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Abstract: In kidney transplantations, the evaluation of the vascular structures and stromal areas
is crucial for determining kidney acceptance, which is currently based on the pathologist’s visual
evaluation. In this context, an accurate assessment of the vascular and stromal injury is fundamental
to assessing the nephron status. In the present paper, the authors present a fully automated algorithm,
called RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness), for the segmentation of kidney
blood vessels and fibrosis in histopathological images. The proposed method employs a novel strategy
based on deep learning to accurately segment blood vessels, while interstitial fibrosis is assessed
using an adaptive stain separation method. The RENFAST algorithm is developed and tested on
350 periodic acid–Schiff (PAS) images for blood vessel segmentation and on 300 Massone’s trichrome
(TRIC) stained images for the detection of renal fibrosis. In the TEST set, the algorithm exhibits
excellent segmentation performance in both blood vessels (accuracy: 0.8936) and fibrosis (accuracy:
0.9227) and outperforms all the compared methods. To the best of our knowledge, the RENFAST
algorithm is the first fully automated method capable of detecting both blood vessels and fibrosis in
digital histological images. Being very fast (average computational time 2.91 s), this algorithm paves
the way for automated, quantitative, and real-time kidney graft assessments.

Keywords: kidney transplantation; digital pathology; deep learning; kidney fibrosis; blood vessel
segmentation; convolutional neural networks

1. Introduction

Kidney allograft transplant is experiencing a broad revolution, thanks to an increasing
understanding of the pathologic mechanisms behind rejection and the introduction of new techniques
and procedures for transplants [1]. The primary focus during kidney transplants has always been
the identification, assessment, and treatment of allograft rejection. However, recently, a new issue
has come to light: a shortage of donor organs. To solve this impasse, selection criteria were revised,
leading to the so-called “expanded criteria donor” approach: kidneys that once would have been
excluded because of the donors’ clinical history or those deriving from deceased patients are nowadays
carefully used [2,3].
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In this context, the preimplantation evaluation of donors’ kidneys has become more and more
crucial. The pathologist’s challenge is to recognize early signs of degeneration to “predict” the organs’
functionality and performance. This analysis, usually based on periodic acid–Schiff (PAS) and trichrome
(TRIC) staining, is focused on the glomeruli, tubules, vessels, and cortical parenchyma of the donor
kidney, searching for glomerulosclerosis, tubule atrophy, vascular damage, or interstitial fibrotic
replacement, respectively (Figure 1). The Karpinski score is then applied to grade the injury of the
donor kidney. This score is based on a semiquantitative evaluation of the structures mentioned above.
For each of the four compartments (glomeruli, tubules, blood vessels, and cortical parenchyma),
the pathologist summarizes the evaluation in a four-grade score, ranging from 0 (absence of injury)
to 3 (marked injuries); the total score is expressed out of 12 [4]. Notably, both arteries and arterioles
are considered in vascular damage assessment, characterized by progressive thickening of their wall
and shrinkage of their lumen. At the same time, the cortical parenchyma could be replaced by fibrous
connective tissue [5,6].
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It is time-consuming, usually performed with urgency, and has a marked impact on the daily 
diagnostic routine. Moreover, the evaluation is operator-dependent, with a significant rate of inter-
observer difference [7]. In this challenging and evolving panorama, the introduction and application 
of an automated analysis algorithm would be of compelling importance. 

In the last few years, several strategies have been proposed for the segmentation of kidney blood 
vessels and for the quantification of fibrotic tissue in biopsy images. Bevilacqua et al. [8] employed 
an artificial neural network (ANN) to detect blood vessels in histological kidney images. Lumen 
regions were firstly detected by applying fixed thresholding and morphological operators. Seeded 
region growing was then implemented to extract the membrane all around the segmented objects. 
Finally, a neural network based on Haralick texture features [9] was used to distinguish between 
blood vessels and tubular structures. Although well structured, this strategy suffers from several 
limitations. First, blood vessels with small or absent lumen cannot be segmented using the described 
approach. In addition, stain variability greatly influences the performance of the region growing, 
causing imprecise recognition of the blood vessel borders. Finally, the high variability in the shapes, 
dimensions, and textural characteristics of tubules seriously affects the classification provided by the 
network. Tey et al. [10] proposed an algorithm for the quantification of interstitial fibrosis (IF) based 
on color image segmentation and tissue structure identification in biopsy samples stained with 
Massone’s trichrome (TRIC). All the renal structures were identified by employing color space 
transformations and structural feature extraction from the images. Then, the regions of fibrotic tissue 
were identified by removing all the non-fibrotic structures from the biopsy tissue area. This approach 
leads to fast identification of renal fibrotic tissue, but it is not free from limitations. First of all, there 
is a loss of information during the color space transformation and, in the presence of high stain 
variability, the method is not able to correctly classify all the renal structures. Moreover, being based 

Figure 1. Histological features assessed to determine the Karpinski score. (a) Glomerulosclerosis:
examples of a healthy and sclerotic glomerulus are shown in green and red, respectively; (b) Tubular
atrophy: healthy and atrophic tubules are highlighted in green and red, respectively; (c) Vascular
damage: blood vessels are outlined in green; (d) Cortical parenchyma: renal fibrosis is represented by
the turquoise zone.

The preimplantation kidney evaluation is a delicate, crucial activity for pathology laboratories.
It is time-consuming, usually performed with urgency, and has a marked impact on the daily diagnostic
routine. Moreover, the evaluation is operator-dependent, with a significant rate of inter-observer
difference [7]. In this challenging and evolving panorama, the introduction and application of an
automated analysis algorithm would be of compelling importance.

In the last few years, several strategies have been proposed for the segmentation of kidney
blood vessels and for the quantification of fibrotic tissue in biopsy images. Bevilacqua et al. [8]
employed an artificial neural network (ANN) to detect blood vessels in histological kidney images.
Lumen regions were firstly detected by applying fixed thresholding and morphological operators.
Seeded region growing was then implemented to extract the membrane all around the segmented
objects. Finally, a neural network based on Haralick texture features [9] was used to distinguish
between blood vessels and tubular structures. Although well structured, this strategy suffers from
several limitations. First, blood vessels with small or absent lumen cannot be segmented using the
described approach. In addition, stain variability greatly influences the performance of the region
growing, causing imprecise recognition of the blood vessel borders. Finally, the high variability in
the shapes, dimensions, and textural characteristics of tubules seriously affects the classification
provided by the network. Tey et al. [10] proposed an algorithm for the quantification of interstitial
fibrosis (IF) based on color image segmentation and tissue structure identification in biopsy samples
stained with Massone’s trichrome (TRIC). All the renal structures were identified by employing
color space transformations and structural feature extraction from the images. Then, the regions of
fibrotic tissue were identified by removing all the non-fibrotic structures from the biopsy tissue area.
This approach leads to fast identification of renal fibrotic tissue, but it is not free from limitations. First of
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all, there is a loss of information during the color space transformation and, in the presence of high stain
variability, the method is not able to correctly classify all the renal structures. Moreover, being based
on the identification and subsequent removal of non-fibrotic regions from the tissue, an error in the
segmentation of these structures causes inaccurate quantification of interstitial fibrosis. Fu et al. [11]
proposed a convolutional neural network (CNN) for fibrotic tissue segmentation in atrial tissue stained
with Massone’s trichrome. The network, consisting of 11 convolutional layers, was trained on a
three-class problem (background vs. fibrosis vs. myocytes), giving the RGB image as input and the
corresponding manual mask as the target. This approach provides fast detection of fibrotic areas of the
tissue but presents one major limitation: color variability. Stain variations may affect both the training
of the network and the correct segmentation of fibrotic tissue, and every mis-segmentation error leads
to incorrect detection and quantification of interstitial fibrosis.

In this paper, we present a novel method for the detection of blood vessels and for the quantification
of interstitial fibrosis in kidney histological images. To the best of our knowledge, no automated
solution has been proposed so far to cope with the issue of stain variability in PAS and TRIC images.
Our approach employs a preprocessing stage specifically designed to address the problem of color
variability. The proposed algorithm for the segmentation of vascular structures exploits a deep learning
approach combined with the detection of cellular structures to accurately segment blood vessels in
PAS stained images. Interstitial fibrosis is assessed using an adaptive stain separation method to detect
all the fibrotic areas within the histological tissue.

2. Materials and Methods

Here we present an automated method called RENFAST (Rapid EvaluatioN of Fibrosis And
vesselS Thickness). The RENFAST algorithm is a deep-learning-based method for the segmentation of
renal blood vessels and fibrosis. A flowchart of the proposed method is sketched in Figure 2. In the
following sections, a detailed description of the algorithm is provided.
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Figure 2. Flowchart of the RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness) algorithm
for vessel and fibrosis segmentation. The first row illustrates the pipeline for blood vessel detection,
while the second row shows the workflow of fibrosis segmentation. After PAS (periodic acid–Schiff)
color normalization, blood vessels are detected using a deep learning method (CNN) and ad hoc
post-processing. Kidney fibrosis is segmented through TRIC (Massone’s trichrome) normalization
followed by adaptive stain separation.
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2.1. Database Description

The whole slide images (WSIs) of kidney biopsy specimens of 65 patients (median age 51 years,
range 29–74 years) were used for this work; these were collected at the Division of Pathology,
AOU Città della Salute e della Scienza Hospital, Turin, Italy and then anonymized. The pathology
laboratory managed the biopsied samples of each kidney according to the kidney transplant biopsy’s
internal protocol. The tissue was fixed with Serra fixative and then processed in an urgency regimen
using a microwave processor or LOGOS J processor (Milestone, Bergamo, Italy). Samples were then
paraffin-embedded and serially sectioned (5 µm), mounted onto adhesive slides, and stained with PAS
and TRIC. Finally, all the slides produced were scanned with a Hamamatsu NanoZoomer S210 Digital
slide scanner (Turin, Italy), providing a magnification of ×100 (conversion factor: 0.934 µm/pixel).
For each patient (n = 65), an expert pathologist (A.B.) manually extracted 10 images with dimensions
of 512 × 512 pixels, for a total of 650 images. After consensus, manual annotations of blood vessels
and fibrosis were generated by two operators (A.G. and L.M.). Table 1 shows the overall dataset
composition. The image dataset, along with the annotations, is available at https://data.mendeley.com/

datasets/m2t49zf6xr/1.

Table 1. Dataset used in this work.

Dataset Subset Stain # Patients # Images

Vessels
TRAIN PAS 30 300
TEST PAS 5 50

Fibrosis
TRAIN TRIC 25 250
TEST TRIC 5 50

2.2. Stain Normalization

The proposed algorithm employs a specific preprocessing stage, called stain normalization,
to reduce the color variability of the histological samples. Previous studies have shown that stain
variability significantly affects the performance of automatic algorithms in digital pathology [12,13].
The procedure of stain normalization allows for transforming a source image I into another image
INORM, through the operation INORM = f (I, IREF), where IREF is a reference image and f (·) is the
function that applies the color intensities of IREF to the source image [14]. The reference image is chosen
by the pathologist as the image with the most optimal tissue staining and visual appearance. For each
image of the dataset, the RENFAST algorithm applies the same stain normalization method that we
developed in our previous work [15]. First, the image is converted to the optical density space (OD)
where the relationship between stain concentration and light intensity is linear. The algorithm then
estimates the stain color appearance matrix (W) and the stain density map (H) for both the source and
reference images. In order to apply the normalization, the stain density map of the source image is
adjusted using the following equation:

INORM = WREF·
HSOURCE

HREF
(1)

where (·)SOURCE and (·)REF denote the source and reference images, respectively. Finally, the normalized
image is converted back from the OD space to RGB. Figure 3 illustrates the color normalization process
for sample PAS and TRIC images.

https://data.mendeley.com/datasets/m2t49zf6xr/1
https://data.mendeley.com/datasets/m2t49zf6xr/1
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2.3. Deep Network Architecture

After stain normalization, the first step performed by the RENFAST algorithm is semantic
segmentation using a convolutional neural network (CNN). To perform blood vessel segmentation,
a UNET architecture with ResNet34 backbone [16] is employed using the Keras framework. The overall
network architecture is shown in Figure 4. This network consists of an encoder structure that
downsamples the spatial resolution of the input image through convolutional operations, to obtain a
low-resolution feature mapping. These features are then resampled by a decoding structure to obtain a
pixel-wise prediction of the same size of the input image. The output of the network is a probability map
that assigns to each pixel a probability of belonging to a specific class. The entire network is trained on
a three-class problem, giving the 512 × 512 RGB images as input and the corresponding labeled masks
as the target. In each image of the dataset, pixels are labeled in three classes: (i) background, (ii) blood
vessel, and (iii) blood vessel boundaries. To solve the problem of class imbalance, our network’s loss
function is class-weighted by taking into account how frequently a class occurs in the training set.
This means that the least-represented class will have a greater contribution than a more represented
one during the weight update. The class weight is computed as follows:

fclassX =
N∑

i=1

% pixelclassX

N
x = 1, 2, 3 (2)

classWEIGHT =
median([ fclass1, fclass2, fclass3])

[ fclass1, fclass2, fclass3]
(3)

where N is the total number of images and fclassX is the class frequency of generic class X.
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Figure 4. Architecture of the deep network employed to perform blood vessel detection. A UNET with
ResNet34 backbone was implemented using Keras framework.

The encoding network was pre-trained on ILSVRC 2012 ImageNet [17]. During the training
process, only the decoder weights were updated, while the encoder weights were set to non-trainable.
This strategy allows for exploiting the knowledge acquired from a previous problem (ImageNet) and
using the features learned to solve a new problem (vessel segmentation). This approach is useful both to
speed up the training process and to create a robust model even using fewer data. The training data are
real-time augmented while passing through the network, applying the same random transformations
(rotation, shifting, flipping) both to the input image and to the corresponding encoded mask. Real-time
data augmentation allows us to increase the amount of data available without storing the transformed
data in memory. This strategy makes the model more robust to slight variations and prevents the
network from overfitting.

Our network (Figure 4) was trained on 300 images with a mini-batch size of 32 and categorical
cross-entropy as a loss function. The Adam optimization algorithm was employed with an initial
learning rate of 0.01. The maximum number of epochs was set to 50, with a validation patience of
10 epochs for early stopping of the training process.

To preserve the information near the boundaries of the image, the RENFAST algorithm applies a
specific procedure to build the CNN softmax. Briefly, a mirror border is synthesized in each direction
and a sliding window approach is employed to build the probability map. To give the reader the
opportunity to observe the entire procedure, we added a detailed description along with a summary
figure in Appendix A.

2.4. Blood Vessel Detection

Starting from the normalized RGB image (Figure 5a), the RENFAST algorithm applies the deep
network described in the previous section. Figure 5b shows the probability map obtained from the
CNN, in which the red and green areas represent the pixels inside and on the edge of the blood vessels,
respectively. Then, our method detects all the white and nuclear regions within the image. All the
unstained structures are segmented by thresholding the grayscale image of the PAS sample, while cell
nuclei are detected using the object-based thresholding developed in our previous work [15]. Figure 5c
illustrates the segmentation of cellular structures performed by the RENFAST algorithm.
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Figure 5. Steps performed by RENFAST for blood vessel detection. (a) Normalized image; (b) CNN
probability map; (c) Cellular structure detection (yellow: nuclei, cyan: lumen); (d) Initial blood vessel
segmentation; (e) Softmax with high SNR (signal-to-noise ratio); (f) Final blood vessel segmentation.

To obtain initial detection of the vascular structures, the probability maps of the regions inside
and on the border of the blood vessels are added together and thresholded with a fixed value of 0.35.
Then, morphological closing with a disk of 3-pixel radius (equal to 2.80 µm) is carried out to obtain
smoother contours. As can be seen from Figure 5d, this strategy leads to accurate detection of the blood
vessel boundaries but does not allow the separation of touching structures. To overcome this problem,
an additional processing stage is performed to divide clustered blood vessels. The RENFAST algorithm
employs a four-step procedure to increase the contrast between each blood vessel’s boundary and
the background:

1. Inner region mask: thresholding (0.35) and level-set on the probability map of inner regions
(red layer);

2. Boundary mask: thresholding (0.35) and level-set on the probability map of boundary regions
(green layer);

3. New red layer of the softmax: subtraction of the boundary mask from the inner region mask;
4. New green layer of the softmax: skeleton of the boundary mask.

This procedure generates a softmax with a high SNR (signal-to-noise ratio) where the border of
each blood vessel is clearly defined (Figure 5e). Finally, for each connected component of the initial
mask (Figure 5d), a simple check is performed: if by subtracting the green layer of the high-SNR
softmax (Figure 5e), more than one region is generated, these regions are dilated by 1 pixel and added
to the final mask. In this way, the thickness lost during the subtraction is recovered while maintaining
the blood vessels’ separation. Otherwise, if no additional structure is created with the subtraction,
the connected component is inserted directly into the final mask.

The last step of the RENFAST algorithm for vessel segmentation is a structural check on the
segmented objects: All the regions with an area less than 180 µm2 are erased as they are too small to be
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considered blood vessels. In addition, objects must have at least 2.5% and 5% of the area occupied by
lumen and nuclei, respectively. With these structural checks, most of the false positives generated by
the CNN are deleted. The final result provided by the proposed algorithm is shown in Figure 5f.

2.5. Fibrosis Segmentation

The RENFAST algorithm is also able to quantify interstitial fibrosis in TRIC images. After stain
normalization (Section 2.2), our method detects all the uncolored regions to process only TRIC stained
structures. The normalized TRIC image is first converted to grayscale and Weiner filtered. The resulting
image is then thresholded using a value equal to 90% of the image maximum (Figure 6a). Since fibrosis
is characterized by a greenish color, the proposed algorithm applies an adaptive stain separation as
described in [15]. Thanks to the stain separation (Figure 6b), it is possible to divide the regions that
may manifest fibrosis (green channel) from the structural component (red channel). Segmentation
of these two channels is performed using an improved version of the MANA (Multiscale Adaptive
Nuclei Analysis) algorithm [18]. After min-max scaling, custom object-based thresholding is applied to
the green channel (fibrosis) and red channel obtained in the previous step. For each possible threshold
point T ∈ [0, 1], the RENFAST algorithm computes the following energy function:

E(T) = p2
0·var0·log(var0) + p2

1·var1·log(var1) (4)

where p0 is the probability of having intensity values lower than T, p1 is evaluated as 1− p0, while var0

and var1 represent the variances of the probability functions of the two classes p0 and p1. The threshold
T associated with the maximum of the energy function E represents the optimal thresholding point.
The result of green and red channel segmentation is illustrated in Figure 6c. All remaining pixels not
associated with one of the binary masks (white, green, red) are included in the green or red mask based
on where they have the highest intensity in the stain separation channel.
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detection (in blue); (b) Stain separation between green and red channels; (c) Segmentation of green and
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Finally, the RENFAST algorithm quantifies the interstitial fibrosis as the ratio between the fibrotic
area (segmented green channel) and the overall tissue area. Tissue detection is performed using an
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RGB high-pass filter [19] where the RGB color of each pixel is treated as a 3D vector. The strength of
the edge is defined as the magnitude of the maximum gradient. The raw tissue mask is generated by
choosing a threshold equal to 5% of the maximum gradient. Morphological opening with a disk of
4-µm radius is then carried out to obtain the tissue contour (Figure 6d).

2.6. Performance Metrics

A comparison between manual and automatic masks was carried out to assess RENFAST’s
performance in the segmentation of kidney blood vessels and fibrosis. Manual annotations of blood
vessels were generated using a custom graphical user interface based on MATLAB. Since fibrosis
segmentation can be a long and demanding task, we designed a semi-automatic pipeline to help the
pathologist during the generation of the manual mask (Appendix B). Several pixel-based metrics,
such as balanced accuracy, precision, recall, and F1SCORE, were evaluated for both blood vessel and
fibrosis segmentation. Balanced accuracy (BalACCURACY) is a common metric used in segmentation
problems to deal with imbalanced datasets (TP vs. TN). BalACCURACY is calculated as the average of
the correct predictions of each class individually. Precision is employed to evaluate the false detection
of ghost shapes; recall quantifies the missed detection of ground truth objects; and finally, the F1SCORE

is defined as the harmonic mean between precision and recall.
Accurate segmentation of blood vessel borders is fundamental for a correct evaluation of vascular

damage. For this reason, we also evaluated the Dice coefficient (DSC) and the Hausdorff distance for all
the true-positive vascular structures. Specifically, we computed the 95th percentile Hausdorff distance
(HD95), which is defined as the maximum distance of a set (manual boundary) to the nearest point in
the other set (automatic boundary). This metric is more robust towards a very small subset of outliers
because it is based on the calculation of the 95th percentile of distances. During fibrosis assessment,
the pathologist computes the ratio between fibrotic tissue and the whole tissue area. For each image,
the absolute error (AE) between manual and automatic estimation was calculated as

AE =

∣∣∣∣∣( f ibrosisAREA

tissueAREA
)

MANUAL
− (

f ibrosisAREA

tissueAREA
)

RENFAST

∣∣∣∣∣ (5)

where (·)MANUAL and (·)RENFAST denote the manual and the automatic annotations, respectively.

3. Results

The automatic results provided by the RENFAST method are compared herein both with manual
annotations and with previously published works. For blood vessel segmentation, we compared our
algorithm with the one proposed by Bevilacqua et al. [8], while we used the methods published by
Tey et al. [10] and Fu et al. [11] as benchmarks for interstitial fibrosis segmentation. As datasets and
manual annotations of these works are not publicly available, all the described methods were applied
to the same dataset used in this paper. The processing was performed on a custom workstation with a
3.5 GHz 10-core CPU with 64 Gb of RAM (Turin, Italy).

3.1. Blood Vessel Detection

Both pixel-based metrics (BalACCURACY, precision, recall, F1SCORE) and object-based metrics
(DSC, HD95) were calculated to assess the performance of the RENFAST algorithm. To demonstrate
the superiority of our strategy, we also evaluated the results obtained using a simple two-class CNN
(background vs. vessel) and a three-class CNN without our post-processing. Tables 2 and 3 summarize
the metrics calculated for blood vessel detection.
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Table 2. Comparison between the RENFAST algorithm and the current state of the art for blood vessel
segmentation (pixel-based metrics).

Method Subset Comp. Time (s) BalACCURACY Precision Recall F1SCORE

Bevilacqua et al. [8] TRAIN 2.58 ± 1.24 0.6845 ± 0.1467 0.8618 ± 0.1955 0.5115 ± 0.2196 0.5996 ± 0.1931
TEST 2.64 ± 1.18 0.6487 ± 0.1494 0.7677 ± 0.2647 0.4944 ± 0.2241 0.5684 ± 0.2281

Two-class CNN 1 TRAIN 0.57 ± 0.11 0.8821 ± 0.1116 0.9203 ± 0.0945 0.8026 ± 0.1630 0.8430 ± 0.1242
TEST 0.56 ± 0.09 0.8116 ± 0.1305 0.9308 ± 0.1004 0.6923 ± 0.1743 0.7741 ± 0.1419

Three-class CNN 2 TRAIN 0.74 ± 0.16 0.8744 ± 0.0861 0.9888 ± 0.0337 0.7706 ± 0.1199 0.8601 ± 0.0919
TEST 0.71 ± 0.18 0.8220 ± 0.1075 0.9800 ± 0.0800 0.6666 ± 0.1837 0.7740 ± 0.1597

RENFAST
algorithm

TRAIN 2.67 ± 0.41 0.9443 ± 0.0821 0.9185 ± 0.0634 0.9151 ± 0.0950 0.9126 ± 0.0611
TEST 2.59 ± 0.53 0.8936 ± 0.0969 0.9269 ± 0.0845 0.8185 ± 0.1344 0.8593 ± 0.0858

1 CNN with the same architecture shown in Figure 2 but trained on two classes (background vs. vessel). 2 Same
deep network of the RENFAST algorithm but without post-processing (Section 2.4).

Table 3. Object-based metrics calculated on detected blood vessels for both the TRAIN and TEST sets.

Method Subset DSC HD95 (µm)

Bevilacqua
et al. [8]

TRAIN 0.7476 ± 0.1517 20.33 ± 21.67
TEST 0.7668 ± 0.1381 22.31 ± 34.62

Two-class CNN 1 TRAIN 0.7447 ± 0.2312 21.13 ± 30.59
TEST 0.6879 ± 0.2417 26.68 ± 36.50

Three-class CNN 2 TRAIN 0.7802 ± 0.1777 12.02 ± 22.45
TEST 0.7483 ± 0.1790 9.35 ± 8.84

RENFAST algorithm TRAIN 0.8441 ± 0.1762 9.78 ± 10.51
TEST 0.8358 ± 0.1391 6.41 ± 6.25

1 CNN with the same architecture shown in Figure 2 but trained on two classes (background vs. vessel). 2 Same
deep network of the RENFAST algorithm but without post-processing (Section 2.4).

Regarding pixel-based metrics, our method achieved the best BalACCURACY, recall, and F1SCORE

for both the TRAIN and TEST sets. A large margin was achieved by RENFAST compared to the
state-of-the-art techniques. Even more interesting, the post-processing adopted for blood vessel
segmentation allowed a further increase in the overall performance of the single deep network (three-class
CNN vs. RENFAST). The combination of the CNN probability map and cellular structure segmentation
increased the DSC by up to 14.8% with respect to other methods. The accurate segmentation of blood
vessel boundaries is also demonstrated by the lower HD95 value. Figure 7 shows a visual comparison
between RENFAST and previously published works. Our approach managed to separate and correctly
outline the boundaries of the blood vessels.

3.2. Fibrosis Segmentation

The same pixel-based metrics employed in the last section were calculated to evaluate the
performance of RENFAST in fibrosis quantification (Table 4). To demonstrate the importance of the
stain normalization as a preprocessing step, we also evaluated the performance of our algorithm
without normalizing the images (“No norm.”).
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Table 4. Comparison between the proposed algorithm and the current state of the art for fibrosis
segmentation (pixel-based metrics).

Method Subset Comp. Time (s) BalACCURACY Precision Recall F1SCORE

Tey et al. [10] TRAIN 0.24 ± 0.04 0.8575 ± 0.0374 0.7538 ± 0.0780 0.8905 ± 0.0744 0.8147 ± 0.0515
TEST 0.25 ± 0.07 0.8604 ± 0.0428 0.7512 ± 0.0736 0.9055 ± 0.0734 0.8166 ± 0.0492

Fu et al. [11] TRAIN 0.16 ± 0.06 0.8988 ± 0.0660 0.8832 ± 0.1072 0.8940 ± 0.1469 0.8727 ± 0.0896
TEST 0.18 ± 0.09 0.9159 ± 0.0491 0.8783 ± 0.1019 0.9239 ± 0.1026 0.8911 ± 0.0644

No norm. 1 TRAIN 0.17 ± 0.07 0.9128 ± 0.0221 0.9025 ± 0.0482 0.8765 ± 0.0434 0.8900 ± 0.0240
TEST 0.18 ± 0.11 0.9164 ± 0.0247 0.9157 ± 0.0304 0.8738 ± 0.0499 0.8944 ± 0.0277

RENFAST
algorithm

TRAIN 0.27 ± 0.13 0.9212 ± 0.0199 0.9064 ± 0.0355 0.8958 ± 0.0480 0.8973 ± 0.0275
TEST 0.29 ± 0.14 0.9227 ± 0.0222 0.9184 ± 0.0313 0.8891 ± 0.0482 0.9010 ± 0.0246

1 RENFAST algorithm without the stain normalization as preprocessing.

As shown in Table 4, our strategy outperformed all the previously published methods. In addition,
the stain normalization (Section 2.2) allowed a further increase in the overall performance of our
method (No norm. vs. RENFAST algorithm). Finally, we evaluated the absolute errors (AEs) between
the manual and automatic fibrosis quantification (Table 5). In both the TRAIN and TEST datasets,
the RENFAST algorithm achieved the lowest average AEs (2.42% and 2.32%), with maximum AEs
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of 11.17% and 7.81%, respectively. Specifically, the maximum AE obtained by our method was
3–5 times lower compared to state-of-the-art techniques [10,11]. Figure 8 shows some kidney fibrosis
segmentation results.

Table 5. Minimum, average, and maximum absolute errors (AEMIN, AEMEAN, AEMAX) between
manual and automatic fibrosis quantification.

Method Subset AEMIN (%) AEMEAN (%) AEMAX (%)

Tey et al. [10] TRAIN 0.03 8.79 42.46
TEST 0.59 8.73 38.41

Fu et al. [11] TRAIN 0.01 7.81 38.62
TEST 0.04 5.93 28.73

No norm. 1 TRAIN 0.01 2.52 11.21
TEST 0.05 2.50 8.29

RENFAST algorithm TRAIN 0.01 2.42 11.17
TEST 0.01 2.32 7.81

1 RENFAST algorithm without the stain normalization as preprocessing.Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 

 

 
Figure 8. Visual performance comparison between previously published papers for fibrosis detection 
and the RENFAST algorithm. The fibrosis mask is superimposed on the original image, while the 
tissue contour is highlighted in orange. 

3.3. Whole Slide Analysis 

Since arteriosclerosis and fibrosis are generally assessed on whole slide images (WSIs), we extended 
our strategy to entire biopsies using a sliding window approach. To evaluate the degree of arterial 
sclerosis and fibrosis, an expert pathologist takes at least 20 min per patient, while the RENFAST 
algorithm is able to process the entire WSI in about 2 min. Figure 9 illustrates the results obtained using 
our algorithm on two different kidney biopsies stained with PAS (vessel detection) and TRIC (fibrosis 
segmentation). The introduction of an automatic algorithm within the clinical workflow can speed up the 
diagnostic process and provide more accurate data to assess kidney transplantability. 

 
Figure 9. The result of RENFAST processing on a whole slide image (WSI). Blood vessels are shown 
in green in PAS stained WSIs. During the assessment of fibrosis, the connective tissue is segmented 
by removing all the tubular, vascular, and glomerular structures. 

Figure 8. Visual performance comparison between previously published papers for fibrosis detection
and the RENFAST algorithm. The fibrosis mask is superimposed on the original image, while the tissue
contour is highlighted in orange.

3.3. Whole Slide Analysis

Since arteriosclerosis and fibrosis are generally assessed on whole slide images (WSIs), we extended
our strategy to entire biopsies using a sliding window approach. To evaluate the degree of arterial
sclerosis and fibrosis, an expert pathologist takes at least 20 min per patient, while the RENFAST
algorithm is able to process the entire WSI in about 2 min. Figure 9 illustrates the results obtained
using our algorithm on two different kidney biopsies stained with PAS (vessel detection) and TRIC
(fibrosis segmentation). The introduction of an automatic algorithm within the clinical workflow can
speed up the diagnostic process and provide more accurate data to assess kidney transplantability.
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removing all the tubular, vascular, and glomerular structures.

4. Discussion and Conclusions

Advances in transplant patient management are steadily increasing with improved clinical data
and outcomes, requiring proportional development of the technical procedures routinely applied.
However, the histopathological evaluation of preimplantation donor kidney biopsies has not varied,
despite the increasing demand for pathology reports.

In this study, we present a fast and accurate method for the segmentation of kidney blood vessels
and fibrosis in histological images. The detection of vascular structures and interstitial fibrosis is
a real challenge due to the stain variability that affects the PAS and TRIC images, combined with
high variation in the shape, size, and internal architecture of the renal structures. Thanks to the stain
normalization step, our approach is capable of automatically detecting fibrotic areas and blood vessels
in images with different staining intensity. The proposed algorithm was developed and tested on
350 PAS images for blood vessel segmentation and on 300 TRIC stained images for the detection of
renal fibrosis. The results were compared with both manual annotations and previously published
methods [8,10,11].

In blood vessel detection, the RENFAST algorithm achieved the best BalACCURACY, recall,
and F1SCORE compared to other techniques. More importantly, our strategy obtained the best DSC and
HD95 in the segmentation of vessel boundaries (Table 3). This is fundamental as accurate segmentation
of the blood vessel borders is mandatory for the correct evaluation of vascular damage. This high
performance is mainly due to the combination of CNN segmentation with ad hoc post-processing
specifically designed to detect the contour of each blood vessel. By segmenting lumen regions and
cell nuclei, the RENFAST algorithm manages to delete almost all the false-positive shapes detected
by the CNN. Our strategy is also capable of segmenting small blood vessels and correctly separating
touching structures (Figure 7).

On TRIC stained images, the RENFAST algorithm allows us to quantify the interstitial fibrosis.
The proposed approach showed high accuracy in segmenting fibrotic tissue and outperformed all
the previously published methods (Table 4). Compared with the current state-of-the-art techniques,
our method obtained the lowest absolute error (around 2.4%) in the estimation of fibrosis percentage.
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In the TEST set, the maximum absolute error of the algorithm was only 7.81%, about 4 times lower
with respect to the compared methods. The combination of color normalization and adaptive stain
separation allows us to accurately quantify the extent of the fibrotic area.

Although the proposed strategy is fast and robust, it still has some limitations. First of all,
the histological images must be acquired at 10× or higher magnification. Using a lower resolution
(5× or below), the deep network cannot accurately segment the blood vessels, and cell nucleus
segmentation may fail due to the poor quality of the image. Another limitation refers to the WSI
application. Nowadays, pathologists evaluate only arteriolar narrowing and interstitial fibrosis in the
renal cortex, excluding all structures of the medulla from the evaluation. Our algorithm does not
yet include a pipeline for the recognition of the medullary tissue from the cortical tissue on kidney
biopsies. However, its potential in assessing vessel and parenchyma injury represents an efficient tool
to increase accuracy, reproducibility, and velocity in an increasingly urgent medical setting.

In this study, we presented a simple yet effective pipeline for blood vessel and fibrosis segmentation
in kidney histological images. Our research group is currently working on the extension of the RENFAST
algorithm to automatically detect the cortical tissue on WSIs and assign a vascular score according
to [5]. In the future, we will integrate the assessment of glomerulosclerosis and tubular atrophy within
the RENFAST algorithm in order to create the first automated Karpinski scoring system.
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Appendix A

During the inference phase, the CNN’s probability map could suffer from a lack of information
near the edges of the image. To overcome this problem, an Extended image is synthesized by padding the
original image with mirror reflections of 256 × 256 pixels along each direction. As shown in Figure A1,
the result of this operation is an RGB image of 1024 × 1024 pixels. A sliding window operator with
a size of 512 × 512 is then passed over the extended image with an overlap of 256 pixels between
consecutive windows. The deep network is applied to each 512 × 512 window, and only the center
of each prediction is kept for the creation of the initial softmax. This operation yields a heat map of
size 768 × 768 which is further center cropped to obtain the final softmax with the same size as the
input image. The final softmax can be considered as an RGB image, where the red layer contains the
probability for each pixel of belonging to the “blood vessel” class, while the green layer represents the
probability for each pixel of belonging to the “blood vessel boundaries” class.
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Figure A1. Procedure for the creation of the final CNN softmax. The original image is mirrored around
the boundaries to obtain the extended image. Then, a sliding window approach is employed to classify
each patch, and only the center of each prediction is kept to build the final softmax.

Appendix B

The semi-automatic pipeline used to generate the manual annotation of fibrotic areas was
developed in Fiji [20]. Fiji is a Java-based software product with several plugins that facilitate medical
image analysis. The proposed pipeline consists of seven steps: (i) image loading; (ii) manual definition of
a ROI (region of interest) for each of the three colors (white, green, red); (iii) RGB color averaging of each
ROI to obtain the three stain vectors; (iv) color deconvolution using the stain vectors previously found;
(v) manual thresholding on the green channel; (vi) small particle removal; and (vii) complementation
of the binary mask.
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