power saving rates.

The last case where both addition and multiplication are approximately executed provides
the most power efficient design at the expense of accuracy loss, as expected. Table 4 shows that the
approximate calculations can provide important power savings up to 40.3% together with a quality loss
which depends on the approximate adder, algorithm and dataset. For ApAMNew and ApASMNew,
average accuracy is above 90% for all codes, while average power saving is above 20% for all cases.

Figure 11. Approximation level modification at run-time (a) accuracy and (b) power saving results.

5. Discussions

Test results are shown in Tables 3 and 4 in terms of averages of the results obtained from different
datasets for a specific approximate block type. We also add maximum power savings to the tables to
indicate the utmost power saving point reached in these experiments.

As seen in Table 4, approximate adders usually gives the best accuracy of the result with the
least power gain. We have observed that, in KNN and ANN, using longer dataset can provide better
accuracy because of having more reference data in the data memory. In KM this relation become
reverse due to the more points needed for the clustering process. Accuracy of the ANN is generally
the lowest accuracy achieved with the same dataset and the same adder, because the longest datasets
which have 2000 points may still not be large enough to yield the best result from the ANN algorithm.
Longer data has also good impact on the improvement in power gain, because increasing the amount
of the data leads the MAC loops to dominate the codes, hence most of the running time is covered by
these operations which are performed approximately. Generally, datasets with lower bit-length may be
less accurate due to the difficulties of the convergence in smaller intervals for approximate calculations.
It may also provide less power saving percentage, because used hardware blocks may be much smaller
than the longer one, however it still depends on the length of the dataset and approximate adder type.

ApANew provides the best power saving rates with almost fully accurate results for almost all
cases in the approximate addition and exact multiplication operations. ApA1 and ApA2 provides
a good example of accuracy and power efficiency trade-off. ApA1 gives very accurate results with
less power saving, but ApA2 may improve the power efficiency significantly with tolerable error
rate which may be more desirable. Making subtraction operations also approximate has yielded
an important power saving. ApASNew can save power up to 24.3% which can be regarded a dramatic
power improvement without having an extra subtraction block.

Approximate multipliers reduce power more than the adder because of the fact that the multiplier
hardware blocks are generally much bigger than the adders. However, the accuracy of the results are
generally worse than the adder case, since the possibility of the large deviation from the real result
is higher in the multiplication process. It is possible to reach 18% power saving together with the
95% accuracy rate. Bit-length of the data and the number of data in the dataset are observed to have
an effect on the accuracy and the power consumption similar to the approximate adder cases. ApMNew
generally provides the best accuracy for all cases together with the best power saving rates.

The last case where both addition and multiplication are approximately executed provides the
most power efficient design at the expense of accuracy loss, as expected. Table 4 shows that the
approximate calculations can provide important power savings up to 40.3% together with a quality
loss which depends on the approximate adder, algorithm and dataset. For ApAMNew and ApASMNew,
average accuracy is above 90% for all codes, while average power saving is above 20% for all cases.



Electronics 2020, 9, 125 17 of 20

5.1. ASIC Implementation of the Proposed System

Basic disadvantage of the implementations in FPGA for low power applications is static power.
In our case, static power is responsible for about 65% of the total consumption. If we include static
power in the calculations, power saving becomes 14% at most which can also be considered as
an important save, but not enough to say that final target for this design should be an FPGA. Hence,
we also synthesized our designs with TSMC 65 nm Low Power (LP) library on Cadence tools. Power
consumption of the system for ASIC synthesis is reported in Table 6. In ASIC, 23% of the power can be
saved while the accuracy rate is above 90% and static power is less than 1%. Power saving for ASIC
design can be further improved by implementing other low power techniques like dynamic voltage
scaling and clock gating.

Table 6. Approximate blocks and their power saving for ASIC implementation.

Approximate Module Average Power Saving Area Overhead on the Core (%)

ApANew 7.7 2.3
ApASNew 12.3 2.3
ApMNew 11.6 6.2

ApAMNew 17.3 8.5
ApASMNew 23.1 8.5

5.2. Bit-Truncation in the Approximate Blocks

Bit-truncation is a significant way to save energy, especially when it is used for floating point
units [18,34]. However, truncation at integer units affect accuracy more dramatically than floating
point operations. To see the effect of bit truncation instead of omitting gray cells, we have performed
tests without changing our approximate level control circuit. When first level bits are truncated,
accuracy drops to less than 15% with a power saving of more than 30%. When the second level bits are
truncated, accuracy drops 5% with a power saving of more than 50%. The best case is achieved when
the approximation level is set to 1. In this case, the accuracy is less than 45% and power saving is less
than 18%. This error rate is too high and energy saving is moderate compared to our design. Hence,
it turns out to be inconvenient to implement bit truncation in our system. However, bit-truncation
approach may give better results when bit-by-bit fine control is adopted. A new hybrid approach
may be a future work to develop a more efficient design. Coarse-grain approximation levels with fine
control bit-truncation inside of these levels can be discussed to implement a new proposal.

6. Conclusions

In this paper, we propose and demonstrate the design of an approximate IoT processor. As it
is shown in Figure 5, the design is flexible enough to add new approximate operators though our
current processor includes approximate blocks only for addition, subtraction and multiplication
operations. We try to give an approximate methodology for parallel-prefix adders and make a case
study on Sklansky with a coarse grain dynamic precision control. We use the same adder for enhancing
an approximate multiplier proposed in the literature. Combining with dynamic sizing of the operands
during execution time, we achieve significant dynamic power savings, up to 40.3%, in the conducted
experiments. Experimental results point out that 30% of overall power savings are obtained by dynamic
sizing idea introduced in this study. Though more versions of dynamic sizing can be proposed, we
believe that it should be used carefully so as not to deteriorate the performance and exceed power/area
constraints of the IoT end-device. ASIC implementation of the core are also demonstrated. In ASIC
implementation, power can be saved up to 23% and static power, which dominates in FPGAs, can be
decreased below 1%.



Electronics 2020, 9, 125 18 of 20
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