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Abstract: Inspired from the promising performances achieved by recurrent neural networks (RNN)
and convolutional neural networks (CNN) in action recognition based on skeleton, this paper presents
a deep network structure which combines both CNN for classification and RNN to achieve attention
mechanism for human interaction recognition. Specifically, the attention module in this structure is
utilized to give various levels of attention to various frames by different weights, and the CNN is
employed to extract the high-level spatial and temporal information of skeleton data. These two
modules seamlessly form a single network architecture. In addition, to eliminate the impact of
different locations and orientations, a coordinate transformation is conducted from the original
coordinate system to the human-centric coordinate system. Furthermore, three different features
are extracted from the skeleton data as the inputs of three subnetworks, respectively. Eventually,
these subnetworks fed with different features are fused as an integrated network. The experimental
result shows the validity of the proposed approach on two widely used human interaction datasets.
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1. Introduction

Human action recognition and interaction recognition have recently attracted the intensive
attention of researchers in computer vision field due to its extensive application prospects, such as
intelligent surveillance, human-machine interaction, and so on. Most previous methods are devoted to
the human action recognition in two-dimensional RGB data [1,2]. However, due to the high sensitivity
to environmental variability of the RGB data, precise action recognition is also a challenging task.
Some previous works have made some contributions to overcome these challenges [3,4]. In [3],
Rezazadegan et al. proposed an action region proposal method that, informed by optical flow to extract
image regions likely to contain actions, which can eliminate the influence of background. Besides,
this problem could be overcome by using cost-efficient RGB-D (i.e., color plus depth) sensors [5].
Generally, depth sensors can provide three-dimensional (3D) information of human body in more
detail and with high robustness to variations of perspectives [6]. Therefore, human action recognition
based on 3D skeleton has become a hot research topic.

Human action can be described by a series of time sequences of skeleton. The temporal information
and spatial information are significant for skeleton based action recognition. Several types of recurrent
neural networks (RNN), including long short-term memory (LSTM) [7] and gated recurrent units
(GRU) [8], showed great advantages on processing sequence data. However, the temporal modeling
is not always suitable for the skeleton sequences. On the other hand, the RNN lacks the ability of
spatial modeling, while convolutional neural networks (CNN) have natural advantages in extracting
spatial features. In this work, considering that RNN and CNN have their own advantages in skeleton
based action recognition, we construct a deep neural network, through merging the RNN with CNN.
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To be specific, Bidirectional gated recurrent units (BIGRU) is used to achieve attention mechanism,
and convolutional network for classification. An ensemble network including three subnets with the
same structure is presented to learn diverse features for better accuracy. With the proposed method
assessed on two classic benchmark datasets, namely, SBU Interaction Dataset [9] and NTU RGB + D
Dataset [10], promising performance is achieved.

The main contributions of this paper are listed in the following two aspects:

1. A multi-feature representation method of interaction skeleton sequence is proposed for extracting
various and complementary features. Specifically, three subnets fed with these features are fused
into an ensemble network for recognition.

2. A framework combining RNN with CNN is designed for skeleton based interaction recognition,
which can model the complex spatio-temporal variations in skeleton joints.

2. Related Work

In this section, the work related to the proposed method is briefly reviewed, including RNN based
methods and CNN based methods for skeleton-based 3-D action recognition and interaction recognition.

RNN based methods: Some previous works have successfully applied RNN to skeleton based
action recognition [11–13]. In [11] Du et al. divided the whole skeleton body into five parts according
to the physical structure of human body, and fed them into five bidirectional LSTM jointly to make
the decision of recognition. Zhu et al. [12] proposed an end-to-end fully connected deep LSTM
network with a novel regularization scheme to learn the co-occurrence features of skeleton joints.
In addition, they applied a new dropout algorithm to train the network. Liu et al. [13] proposed a
spatio-temporal LSTM network which can model both temporal and spatial information. Based on
LSTM, Song et al. [14] proposed a spatio-temporal attention model, which can automatically focus on
the discriminative joints and pay different attention weights to each frame.

CNN based methods: Some previous works have employed CNN for skeleton based action
recognition and achieved great success [15–20]. Ke et al. [19] represented the sequence as three
clips for each channel of the 3D coordinates, which reflects the temporal information of the skeleton
sequence and spatial relationship. Li et al. [21] proposed multiple views from skeleton sequences
to learn the discriminative features including spatial domain feature and temporal domain feature,
and multi-stream CNN fusion method was adopted to combine the recognition scores of all views.
To exploit the spatio-temporal information from skeleton sequences, Kim and Reiter [22] used temporal
convolutional neural networks (TCN) for skeleton based action recognition, which provided a way to
explicitly learn readily interpretable spatio-temporal representations for 3D human action recognition.

The research of human action recognition brought about many surprising results with the
development of RGB-D sensors [23]. However, few works talked about the human interaction
recognition. Compared with single person’s action recognition, two persons’ interaction recognition is
more complex and difficult [24,25]. Some early works [24] proposed a scheme of decomposing human
interaction into single person’s actions for recognition. Actually, lots of features in human interaction
behavior which include both individual action information and mutual relations which can be utilized
to obtain better recognition results.

3. Proposed Method

As shown in Figure 1, the proposed basic framework of the subnet is composed of two models:
attention module and classification module. The input skeleton sequence consists of multiple frames,
one column vector in the image matrix denotes one frame. Every frame consists of 3-dimensional joint
coordinates. We separate these coordinates to x, y, z dimensions, which mean the R, G, B channels,
respectively. For each channel, attention mechanism is used to learn the temporal weights of frames.
After that, the three channels are concatenated to one tensor which is fed into classification module for
classification. This section is organized as follows. Firstly, we introduce some different processes of
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transforming skeleton sequences to color images with RGB three channels, and these images are used as
different inputs of three subnetworks. Then the attention mechanism in action recognition is presented.
Finally, an ensemble network with attention mechanism is constructed for interaction recognition.
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3.1. Multi-Feature Representation from Skeleton Sequences

Like the previous work in [26,27], the coordinates of the joint in one skeleton sequence can be
arranged in a matrix, and three coordinates x, y, z of each joint represent the corresponding channels
R, G, B of each color image. Then the coordinates of the j-th joint in each frame can be denoted as
Equation (1)

P j =
(
Pxj, Pyj, Pzj

)
(1)

where j ∈ {1, 2, · · · , m}, and m denotes the number of joints in each frame. For each frame, assume that
there are two subjects and each subject has m joints. Then there are total 2 × m joints for all subjects in
each frame, let the j-th joint of the i-th performer map be Pi

j, and these joints at the t-th frame can be
represented as Equation (2)

Pt =
{
P1

1, P1
2, · · · , p1

m, P2
1, P2

2, · · · , p2
m

}
(2)

In order not to destroy the relation among these joints, the joints are numbered in a fixed order
which determines the arrangements of all the joints. Considering that the human skeleton consists
of such five parts as: one trunk, two arms, and two legs, we adopt two kinds of orders for skeleton
arrangement: part-based order and traversal-based order [26]. Figure 2 shows two different orders on
NTU RGB + D dataset [9] where one skeleton is composed of 25 joints. Then the whole interaction
sequence can be represented as Equation (3)

P = [P1, P2, · · · , PT] (3)

where T denotes the number of frames in an interaction sequence.
These coordinate elements can be regarded as RGB elements in images. In this way, we transform

the original skeletal data to 3D tensors which can be sent to neural networks for training. We process
the converted skeleton data to three different features for better performance.

Feature 1: we separated the two subjects and arrange them on one matrix as an image. For each
subject, we adopted the part-based order. Figure 3 shows some feature images generated from
sample actions.
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Figure 3. Sample feature images generated on NTU RGB+D dataset. (a) Kicking other person;
(b) pushing other person; (c) patting on back of other person; (d) pointing finger at the other person;
(e) hugging other person; (f) giving something to other person; (g) touching other person’s pocket;
(h) handshaking.

Feature 2: for different kinds of interaction, the relationship information between two subjects is
distinct, which can be represented by the distances between the values at corresponding skeleton joints
of two subjects in the same frame. Let P1

i (t) and P2
i (t) denote the i-th joint coordinates of the first and

second player at the t-th frame. The Euclidean distance Di(t) between the corresponding joints of two
subjects is denoted as Equation (4)

Di(t) =
∣∣∣∣∣∣P2

i (t) − P1
i (t)

∣∣∣∣∣∣ i ∈ {1, 2, . . . , m}and t ∈ {1, 2, . . . , T} (4)

where m denotes the number of joints and T refers to the total number of frames. In this feature mode,
we adopt traversal-based order. Then an interaction instance D of all T frames can be represented as
Equation (5)

D =
{

D1, D2, · · · , DT} (5)

Feature 3: we enhance the relationship information represented by the distances between the
values at different skeleton joints in two subjects in the same frame. The enhanced cross joint distances
Di j(t) between joint j and i of two performers at frame t can be represented as Equation (6)

Di j(t) =
∣∣∣∣∣∣∣∣P2

j (t) − P1
i (t)

∣∣∣∣∣∣∣∣ i, j ∈ {1, 2, . . . , m} (6)

where i and j denote the joint number of the performers independently. For this feature, there are m ×
m joint distances for each frame. Then an interaction instance D′ of T frames can then be represented
as Equation (7)

D′ =
{

D′1, D′2, · · · D′T
}

(7)

It can be seen all these features include single person’s action feature as well as the relationship of
human interaction.
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3.2. Attention Mechanism

In terms of human attention mechanism, we design an attention mechanism in our ensemble
network. Human usually focus on specific parts they are interested in for their visual subject and
critical moments when behavior occurs. The skeleton data are a time sequence of multi-frame 3D
joint coordinates forming an action. For different frames, it is of different levels of significance for
recognition. For example, for the interaction punching and handshaking, the actions in most of the
frames are similar so we should pay more attention on the key frames which carry more effective
information. Inspired by the attention mechanism [14,28], we design an attention mechanism where
each frame is assigned a different attention weight in order to emphasize key frames which contain
important and discriminative information.

The learning of attention mechanism pursuits a specific attention based on BiGRU in memory cell
to capture the temporal memory information across the input interaction sequence. As is shown in
Figure 3, the output of BiGRU is determined by the forward GRU and backward GRU, so it can pay
specific attention on the skeleton sequence by the context information. More specifically, the output of
the attention module can be represented by Equation (8)

F(X) = X ◦ FA(X) (8)

where X is a column vector in Equations (3), (5), and (7) for three features, which means one frame in
the action, FA(X) is the weight of the frame vector X to enhance temporal information, and ◦ refers to
element-wise multiplication. FA(X) can be computed as Equation (9)

FA(Xt) = σ
(
→

GRU(Xt) +
←

GRU(Xt)
)

(9)

where σ(·) refers to sigmoid activation function,
→

GRU(xt) and
←

GRU(xt) denote the hidden variables
of the forward GRU and backward GRU at t frame. The attention module can automatically learn
the attention weight FA of different frames from the output FA(Xt) in BiGRU. Among these frames,
the larger the value of activation function, the more important this frame is for determining the
category of interaction.

3.3. Ensemble Network

Our network consists of two modules: bidirectional gated recurrent units for attention module
and convolutional neural networks for classification module. For the attention module, the number of
units in BiGRU is set to be 128, and the recurrent dropout rate is set to be 0.5.

By utilizing the robustness of CNN to deformation, high-level feature representations can
be extracted in the classification to better cope with spatio-temporal variations of skeleton joints.
In principle, any CNN can be used in classification module, e.g., DenseNet and ResNet. In our method,
we use the AlexNet [15] as our basic convolutional network, which is a very simple but effective
network structure. Figure 4 shows the proposed convolutional module. We stack 3 Conv-ReLU-BN
blocks. The convolutional strides and pooling strides are (2, 2). In convolutional layer, we use ReLU
activation function. After the blocks, we add dropout layer and two FC layers, the number of the
units for the last FC layer (i.e., the output layer) is the number of the action classes in each dataset.
With different features as inputs of three subnetworks, we train these subnetworks both independently
and globally. Cross-entropy is taken as the cost function, which can be described as Equation (10)

Loss = −
n∑

i=1

yi log(ŷi) (10)

where yi is the one hot vector of true label, ŷi is the prediction vector, and n is the number of
interaction classes.
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The ensemble network framework is shown in Figure 5. We train the ensemble network end to
end, all outputs of the three subnetworks are joined to determine the recognition result of interaction
classes. We apply two fusion methods [29] in our ensemble network.
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(i) Product fusion
Based on the product rule, the three subnetworks’ output score vectors are element-wise multiplied.

Based on the highest score, the predicted class can be expressed as Equation (11)

class = argmax (v1 ◦ v2 ◦ v3) (11)

where v is a score vector of three subnetworks’ outputs, ◦ means element-wise multiplication,
and argmax(·) refers to looking for the class index of the element with the highest score.

(ii) Sum fusion
In the similar way of the afore-mentioned product rule, the input to class label is assigned as

Equation (12) through the sum rule

class = argmax(v1 + v2 + v3) (12)

where + denotes element-wise addition.
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4. Experimental Results

4.1. Dataset

In the following experiments, we assessed our proposed method on two public widely used
datasets: SBU Interaction Dataset [9] and NTU RGB + D Dataset [10].

SBU-Kinect dataset. This dataset is a human interaction recognition dataset captured by Kinect
and depended by two-person interaction. It contains 282 skeleton sequences and 6822 frames of eight
classes. There are 15 joints for each skeleton. For fair comparison, we adopt five-fold cross validation
protocols as suggested in [9].

NTU RGB + D Dataset. The NTU dataset is a high-quality action recognition dataset consisting of
more than 56,000 action samples. It provides 3-dimensional coordinates of skeleton joints. There are
total 60 classes of actions carried out by 40 subjects, where the ratio of interaction behaviors to all
classes of action behaviors is 11/60. The large variations on viewpoint, intra class and sequence
length determine its demandingness. In fairness, we follow the standard cross-subject and cross-view
evaluation protocols in [10].

4.2. Implementation Details

For the original NTU RGB+D dataset, we transposed the original coordinate system to
human-centric coordinate system. Different from [30], we always chose the first person’s body
center as the center of the coordinate system in order to better express the relative position between two
subjects. Furthermore, coordinate transformation can eliminate the influence of different perspectives
of actions. Figure 6 shows the proposed human-centric coordinate system. The formula of calculating
transformation of coordinates is shown as (13)

→

H′ =
→

H ×R + C (13)

where
→

H and
→

H′ are the original coordinate and the converted coordinate, and C is the coordinate of
the body center of the first person. R is the rotation matrix.
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For the NTU RGB + D datasets, the matrices were obtained from all the frames of a skeleton
sequence, since each person has m = 25 body joints and every interaction was considered to be acted
by two subjects. When denoting single person’s actions, we considered the second performer’s joint
coordinates were always zeros. Then in each frame there would be N = 2 × m joints, so the original
image size was 3 × N × T for the feature 1 using the part-based arrangement, where T is the length of
the sample. For feature 2, we adopted traversal-based arrangement and the size of the generated image
was 3 × N × T. For feature 3, we chose 16 rather than 25 key body joints for NTU RGB + D datasets to
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decrease the amount of calculation and reduce model complexity. Then the size of image was 3 × 256
× T. In order to meet the input requirements of the network, we fixed the length T of images by scaling
the column number of the matrix from t to fixed t’ through a bilinear interpolation scheme. Some early
works [26] confirmed it was better to resize the images to a square size for recognition. Therefore,
we resized the image to 3 × 50 × 50, 3 × 50 × 50 and 3 × 256 × 256 for three features, respectively.

Compared with the above datasets, we used a similar method on SBU dataset, and resized the
image to 3 × 30 × 30, 3 × 30 × 30 and 3 × 225 × 225 for three features respectively since the SBU
interaction dataset has less body joints and shorter interaction sequences.

For the training of the model, stochastic gradient descent algorithm with Nesterov acceleration
with a momentum of 0.8 was adopted for optimization. The initial learning rate was set as 0.01,
and decreased by a factor of 0.1 every 25 epochs. The batch size was 64 and the dropout rate was 0.3.
After 100 epochs, the training process stopped. Figures 7–9 show the training loss and test accuracy
curves of the best performance of our methods acquired by product fusion for NTU cross-subject,
cross-view protocols and SBU dataset independently. As can be seen, the convergence speed was
very fast.
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4.3. Results

Experimental results of the three subnets and ensemble-networks on two datasets have been listed
in Table 1.

For NTU RGB+D dataset, it can be seen that all these subnetworks achieved good performances
for both cross-subject and cross-view evaluation protocols based on our methods. On cross-view
evaluation protocols, our method performed better due to the less variety among action performers.

Furthermore, the human-centric coordinate system could eliminate this influence of different
perspectives of actions, which verifies the availability of coordinate transformation. The best
performance was achieved by feature 3, because it carried more information. Furthermore, the score
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fusion strategy improved the final accuracy by almost 3%, and product fusion method performed
better than sum fusion, which exhibits the effectiveness of our approach.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 12 

 

scheme. Some early works [26] confirmed it was better to resize the images to a square size for 
recognition. Therefore, we resized the image to 3 × 50 × 50, 3 × 50 × 50 and 3 × 256 × 256 for three 
features, respectively. 

Compared with the above datasets, we used a similar method on SBU dataset, and resized the 
image to 3 × 30 × 30, 3 × 30 × 30 and 3 × 225 × 225 for three features respectively since the SBU 
interaction dataset has less body joints and shorter interaction sequences. 

For the training of the model, stochastic gradient descent algorithm with Nesterov acceleration 
with a momentum of 0.8 was adopted for optimization. The initial learning rate was set as 0.01, and 
decreased by a factor of 0.1 every 25 epochs. The batch size was 64 and the dropout rate was 0.3. After 
100 epochs, the training process stopped. Figures 7–9 show the training loss and test accuracy curves 
of the best performance of our methods acquired by product fusion for NTU cross-subject, cross-view 
protocols and SBU dataset independently. As can be seen, the convergence speed was very fast. 

  

(a) (b) 
Figure 7. Training and test curve on NTU dataset (cross-subject): (a) training loss curve; (b) test 
accuracy curve. 

  

(a) (b) 

Figure 8. Training and test curve on NTU dataset (cross-view): (a) training loss curve; (b) test accuracy 
curve. 

  

(a) (b) 
Figure 9. Training and test curve on SBU dataset: (a) training loss curve; (b) test accuracy curve. 

4.3. Results 

Experimental results of the three subnets and ensemble-networks on two datasets have been 
listed in Table 1. 

Figure 9. Training and test curve on SBU dataset: (a) training loss curve; (b) test accuracy curve.

Table 1. Recognition accuracy on NTU RGB+D and SBU datasets.

Feature

Dataset

NTU RGB+D
SBU

Cross Subject Cross View

Feature 1 77.52% 86.73% 89.28%
Feature 2 77.95% 86.26% 89.94%
Feature 3 79.86% 87.33% 92.25%

Sum fusion 81.49% 90.12% 93.23%
Product fusion 82.53% 91.75% 93.58%

For SBU dataset, our networks also achieved relatively better performance with three subnetworks
and ensemble network, the fusion strategy improved the accuracy from 92.25% to 93.58%, which proves
the generalization ability of our method.

Table 2 shows the comparison result between our method and other methods on SBU dataset.
Compared with other methods including hand-crafted feature-based methods and deep learning
method, our approach achieved comparable performance except for [27,31]. Reference [27] generated
different clips from skeleton sequences and proposed a multitask convolutional neural network to learn
the generated clips and achieved 94.17% accuracy, which led to the increase of computation complexity
and time consumption. In [31], Li et al. proposed an end-to-end convolutional co-occurrence feature
learning framework hierarchical aggregation which could encode the spatial and temporal contextual
information simultaneously, and achieved the state-of-the-art results. However, our proposed model
had fewer layers and thus required fewer parameters than [31].

Table 2. Performance comparison of different methods on SBU dataset.

Method Accuracy

Raw Skeleton [9] 49.70%
Joint Feature [32] 86.90%

CHARM [33] 83.90%
Hierarchical RNN [11] 80.35%

Deep LSTM [12] 86.03%
Deep LSTM+Co-occurrence [12] 90.41%

ST-LSTM [13] 88.60%
ST-LSTM+Trust Gate [13] 93.30%
RotClips+MTCNN [27] 94.17%

HCN [31] 98.60%
Proposed Method 93.58%
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Table 3 lists the performance comparison of the proposed method with other state-of-the-art
approaches for the NTU dataset; we can see our proposed model achieved excellent performances
of 82.53% and 91.75%. Especially on cross-view evaluation protocols, our method performed better
than others, which demonstrates the effectiveness of coordinate transformation system. On cross-sub
evaluation protocols, our method also achieved good results, however, there were some gaps with
the state-of-the-art method. One reason is that our method was mainly about human interaction
recognition, the features of single person’ actions got weakened due to the side effect of zero padding,
which affected our recognition results.

Table 3. Performance comparison of different methods on NTU RGB + D dataset

Method Cross Subject Cross View

Hierarchical RNN [11] 59.10% 64.00%
Dynamic skeletons [34] 60.23% 65.22%

ST-LSTM+Trust Gate [13] 69.20% 77.70%
Two-stream RNNs [24] 71.30% 79.50%

STA-LSTM [30] 73.40% 81.20%
Res-TCN [22] 74.30% 83.10%
ST-GCN [35] 81.50% 88.30%

Multiview IJTM [21] 82.96% 90.12%
HCN [31] 86.50% 91.10%

Proposed Method 82.53% 91.75%

5. Conclusions

In this paper, we propose an ensemble network for skeleton based interaction recognition. In our
model, diverse and complementary features are extracted from the original skeleton data as the inputs
of three sub-networks. The three subnets are fused as one ensemble network. To learn different levels
of significance of different frames adaptively, we design an attention mechanism based on BiGRU
where each frame is assigned a different attention weight in order to emphasize key frames which
contain important and discriminative information. Excellent results have been achieved on two widely
used datasets and the results have shown that our proposed method is effective for feature extraction
and recognition.

However, the proposed method was only evaluated in human action recognition and interaction
recognition. In the future, we will focus on multiple-person related group activity.
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