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Abstract: This study explores an info-structural model of cognition for non-interacting agents affected
by human sensation, perception, emotion, and affection. We do not analyze the neuroscientific or
psychological debate concerning the human mind working, but we underline the importance of modeling
the above cognitive levels when designing artificial intelligence agents. Our aim was to start a reflection
on the computational reproduction of intelligence, providing a methodological approach through which
the aforementioned human factors in autonomous systems are enhanced. The presented model must be
intended as part of a larger one, which also includes concepts of attention, awareness, and consciousness.
Experiments have been performed by providing visual stimuli to the proposed model, coupling the
emotion cognitive level with a supervised learner to produce artificial emotional activity. For this purpose,
performances with Random Forest and XGBoost have been compared and, with the latter algorithm,
85% accuracy and 92% coherency over predefined emotional episodes have been achieved. The model
has also been tested on emotional episodes that are different from those related to the training phase,
and a decrease in accuracy and coherency has been observed. Furthermore, by decreasing the weight
related to the emotion cognitive instances, the model reaches the same performances recorded during the
evaluation phase. In general, the framework achieves a first emotional generalization responsiveness of
94% and presents an approximately constant relative frequency related to the agent’s displayed emotions.

Keywords: affective computing; sensation; perception; emotion; affection; decision support systems;
artificial consciousness

1. Introduction

Affective computing supports artificial intelligence by designing technologies that allow
computational systems to recognize and elaborate human emotions and affections [1], enriching Decision
Support Systems’ features in making decisions, from emotional classification [2] to biometry [3]. Up to
now, the research community has gained information about human emotions and affections [4–7]. Current
technologies try to go deeper in recognizing “profound” human features [8–10], rather than just recognizing
shapes, objects, or faces. Applied to autonomous agents, brain- and consciousness-related scientific
research continuously spread towards a wide range of study fields, such as those related to psychiatric
disorders [11], Neuroscience, and Cognitive Psychology. It is interesting, though, to examine in depth how
the human cognitive scale leads to intelligence and how it can be translated into technology. Computational
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models of cognition are of great utility when used to simulate cognitive processes, providing testbeds
for cognitive scientists to evaluate their hypotheses [12]. Proposing formal models of cognition does not
represent a reductionism of human mind description, but introduces new frontiers of comprehension.

In this paper, we do not want to enter the philosophical, psychological, neuroscientific, or medical
debate about brain functioning. We limit our work to the analysis of a selected set of human cognitive levels,
with the aim of translating mathematically their hierarchy into simple computable models. By means of
empirical experience and scientific suggestions, we intend to contribute the widening of the way artificial
intelligence is conceived; we think that the computational reproduction of human intelligence should not
be based only on a single learning layer—for example, a model designed with just one neural network
that classifies sensory inputs—but also on further levels of cognition related to those we think are the most
important human factors. It is necessary to pursue the building of new paradigms of artificial intelligence
that can be compared with human attitudes. Classification and regression algorithms, when exclusively
based on sensory inputs, represent a conceptual reduction with respect to human intelligence, since human
beings do not just recognize shapes or facial expressions. To be considered as “intelligent”, an agent should
take decisions not only by processing sensory samples, but also by taking into account cognitive levels like
those of emotion and consciousness.

Is it sufficient to consider just a neural network as intelligent? Do we need to design further levels
of learning, in order to simulate reliable human cognition? The answer lies in the deepening of human
cognition comprehension.

Although this paper mainly impacts Smart Sensing, it is prodromal to the rational integration of
consciousness in solutions with artificial intelligence. In fact, already in the present work, the modeling of
artificial sensations, perceptions, emotions, and affections is analyzed in a framework that sees attention,
awareness, and cognition at the sensory-cognitive stages. These last stages will be discussed in the next
paper, which will allow us to show the complete methodology on an artificial consciousness interposed
between sensing and artificial intelligence. Such a vision is absolutely new in the international scenario
since, without dealing with religious, ethical, or psychological issues, it allows us to strengthen cognition
in the context of artificial thinking by enforcing human ability to create more sophisticated artificial
intelligence. In the last 10 years, there have been many works in the context of Smart Sensing, especially
if we consider the applications implemented with Industry 4.0 and with the Internet of Things [13,14].
The European Commission has promoted and financed different initiatives favoring human–machine
interaction thanks to emotional involvement. For example, with the 7th Framework Programme, the
ALICE (Adaptive Learning via Intuitive/Interactive, Collaborative and Emotional systems) project showed
the effect of a type of learning that increased the level of attention of the learners, thanks to an analysis
of learning styles and emotional involvement. With Horizon 2020, not only emotions but also affections
have become the center of attention in different projects with international impact. They concern not only
learning assisted by artificial intelligence technologies, but also automotive, online trading, and more
generally computational finance, customer profiling in digital marketing, etc. This work frames Smart
Sensing, specifically perceptions, emotions, and affections, as a bridge towards artificial consciousness to
solve the gap between sensing and artificial intelligence, enriching the latter with elements that allow us
to take another step towards miming the processes of analysis, evaluation, and human understanding.
In fact, in the international scenario, in robotics, we find that the sensor system is at the service of artificial
intelligence without solution of continuity and without elements that, in addition to sensations, can digitize
perceptions, emotions, and affections. Furthermore, the same studies on affective computing appear in
their own right to analyze specific issues and respond to particular needs. In this work, we instead present
an integrated vision. The sensation captured by the sensor is transformed into perception, and then
enriched with emotions and affections. Only after these steps, it will be possible to analyze the cognitive
effect and the following decision, thanks to an artificial intelligence. The present work fills the gap between
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sensing and artificial intelligence by modeling artificial human-inspired cognitive levels, so that we can
define the “historical–cognitive enrichment of information” thanks to the stimulus–memories interaction.

In Figure 1, we want to introduce our info-structural model of cognition like an onion. Layers 1,
2, 3, and 4 depend on layers immediately outside, while Layers 5, 6, and 7 depend on the inside layers.
The points of contact between two or more layers represent their retroactive dependencies.

Figure 1. Intelligence structured as an onion whose layers are cognitive levels.

In the following sections, we present the model showing how cognitive state processing has been
managed and how Smart Sensing has been modelled. The last part of the present study illustrates the
experimental results obtained by processing visual stimuli inputs. In the discussion, cognitive levels related
to the model are mentioned with the initial uppercase, while real human cognitive levels are mentioned
with the initial lowercase. The contribution we want to convey is to suggest a general framework that
acquires the five sensory signals to transform them into emotional and affective artificial cognition.

2. Related Works

The term “smart sensing” is commonly associated with applications regarding energy-efficient smart
sensors, mostly for the Internet of Things [15,16]. In this paper, we want to adopt the same title to define
the section of our framework that acquires sensory inputs to compute artificial instances of Sensation,
Perception, Emotion, and Affection cognitive levels. This goal requires the definition of a cognition model
which assumes an info-structural form.

The attempt of reproducing human perception, as well as emotion and affection, has been addressed
in many ways, and it is difficult to illustrate each in a study that is not a review, but an original
contribution in the direction of creating a basis to arrive at cognition starting from the sensation. We can,
however, describe some of the most common approaches. In Reference [17], the concepts of sensation,
perception, and cognition are taken into account separately, declining the second as active, i.e., sensory
acquisition with environment adaptation capabilities, and passive, i.e., sensory acquisition without any
feedback; in the case of an electronic tongue, modeling was performed according to a mapping of human
perceptions to an artificial sensor system. The study takes into account levels of sensing, perception, and
cognition; the immediate activity of our sensory system, the interpretation of sensory stimuli, and the
acquisition, retrieval, and use of the information. The concept of attention is also taken into account for
active perception as a function of the task being executed. The authors obtained two relevant results:
a human-like electronic tongue, for evaluating food and water, and an artificial hand, for simulating
the sense of touch. From a more biological point of view, tactile perception has also been emulated



Electronics 2020, 9, 1692 4 of 26

through piezoeletric artificial synapses [18]. In Reference [19], texture features coinciding with human
eye perception have been proposed, obtaining results that are comparable with the human visual sensory
system. Visual perception has also been considered by [20], in which a cognitive system guides the attention
to an object of interest, and it has been assumed simultaneous to goal strategies in [21], by validating a
system through functional magnetic resonance imaging. Other interesting models of perception are those
based on Bayesian frameworks [22] and artificial neural networks [23,24]. In general, except for [17], which
explicitly considers a hierarchical model similar to the one presented in this study, all of the previous cited
works regard particular sensory sources or concern the concept of perception by focusing on specific tasks
such as feature extraction, object recognition, and localization.

In Reference [25], a hierarchical model based on multi-attribute group decision-making that combines
personality, mood, and emotional states has been proposed. Here, personality is represented as a vector
of characteristics, with mood as a state space in which the origin corresponds to the “neutral” and the
affective model as the mapping between these states and the emotions. The hierarchy follows the order
of personality, mood, emotion, and affective state. The results showed that, by creating a model based
on group experts’ traits, it is possible to assist, or even to replace, the groups themselves in generating
affective states for decision making. An example of an emotional framework based on Reinforcement
Learning has been proposed in [26]. In this framework, agents learn cooperative behaviors. They receive
rewards from the environment as a consequence of their actions, computing sensations through an internal
environment composed of emotion appraisal and derivation models that generate intrinsic rewards
useful for behavioral adaptation. Furthermore, affective interaction mechanisms have also been studied
in [27]: social effects of emotions are classified primarily as emotions experienced but not communicated,
emotions experienced and intentionally communicated, and emotions not experienced but intentionally
communicated. Starting from a psychological background, they have realized a multi-agent system in
which competitive and cooperative interactions have been obtained between agents with negative and
positive social connections, respectively.

The purpose of this work was to generalize the attempt to reproduce the above cognitive levels,
providing a framework that does not conceive an agent’s actions with respect to the environment, but only
the stimuli acquisition through time-dependent polynomial functions, sliding window memories, and
machine learning.

3. Proposed Model and Cognitive State Processing

As we can see in Table 1, it is possible to refine, through a computational fashion, in several cognitive
levels, what happens when we make decisions, estimates, assessments, or recognize patterns. Specifically,
this study refers to non-interacting agents—machines that perform no actions with respect to the external
environment—and their hierarchy of cognitive levels.

In our model, the artificial agent intercepts environmental events by means of its Sensation level and
processing sensory data, and sends its results to the next level. Each cognitive level receives and processes
a set of data, producing a result, subsequently recorded in memory, that is forwarded to the next level of
the hierarchy. Once the computations above have been completed, the agent obtains a tuple of results,
whose components are kept in memory for a limited period of time.

A cognitive state cn is defined as the tuple of results related to cognitive levels’ computations. Formally,

cn = (rdec
1,n , ..., rdec

i,n , ..., rdec
l,n ) = (rdec

1,n , ..., rdec
i,n , ..., rdec

7,n) n ∈ N (1)
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where rdec
i,n is the result, or instance, of the i-th cognitive level related to the acquisition, at the discrete time

n, of an external event, and l is the number of cognitive levels in our structure, which is 7 in total.

Table 1. The info-structural model as an union of two macro-areas: Smart Sensing and Consciousness.

Intelligence Activities for Non-Interacting Agents

Sensing

Status Implication Memory Functional Status Generalized Functional Status

1. Sensation

Sensing

Smart Sensing

↓ ← General
Memory

2. Perception

↓ ← Emotive
Memory

Sentiment
3. Emotion

↓ ← Affective
Memory

4. Affection

↓

Consciousness

5. Attention ⊃ Self-Attention

Consciousness

↓
6. Awareness ⊃ Self-Awareness

↓
7. Consciousness ⊃ Self-Consciousness

↓

Decision

By “external event” we mean the sampling, at the instant n, with step Tsens, of the sensory input
signals, since the sensory sphere of a robot is made of sensors. The above assumption seems to be
reasonable since artificial agents, e.g., assume a visual capacity through cameras, which capture frames,
i.e., samples of the visual reality. In this study, cognitive state acquisition and cognitive level processing is
considered instantaneous and characterized by a non-limited capacity, pseudo-instantaneous behavior,
and ideal parallelism/concurrency.

Human beings seem not to possess a memory capable of remembering, in time, every acquired
cognitive instance. In fact, memory is often classified as short-term and long-term [28]. In order to simplify
mathematically this characteristic, it is reasonable to ensure that cognitive instances would be volatile
information. In fact, compared to an emotion, a sensation is less decisive for the subject’s decision; it is
noticeable that an agent’s behavior is dependent on its emotional state, even when the sensory stimulus
that elicited the given emotion is no longer captured [29]. The closer we get to the affection, the more
cognitive levels seem to hold back cognitive data over time; emotions stimulate the activity of memory [30].
Thus, we consider cognitive instances rdec

i,n as information progressively decaying in agent’s memory.
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The removal period of the i-th cognitive level instance is defined as the period Ti that elapses between
the cognitive state acquisition and the elimination of rdec

i,n from the memory related to the i-th level. It must
also respect the following bound:

T1 < ... < Ti < ... < T7, (2)

where T1, T2, ..., T7 are the removal periods of the instances related to the seven cognitive levels.
In this way, the agent’s decisions depend more decisively on the activity of deeper cognitive levels.
Indeed, human–environment interaction leads to decisions that depend more on an affection than on a
sensation [31,32].

By way of example, being the cognitive state acquisition period TC, the period that elapses between the
first cognitive level’s input acquisition and the last cognitive level’s result generation, we show, considering
l levels, some sequential steps concerning the cognitive state temporal processing:

1. an agent acquires a Sensation instance at time n;
2. the agent processes the result of the i-th cognitive level at the time n, with 1 < i < l;
3. the agent processes the result of the last cognitive level l at the instant n + TC;
4. the agent removes the Sensation instance acquired at time n at the instant n + TS, where TS = T1 is

the removal period of the instance;
5. the agent removes the result recorded at time n of the i-th cognitive level at the instant n + Ti, with

1 < i < l;
6. the agent removes the acquired result at time n of the last cognitive level l at the instant n + Tl .

Consequently, a new Sensation instance acquisition can take place at the instant n + Tsens.

4. Smart Sensing

Smart Sensing is modeled as a hierarchy of four cognitive levels, which are Sensation, Perception,
Emotion, and Affection. Each level is thought as linked to the next one, providing as output a result, i.e.,
a cognitive instance. In order to support subsequent processing, each instance is periodically memorized
into an evanescent window memory, disappearing after a predefined period of time.

To provide visual demonstrations on how the model works, we assume low dimensionality sensory
inputs and cognitive instances. In a real use case, as we show in the last section of this study, cognitive
instances can be highly dimensional and proportional to the deployed feature extraction. For example,
to describe a sensory visual input, it could be possible to use a Convolutional Neural Network [33] to
provide, in time, as many signals as needed to match the dimensionality of the features’ vector. This aspect
will be neglected in order to show some graphs and not to overly weigh down the notation.

As regards sensations and perceptions, the literature is generally discordant since researchers consider
them as synonyms. In this study, these concepts are considered as not equivalent; specifically, the following
hypothesis and definitions are adopted.

4.1. Sensation

Sensations allow our mind to understand ourselves and the world around us. Although they are
essentially personal and subjective, it is impossible to measure them exactly, but it is possible to ask people
to describe them. This first qualitative experiment makes possible to compare sensations and to note that,
in some cases, they are caused by physical world specific changes, i.e., what is outside of us and what we
perceive. Generally, every variation of the physical world is perceived by human beings in such a way that
description of its variation is very similar.
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Although the above premise seems obvious, it allows us to suppose that there are psychophysical
relations between certain stimuli—physical variables—and some sensations—psychological
variables—that tend to be predictable and independent with respect to an observer. To reach a
further level of detail, it is possible to distinguish the concepts of “sensation” and “neuro-sensation”.
The first declination is exactly the definition provided above and it is linked to sensory organs. On
the other hand, when the stimulus, coming from sensory organs, reaches the central nervous system,
more correctly, we must consider a “neuro-sensation”, or perception, a feeling that is enriched thanks
to the memory of experiences. This explains, for example, the reason why people can derive a different
perception from the same sensory stimuli. In our study, we will consider sensation and perception as two
different cognitive levels.

In human beings, sensation is considered as the modification of our neurological system due to
stimuli offered by the environment and captured by our sensory organs, whose channels are hearing, sight,
smell, taste, and touch. In machines, a sensation can be considered as the sum of the contributions related
to the sensors’ signals. For example, while for human beings the sense of sight is acquired through the
activity of eyes, for a machine a similar result is acquired through a camera. The same goes for the hearing
sense; what humans listen to through their ears can be computed by machines through their microphones.

While human beings’ sensation is a complex cognitive level to describe, for a machine its definition
is simpler. For example, a machine’s visual sensation is made of pixels, each of which, independently
from the color-orientation, can assume maximum and minimum values (corresponding, respectively, to
white and to black, by considering the RGB format). The sensory input related to camera frames has
huge dimensions since three signals are evaluated for each pixel in the scene, but their characteristics are
practically the same. Similarly, machine auditory sensation is made of sampled waves’ intervals, each
of which can assume a certain range of magnitude values on the decibel scale. These two examples of
sensation can be considered as a computational approximation of those of human beings.

The additive sensory signal is then defined as the sum of the five sensory input signals. Formally,

S(n) =
5

∑
i=1

si(nTsens) n ∈ N. (3)

Sensory functions si(t) are described by random processes with threshold, since the arrival of a
sensation to the agent derives from stochastic occurrences. Likely, human beings perceive their conscious
sensory experience as long as the stimuli overcome a certain threshold [34]; this phenomena is also
noticeable when analyzing electrodermal activity (EDA) signals [35]. Therefore, we can define the threshold
of the i-th sensory input si(t) as follows:

Hsi > 0. (4)

The Sensation cognitive instance is defined as the vector of decaying sensory inputs. Formally,

rdec
1,n = sdec

n = (dec(s1(n), t), ..., dec(si(n), t), ..., dec(s5(n), t)) (5)

si(n) = si(nTsens) (6)

where i = 1, ..., 5, n ∈ N and Tsens is the sampling period of the i-th sensory input.
Furthermore, Sensation memory ms is defined as a tensor of the following type:
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ms =



sn f
...

sni
...

snh


=



s1(n f ) . . . si(n f ) . . . s5(n f )
...

...
...

s1(ni) . . . si(ni) . . . s5(ni)
...

...
...

s1(nh) . . . si(nh) . . . s5(nh)


(7)

with n f < ni < nh ∈ N and whose terms si(n) expire following the decay function:

dec(si(n), t) = As(si(n)e−
t−n

n − t0si
) = As(si(nTsens)e−

t−n
n − t0si

) (8)

As =
1

1− e−
TS
n

(9)

t0si
= si(n)e−

TS
n = si(nTsens)e−

TS
n (10)

si(n) < Hsi =⇒ dec(si(n), tb) = 0 (11)

tb < nTsens =⇒ dec(si(n), tb) = 0 (12)

tb > nTsens + TS =⇒ dec(si(n), tb) = 0 n ∈ N. (13)

with tb as the generic continuous temporal instant.
Analyzing the total additive sensory signal, evaluated at discrete cognitive state acquisition time

instants, it is possible to understand how the Sensation cognitive level processes sensory input signals
together. The additive sensory signal tends to acquire the shape of the input with the highest magnitude.

In Figure 2, we highlight how Sensation computes the function S(n) when processing both increasing
and decreasing sensory signals, together with how its cognitive instances are managed in the general
memory. Dashed lines, on the left picture, represent the time ranges during which the most recent sensory
sample is acquired and the decay behavior of the cognitive instances is achieved. When the sixth state of
the memory is acquired, the first sensory sample, recorded at the zero instant, has already been deleted
from the general memory. When an instance is added to the memory, its intensity and its relevance has
already started decaying.

Sensation has been modeled as a cognitive layer which takes, at every instant n, samples of the five
sensory inputs and, according to their amplitude, computes the decay function dec(si(n), t) to decrease
their importance as a function of time. The values of the decay function are acquired by the Perception
cognitive level, which keeps them in memory to combine. For each sensory dimension, the current sample
is acquired, and the decay function relative to the previously acquired samples is computed.
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Figure 2. On the left, an acquired s1(n) is the sensory signal with six Sensation cognitive instances that
decay in memory, with TS = 11 s. On the right, s1(n) and the remaining four sensory signals are combined
to form the total additive sensory signal S(n).

4.2. Perception

The laws of perception are said to be autochtonous since they are considered as innate and not as
a result of learning, even though an evolutionary progress in the elaboration of perceptions themselves
is present. Since the first months of life, the newborn has been able to recognize colors and shapes—in
particular, human figures—but only after the acquisition of the so-called “perceptive constancy”, i.e., the
ability to connect forms or figures in which he recognizes similarities [36].

While in Europe, the Gestalt developed the phenomenological laws of perception, in the United
States, the New Look of Perception paradigm took hold. The latter school, practically neglected by Gestalt,
has become relevant to the personal and social values related to perceived objects. The forms are no longer
considered innate and are anchored to the needs and purposes of individuals. Personal values and needs
have become key elements in structuring perceptive processes, and significant objects and symbols are
perceived as distorted and dissonant.

Under the above hypothesis, by leaving out more psychological aspects and orienting the discussion
on a scientific-informative vision, we can introduce, from a systemic-functional point of view, the
following definition.

Perception cognitive instance is defined as the following:

rdec
2,n = Pdec(n, mdec

g , sn, t) = dec(P(n, mdec
g , sn), t) (14)

mdec
g =



dec(P(n f , mdec
gn f

, sn f ), t)
...

dec(P(ni, mdec
gni

, sni ), t)
...

dec(P(nh, mdec
gnh

, snh), t)


n f < ni < nh < n ∈ N (15)

dec(P(n, mdec
g , sn), t) = Ap

(
αTsn

t
+

βmdec
g

t2 − t0pi

)
(16)

α = (α1(n), ..., αi(n), ..., α5(n)) = (α1(nTsens), ..., αi(nTsens), ..., α5(nTsens)) (17)
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Ap =
αTsn + βmdec

g

αTsn
n +

βmdec
g

n2 − t0pi

(18)

t0pi
=

αTsn

n + TP
+

βmdec
g

(n + TP)2 (19)

where dec(P(n, mdec
g , sn), t) is the Perception’s decay from the memory mdec

g , in time, following polynomial
order. Weight vector β, related to memory, is a term that indicates, progressively, the relevance of window
elements mdec

g,i . If βh is the weight related to the most recently added perceptive element in the window,
and β f is the weight related to the least recently added perceptive element in the window itself, it follows
necessarily that βh > β f , 0 < βi < 1 ∀ βi ∈ β. The quantity α is the weight vector linked to single Sensation
instances, and β is the weight vector related to residents in memory Perception instances. Vector α is not
constant, but variable, and it depends on time and on the results retrieved from the cognitive level of
attention, since human beings’ perception is affected by attention [37]. The terms Ap and t0pi

have been
introduced to obtain the desired behavior related to the decay of the instances, while the term related to
the memory is divided by t2 to achieve faster decay.

The elimination of a generic memory element mdec
g,i occurs at the instant t = ni + TP, where TP is the

removal period of the perceptual instance in memory.
Finally, we define the perceptive vector, useful to compute cognitive instances of the next layer of the

model, as follows:

pn = (Pdec
1 (n, mdec

g , sdec
n , n), ..., Pdec

i (n, mdec
g , sdec

n , n), ..., Pdec
N (n, mdec

g , sdec
n, n)) (20)

Pdec
i (n, mdec

g , sdec
n, n) = αi(nTsens)dec(si(n), n) +

h

∑
j= f

β jdec(P(nj, mdec
gnj

, sdec
nj), n). (21)

The effect of the weight vector α, together with the contributions related to the designed memory
model, can be observed analyzing the results of Perception. Figures 3 and 4 show an effective example of
how Perception computes its results. By setting a short removal period TP, this cognitive level does not
increase the magnitude of its inputs, but models sensory signals according to the content of the general
memory and to the state of the vector α.

Figure 3. Agent total additive Sensation and Perception instances evaluated at discrete cognitive state
acquisition time instants, with TS = 1 s and TP = 3 s. Here it is evident that, because of the general memory
contribution, Sensation and Perception present different behaviors.
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As the additive sensory signal, Perception also tends to acquire the shape of the input characterized
by the highest magnitude. This result seems reasonable since human beings tend to perceive the most
relevant received signals. For example, a loud sound increases the perception level with respect to the
hearing sense [38], while a room with no light decreases the perception related to sight. Moreover, high
frequency sensory signals play an important role in defining the output, since the human cognitive model
regards them as highly emotional informative [39]. For example, the auditory sensory signal of a scream is
characterized by a higher frequency, since human voice pitch is more acute.

Figure 3 shows a comparison between the total additive sensory signal and the Perception; on the
right, perceptive peaks and the memory contribution between them are apparent. While flatter regions
of S(n) exhibit an oscillatory behavior, the Perception regions look smoother. In addition, as shown
in Figure 5, Perception outputs always keep information about the sensory signals’ shape, even when
increasing the general memory capacity.

Figure 4. An example of how Perception cognitive instances polynomially decay in the general memory,
following TP = 3 s, TP = 10 s, TP = 20 s removal periods. Here, the weight vector is α = [0.9, 0.8, 1, 0.5, 0.6],
and the Sensation instance removal period is TS = 1 s.

Figure 5. Agent Perception instances evaluated at discrete time instants, with removal periods TS = 1 s
and, respectively, TP = 15 s and TP = 30 s. The Perception plot shows information related to Sensation,
even when increasing its instance removal period.

Decays are computed as exponential functions characterized by the amplitude of acquired data.
However, this statement is not necessarily true, since the sensory amplitude is modulated by the parameter
α, which depends on the agent’s level of attention related to the given input source. We think that this



Electronics 2020, 9, 1692 12 of 26

model simplifies reasonably the way humans remember perceptions of external events through their
senses, and takes effectively into account factors—memory and attention capacities—that are related to
subjects’ personal characteristics.

Perception takes the vector of Sensation cognitive instances sn computed in the previous level and,
for each of its dimensions, applies time-varying weights stored in α to simulate the perception of a subject
with respect to each sensory organ. For example, by considering α1 as the weight related to the Perception
of the sense of sight, its lowering towards zero indicates a visual deficit that can occur. This cognitive level
applies the decay function dec(P(n, mdec

g , sn), t) to its inputs to decrease their importance as a function of
time. All the instances of Perception acquired in the past are added to the current one to keep memory of
the past. Finally, the values of the decay function are acquired by the Emotion cognitive level, which keeps
them in memory to combine.

4.3. Emotion

In evolutionary or Darwinian terms, the main function of emotions is to make humans’ reaction more
effective during situations in which an immediate response is required for survival, i.e., a reaction with no
necessary cognitive or conscious processing. According to Cannon-Bard, the emotional stimulus is firstly
processed by subcortical centers of the brain, particularly by the amygdala, which receives information
from thalamus posterior nuclei to induce an autonomic and neuroendocrine reaction. Emotions, though,
cause many somatic modifications, e.g., heart rate change, increased or decreased sweating, respiratory
rhythm acceleration, and muscle tension increases or relaxation.

Emotions also have a relational function, i.e., communicate and self-regulate our psychophysiological
state. According to James-Lange’s theory, emotion is a response to physiological variations. Humans
experience many emotions with different physiological sensations and reactions. These theories have
been criticized since people affected by spinal cord injuries still express emotions, as well as many similar
physiological expressions. In some cases, especially due to strong emotions, a direct association, between
physiological and emotional manifestations, still exists [40].

In order to build an effective model, it is necessary to take into account the classification of the most
important emotions. One decisive contribution comes from the significant research conducted by Paul
Ekman. He led thousands of experiments and acquired a high amount of data related to our topic of
interest [41]. Therefore, we can classify emotions into anger, disgust, sadness, happiness, fear, surprise,
and contempt [42].

The Emotion cognitive instance is defined as follows:

rdec
3,n = Edec(n, mdec

e , pn, t) = dec(E(n, mdec
e , pn), t) (22)

mdec
e =



dec(E(n f , mdec
en f

, pn f
), t)

...
dec(E(ni, mdec

eni
, pni

), t)
...

dec(E(nh, mdec
enh

, pnh
), t)


n f < ni < nh < n ∈ N (23)

dec(E(n, mdec
e , pn), t) = Ae

(
γTpn

t
+

δmdec
e

t2 − t0ei

)
(24)

γ = (γ1(n), ..., γi(n), ..., γ5(n)) = (γ1(nTsens), ..., γi(nTsens), ..., γ5(nTsens)) (25)
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γi(n) = γi(n− 1)Adec(n− 1, mdec
an−1

, edec
n−1, t) (26)

Ae =
γTpn + δmdec

e
γTpn

n + δmdec
e

n2 − t0ei

(27)

t0ei
=

γTpn
n + TE

+
δmdec

e
(n + TE)2 (28)

where dec(E(n, mdec
e , pn), t) is the Emotion’s decay from the memory mdec

e , in time, following polynomial
order. Weight vector δ, related to memory, is a term that indicates, progressively, the relevance of window
elements mdec

e,i . If δh is the weight related to the most recently added emotional element in the window,
and δ f is the weight related to the less recently added emotional element in the window itself, it follows
necessarily that δh > δ f , 0 < δi < 1 ∀ δi ∈ δ. The quantity γ is the weight vector linked to single Perception
instances, and δ is the weight vector related to resident in memory Emotion instances. Vector γ is not
constant, but variable, and it depends on time. The terms Ae and t0ei

have been introduced to obtain the
desired behavior related to the decay of the instances, while the term related to the memory is divided by
t2 to achieve faster decay.

The elimination of a generic memory element mdec
e,i occurs at the instant t = ni + TE, where TE is the

removal period of the emotional instance in memory.
Finally, we define the emotional vector, useful to compute cognitive instances of the next layer of the

model, as follows:

en = (Edec
1 (n, mdec

e , pdec
n, n), ..., Edec

i (n, mdec
e , pdec

n, n), ..., Edec
N (n, mdec

e , pdec
n, n)) (29)

Edec
i (n, mdec

e , pdec
n, n) = γi(nTsens)Pdec

i (n, mdec
g , sdec

n, n) +
f

∑
j=h

β jdec(E(nj, mdec
enj

, pdec
nj
), n) (30)

Results shown in Figures 6 and 7 represent sample plots of Emotion. It is evident that, while Perception
presents evident fluctuations—mostly related to sensory signals’ shape—Emotion radically attenuates
this behavior by providing smoother functions. It is possible to discriminate emotional peaks and assign
them to emotional classes. In addition, as illustrated in the figure, the increase in the emotional memory
capacity, by increasing the removal period TE, results in more relevant memory contribution and wider
emotional peaks, but the differences with Perception are still evident.

We also observe that, for both Perception and Emotion, the increase in the memory capacity results in
the increase in agent sensibility. This characteristic can be seen by comparing the plots in Figures 5 and 6:
regarding the first plot, the function trend rapidly changes; regarding the second plot, the function
stabilizes more persistently over time. This is an interesting result, since sensitive subjects are inclined to
maintain perceptive and emotional states for a longer duration.
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Figure 6. Agent Emotion instances evaluated at discrete time instants, with removal periods TS = 1 s,
TP = 3 s and, respectively, 15 s and 30 s. The red squares highlight two intervals that show how agent
emotional sensitivity changes when increasing/decreasing the removal period TE. While in the first
configuration, the agent rapidly changes Emotion levels, in the second one, it stabilizes its states, making
them more durable and relevant. The plot on the right is similar to the Perception result, with TP = 30 s, in
Figure 5, but Emotion is smoother.

Figure 7. An example of how Emotion cognitive instances polynomially decay in the emotional memory,
following TE = 5 s, TE = 15 s, TE = 30 s removal periods. Here, the weight vector is γ = [0.6, 0.7, 0.2, 1, 0.9],
and Sensation and Perception instance removal periods are, respectively, TS = 1 s and TP = 3 s.

However, considering Emotion as a polynomial combination of Perception instances and of the
emotional memory is reductive, since it is not possible to associate deterministically a cognitive instance to
a given emotion. A stochastic approach is therefore required. In general, M being the family of stochastic
models that perform the classification of emotions by means of a training set, we define the emotional
class related to an Emotion cognitive instance as follows:

C′e,n = M(θ′, φ(rdec
3,n)) C′e,n ∈ En (31)

En = (Nen, ARn, DRn, SaRn, HRn, CRn, SuRn, Frn) (32)

with En the vector of probabilities, respectively, related to neutral, anger, disgust, sadness, happiness,
contempt, surprise, and fear. C′e,n is the predicted emotional class at the instant n, while θ′ is the model’s set
of parameters, and φ(rdec

3,n) is the basis function for the transformation of the cognitive instance at time n.
Training samples are therefore of the following form:
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< En, rdec
3,n > ∀n = 1, ..., Ntrain (33)

where < En, rdec
3,n > indicates the association between Emotion cognitive instances rdec

3,n and each emotional
class En, and Ntrain is the number of samples in the training set. We can obtain a vector of scores
for every emotional class. This approach is clearly supervised since, to obtain a fully unsupervised
emotional learning, it is necessary to classify Emotion cognitive instances through an autonomous activity
of consciousness, since emotion discrimination requires at least a moral basis. However, in this discussion,
we do not want to introduce such a complexity.

Emotion takes the vector of Perception cognitive instances pn computed in the previous level
and, for each of its dimensions, applies time-varying weights stored in γ to simulate the emotion of
a subject with respect to each sensory organ. For example, by considering γ1 as the weight of the Emotion
related to the sense of sight, its lowering towards zero indicates an emotional desensitization that can
occur. This cognitive level applies the decay function dec(E(n, mdec

e , pn), t) to its inputs to decrease their
importance as a function of time. All the instances of Emotion acquired in the past are added to the current
one to keep memory of the past. Finally, each Emotion cognitive instance is associated with an emotional
class and the values of the decay function are acquired by the Affection cognitive level, which keeps them
in memory to combine. The weights in γ are also dependent on the decay function related to Affection
cognitive instances acquired at the immediately previous instant.

4.4. Affection

Aristotle conceives affection as “páthos”—one of the ten categories of the substance; senses produce
affections to impress sensory data on the spirit. The elements that cause sensitive and sentimental
changes in the spirit, e.g., pleasure, pain, and desire, come from external objects; therefore, the affections
coincide with the “passions” of the ethical sphere. The latter meaning is also found in Cicero, who
adopts “affectiones” as a synonym of “perturbatio animi”, and in Augustine of Hippo, who uses the terms
“perturbationes”, “affectus”, and “affectiones” as synonyms for “passiones”.

According to Plato, Cartesio, Spinoza, Leibniz, and Hegel, whereas good behavior is based on
knowledge of truth, the affections are dangerous because they affect negatively cognition and moral
attitudes. In the Aristotelian and Epicurean philosophies, the affections are valid in the cognitive field since
sensory data are passively received by the subject and therefore they are always true, while anticipatory
judgments are false. No man exists without passions; they need to be moderated instead of removed.
Kant states it is essential that our spirit is “affected” by affections—otherwise, the cognitive activity of
reasoning would be false—but if they are conceived as passions, their role is negative, i.e., cancers of
practical reason.

For this work, with the aims of stimulating an advancement of ICT technologies by computationally
deepening the above concepts, we provide the following definition.

The Affection cognitive instance is defined as follows:

rdec
4,n = Adec(n, mdec

a , edec
n, t) = dec(A(n, mdec

a , en), t) (34)

mdec
a =



dec(A(n f , mdec
an f

, edec
n f ), t)

...
dec(A(ni, mdec

ani
, edec

ni ), t)
...

dec(A(nh, mdec
anh

, edec
nh), t)


n f < ni < nh < n ∈ N (35)
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dec(A(n, mdec
a , en), t) = Aa

(
µTen

t
+

λmdec
a

t2 − t0ai

)
(36)

Aa =
µTen + λmdec

a
µTen

n + λmdec
a

n2 − t0ai

(37)

t0ai
=

µTen

n + TA
+

λmdec
a

(n + TA)2 (38)

where dec(A(n, ma, en), t) is the Affection’s decay from the memory ma, in time, following polynomial
order. Weight vector λ, related to memory, is a term that indicates, progressively, the relevance of window
elements mdec

a,i . If λh is the weight related to the most recently added affective element in the window,
and λ f is the weight related to the less recently added affective element in the window itself; it follows
necessarily that λh > λ f , 0 < λi < 1 ∀ λi ∈ δ. The quantity µ is the weight vector linked to single Emotion
instances, and λ is the weight vector related to resident in memory Affection instances. Vector µ is not
constant, but variable, and it depends on time. The terms Aa and t0ai

have been introduced to obtain the
desired behavior related to the decay of the instances, while the term related to the memory is divided by
t2 to achieve faster decay.

The elimination of a generic memory element mdec
a,i occurs at the instant t = ni + TA, where TA is the

removal period of the emotional instance in memory.
Affection, as shown in Figures 8 and 9, heavily attenuates Emotion behavior with a sort of emotional

peak grouping. This seems reasonable, since an affection can be considered as the synthesis of a certain
set of emotions felt at a given time. Notice that the more the memory capacity increases, the more the
Affection improves its emotional synthesis.

Figure 8. Agent Emotion and Affection instances evaluated at discrete time instants, with TE = 4 s and TA = 10 s.

Affection takes the vector of Emotion cognitive instances en computed in the previous level and, for
each of its dimensions, applies time-varying weights stored in λ to simulate the affection of a subject with
respect to each sensory organ. For example, by considering γ1 as the weight of the Affection related to the
sense of sight, its lowering towards zero indicates an affection decrease that can occur. This cognitive level
applies the decay function dec(A(n, mdec

a , en), t) to its inputs to decrease their importance as a function of
time. All the instances of Affection acquired in the past are added to the current one to retain memories
from the past.
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Figure 9. An example of how Affection cognitive instances polynomially decay in the affective memory,
following TA = 7 s, TA = 15 s, and TA = 30 s removal periods. Here, the weight vector is
µ = [0.1, 0.9, 0.2, 0.8, 1], and Sensation, Perception, and Emotion cognitive instances removal periods
are, respectively, TS = 1 s, TP = 3 s, and TE = 5 s.

We have modeled affection as the decaying contributions of current emotions related to the sensory
signals and the past affective history. This cognitive level is intended as a combination, a “grouping”, of
different emotions related to an external entity—an “emotional synthesis”. Finally, we can conclude that,
while Sensation and Perception can be classified as unique categories, what we call “Sensing”, Emotion,
and Affection can be classified as another category, called “Sentiment”. Both categories are part of the
macro-category called “Smart Sensing”.

5. Study Case and Framework Functionalities

A study case of the above model concerns the learning of a certain emotional behavior in relation
to some sensory stimuli. Each cognitive instance can be classified with a combination of the seven main
emotions illustrated in Section 4.3, obtaining an “oriented” emotional experience that depends on the
agent’s perceptive and affective states. The main idea is to provide the agent with some stimuli and to
impose the emotional reactions it must consequently activate. This requires building a dataset in which
every configuration of the model, in terms of its parameters and sensory stimuli, is associated with a
given emotional class. In this way, the agent, based on the provided experience and the Perception states
recorded, will show emotions with respect to the stimuli he receives. Thus, every cognitive instance rdec

i,n is
computed through the sum of sensory inputs with different dimensions; for example, the visual sensory
input, as we will see in the following section, can have a dimensionality that depends on the adopted
feature extraction. According to the past emotional experience obtained through a learning phase, the
agent must provide emotions by adequately generalizing on sensory inputs; this characteristic permits
the agent to infer, coherently with its memory state, an emotional behavior with respect to stimuli it has
never seen before. For this reason, cognitive instances are classified according to the desired behavior
by taking into account the parameters of each cognitive level. For example, in the case where the agent
acquires a sensory input sdec

n , with α1 = 1, since we want its reaction to be emotionally neutral, it is possible
to determine, in the case of a subsequent input acquisition sdec

n+1, with α1 = 0.1, that the next emotional
reaction will still be neutral. This use case translates into the model the emotional reaction that a human
being should present when its level of perception decreases. The Affection cognitive level provides an
additional level of detail for the agent decision since, according to the content of its memory, it is possible
to classify a set of emotions provided in the past with respect to one or more stimuli. However, in this
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paper, we want to discuss the results achieved by focusing on the level of Emotion with respect to certain
visual stimuli episodes.

6. Experiments with Visual Stimuli

The following experimentation is affected by the work in [7], in which spontaneous emotional activity
was recognized and classified for a group of people by subjecting visual stimuli in order to create a
database of facial expressions. The above study considered a real case of human emotional action, and
we were inspired to try a similar approach by “replacing” one of those subjects with the model presented
in this paper. A person receives a visual stimuli, e.g., an image, and accordingly shows an emotion; we
endeavor to have an artificial agent that can acquire the same kind of visual stimuli and consequently to
output emotions. Our purpose was not to accomplish a comparison between machines and individuals,
but to instruct Smart Sensing to supply those emotions felt by human beings when they are affected by
certain incentives. Thus, we present a use case in which sequences of images are transformed into Emotion
cognitive instances in order to produce artificial emotional activity.

In Figure 10, we can find the learning architecture and a method to validate a learner coupled
with the Emotion cognitive level. The present experiment is partitioned into two cores: (i) model
evaluation, conducted by training and testing the learner with predefined episodes—a series of Emotion
cognitive instances obtained by supplying pre-established sequences of visual stimuli; (ii) emotional
activity, achieved by testing the formerly trained model on never-seen episodes—a series of Emotion
cognitive instances obtained by supplying shuffled configurations of the visual stimuli served for the
evaluation test. The former task is necessary to guarantee that the learner provides the desired emotions
with respect to the established episodes; the latter is essential to inspect the emotions the learner produces
when the memory mdec

e presents states different from those involved in the evaluation.

Figure 10. The emotional learning schema. Episodes represent given configurations of subsequent visual
stimuli supplied in a predefined order. Model evaluation is performed by training and testing on episodes
of three types, while emotional activity is assessed by testing the learner on the same test stimuli involved
in the evaluation, but presented in a different order.

The images, reshaped to a 150 × 220 size, are labeled according to the approach described in (32) and
are subject to the ImageNet [43] network, which provides features vectors of 12,288 components, of which
an example of transformation into a cognitive instance is shown in Figure 11. After a first training phase,
the learner is evaluated and re-trained subsequently to a feature selection based on importance weights.
The evaluation is executed by training and testing on three types of episodes—[0, 2, 3, 3, 5, 6], [0, 7, 2, 1, 3, 4],
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and [0, 1, 7, 7, 4, 0]—whose stimuli are listed in Table 2. During the training phase, when a given emotion
class becomes associated with an Emotion cognitive instance, the learner acquires the above association
as a function of the current instance and the state of the Emotion memory. By way of example, when an
Emotion cognitive instance associated with an injury stimulus becomes labeled with disgust, the agent
will be trained to show disgust, with respect to the injury stimulus, by also keeping information, through
the memory mdec

e , about instances acquired previously. Thus, the emotional behavior depends on the order
through which images are supplied to the agent.

Table 2. Stimuli collected for model evaluation and emotional activity, partially inspired by the study in [7].
These associations determine, taking into account Emotion memory mdec

e effects, during the training phase,
the emotional behavior the agent acquires at the time it captures a given sensory input.

Class Emotion Stimuli Relative Frequency

1 Happiness Beautiful woman, own home 0.11
2 Anger Murder of animal 0.11
3 Fear War, man pointing weapon, terrorism 0.18
4 Surprise Crazy sportsman 0.11
5 Contempt Politician, parking car 0.06
6 Sadness Someone’s death or sick, car accident 0.06
7 Disgust Injury, autopsy 0.16
0 Neutral Landscape 0.21

Figure 11. An example of how visual sensory input features are transformed into an Emotion cognitive
instance. This plot describes the fifth image provided during the training phase of the learner; here, it can
be seen how memory contributes in changing the content of the features vector when TS = 1 s, TP = 1.5 s,
TE = 2 s, Hsi = 0.001, and α1 = β1 = γ1 = 1 and when there is an mdec

e capacity at four locations.

Together with the accuracy, a “coherency” metric is also considered. It represents the ability of the
model to distinguish between positive, negative, and neutral emotional stimuli. Positive stimuli are
considered as associated with happiness and surprise, while neutral and negative ones, respectively,
are associated with the neutral and the other remaining emotions. We decide to train the learner by
means of ensemble models [44], in order to acquire more stable predictions for the small dataset we
constructed—about 612 samples. In Table 3, we show the model evaluation performances obtained by
using Random Forest [45,46] and XGBoost [47]; we reached better accuracy and coherency with gradient
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boosting, of which a confusion matrix is shown in Tables 4 and 5. Contempt- and happiness-related stimuli
are sometimes confused; the former is recognized as happiness, the latter as sadness. However, as can
be seen in Table 5, confusion regarding positive and negative emotional stimuli turns out to be suitable
for the experiments. The results of the emotional activity on never-seen episodes involve accuracy and
coherency reduction due to the effect of memory. In fact, without the contribution of mdec

e , evaluation and
emotional activity tests provide the same results.

Table 3. Evaluation tests, with TS = 1 s, TP = 1.5 s, TE = 2 s, Hsi = 0.001, α1 = β1 = γ1 = 1, and an mdec
e

capacity at four locations.

Learner with Random Forest

Samples Training size Test size Episodes Features Estimators Accuracy Coherency

348 296 53 58 3654 250 0.67 0.75
438 373 66 73 980 200 0.74 0.84
612 520 92 102 3378 500 0.78 0.86

Learner with XGBoost

Samples Training size Test size Episodes Features Estimators Accuracy Coherency

348 296 53 58 3654 100 0.77 0.86
438 373 66 73 980 100 0.80 0.82
612 520 92 102 3378 200 0.85 0.92

Table 4. Confusion matrix of the accuracy related to the model trained with XGBoost over 612 samples,
with TS = 1 s, TP = 1.5 s, TE = 2 s, Hsi = 0.001, α1 = β1 = γ1 = 1, and an mdec

e capacity at four locations.

Predicted

Neutral Happiness Anger Fear Surprise Contempt Sadness Disgust

Neutral 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Happiness 0.05 0.77 0.00 0.00 0.00 0.00 0.14 0.00
Anger 0.00 0.00 0.90 0.05 0.00 0.00 0.00 0.00
Fear 0.05 0.00 0.09 0.89 0.00 0.00 0.00 0.00
Surprise 0.00 0.00 0.00 0.05 0.88 0.00 0.00 0.00
Contempt 0.05 0.11 0.00 0.00 0.00 0.57 0.00 0.08
Sadness 0.05 0.00 0.00 0.05 0.00 0.00 0.57 0.08
Disgust 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.91

Table 5. Confusion matrix of the coherency related to the best model trained with XGBoost over 612
samples, with TS = 1 s, TP = 1.5 s, TE = 2 s, Hsi = 0.001, α1 = β1 = γ1 = 1, and an mdec

e capacity at
four locations.

Predicted

Negative Neutral Positive

Negative 0.92 0.16 0.05
Neutral 0.00 1.00 0.00
Positive 0.03 0.05 0.83

In Table 6, we show the emotional activity tests performed over episodes different from those used
for training; the model was tested over a test set composed of the same samples used for the evaluation,
but shuffled randomly. The contribution of mdec

e is noticeable; it determines a lowering of accuracy and
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coherency, causing a completely different emotional activity, compared to the emotions predicted in
the evaluation test. Even if the agent shows different emotions towards the same kind of stimuli, the
relative frequency of predicted emotions is approximately equal to the relative frequency obtained for the
evaluation. For example, as can be seen in Table 6, even when the agent, during the emotional activity, has
predicted different emotions with respect to the same visual stimuli provided for the evaluation test, it
always shows approximately 23% of Fear. The obtained results show the dependence of the emotional
activity on mdec

e and on the order through which visual stimuli are provided to the model. The agent
outputs emotions according to its past history and with an approximately constant relative frequency.

Table 6. Emotional activity related to the best model trained with XGBoost over 612 samples, with TS = 1 s,
TP = 1.5 s, TE = 2 s, Hsi = 0.001, α1 = β1 = γ1 = 1, and an mdec

e capacity at four locations. The system
achieves a first emotional generalization responsiveness of 94%.

Relative Frequency

Neutral Happiness Anger Fear Surprise Contempt Sadness Disgust Acc/Coh

Evaluation 0.24 0.09 0.12 0.23 0.09 0.04 0.05 0.14 0.85/0.92
Emotional activity 1 0.25 0.10 0.12 0.23 0.07 0.05 0.02 0.15 0.80/0.89
Emotional activity 2 0.22 0.10 0.09 0.23 0.09 0.04 0.06 0.16 0.80/0.92
Emotional activity 3 0.25 0.11 0.11 0.22 0.08 0.04 0.02 0.17 0.82/0.91
Mean emotional activity 0.24 0.10 0.11 0.23 0.08 0.04 0.03 0.16 0.81/0.91

The results of the emotional activity as a function of γ1, shown in Figure 12, suggest that, when the
Emotion visual weight γ1 tends toward 0.1, accuracy and coherency over never-seen episodes assume the
same score achieved for the evaluation test (85% of accuracy and 92% of coherency).

Figure 12. Emotional activity as a function of γ1 related to the best model trained with XGBoost over
612 samples, with TS = 1 s, TP = 1.5 s, TE = 2 s, Hsi = 0.001, α1 = β1 = 1, and an mdec

e capacity at
four locations.

When the importance of Emotion cognitive instances decreases, the agent tends to ascribe less
relevance to current memory mdec

e states for the emotional activity, predicting emotional classes according
to the past state of the memory related to the training phase. During the emotional activity, when γ1

decreases, the agent takes into account the emotional history to which it has ascribed more importance in
the past.
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7. Discussion

Results show that the agent acquires the desired emotional experience with suitable accuracy and
without the use of a neural network. The emotional behavior is consistent by virtue of the constant
relative frequency of emotions; the content of cognitive memories affects the emotional output and, as a
consequence of the tests conducted on episodes different from those learned in the training phase, the
agent provides different emotional behavior with respect to different sequences of stimuli. The variation
in the emotional behavior is represented by the lowering of accuracy with respect to the initial model
evaluation. We have also shown that the agent, by lowering the importance of the current emotion, behaves
as if the new sequence of stimuli was identical to the one learned in the past. Therefore, when the agent
does not ascribe importance to its emotions, it starts assuming a behavior that does not depend on the
current stimuli but on the most emotionally relevant past ones.

A comparison between our model and the related works presented in Section 2 reveal differences.
The study conducted in [17] introduced a threshold concept that is similar to what we defined in (4),
but that associates it with perception rather than with sensation; we have assumed this process as prior
to the cognitive acquisition of the Perception cognitive level. In Reference [17], the concept of artificial
perception is also conceived as subjected to the assessment of a level of cognition that provides meaning
to sensory stimuli. On the contrary, in our info-structural model, we associate the level of cognition
with that of consciousness, which we assume takes into account also emotional and affective processing
related to the perceived stimuli. We believe, in fact, that human cognition also depends on the emotional
memory associated with those stimuli. Furthermore, our perception representation is closer to the
concept of passive perception, since our model does not take into account the agent’s actions towards
the environment. Other studies on perception [18–24] have very few similarities with the present study,
since they focus on particular characteristics by addressing problems that we have overlooked due to
the generalization aims of the present study. In fact, our intention was to model the general functioning
of perception in relation to the cognitive levels of Emotion and Affection. The study in [25] models a
personality characteristics vector as a function of variables related to neuroticism, extraversion, openness,
conscientiousness, and agreeableness, which are instantiated by answering personality tests. In our model,
the tracts of personality are determined by the emotional training occurring during the model evaluation
theorized in Section 4.3 and described experimentally in Section 6. In Smart Sensing, an agent’s personality
is determined dynamically by the associations between the emotional classes and the perceptions of
stimuli with the addition of related emotional memory content. This is, in fact, a pre-defined orientation
through which we define the way the agent emotionally reacts to the environment. The approach in [26]
regards an agent’s behavioral adaptation as a function of the rewards received from the environment.
In our framework, the emotional behavior does not depend on the actions the agent performs, since
non-interacting emotional activity does not seem to depend on rewards. In fact, as shown in Section 6,
our agent, like a human being, outputs negative emotions with respect to negative stimuli that, like the
vision of someone sick, could not depend on its actions. Even though it is necessary to model an emotional
mechanism based on the interaction with the environment, we think that it is more suitable to first build a
cognitive model based on human behaviors that do not depend on rewards. Furthermore, we consider
the adaptation to be associated with the conception the agent has of good and evil, our understanding of
which will deepen in continuation of our studies regarding consciousness, in which we will investigate the
level of human morality that does not depend on the actions performed in the past.

The experiment described in Section 6 can be placed in the scenario related to the research on the
so-called “artificial emotion” [48,49]—emotions “felt” by a machine. In this field, remarkable studies
include those of [50], in which robots are provided with facial expressions based on the interaction with a
human partner, and [51], which provides a general framework for designing emotions in autonomous
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agents. With the present study, our contribution allows an empirical and info-structural representation
of artificial cognitive instances in terms of vectors. Machine emotions become “recognizable” inside
an artificial agent and contribute to determining a form of emotional activity that depends on the
upper cognitive levels—Sensation and Perception—and on cognitive memories. The present model
acts regardless of agent goals and actions towards the environment, providing the agent with emotions
even when it acts just as a “viewer”. Smart Sensing could be used as an empirical hypothesis for inquiring
the way humans process information perceptively and emotionally, as well as verifying future emotional
activities of subjects downstream to a specific history of stimuli. Smart Sensing represents the starting
point of a new approach for implementing an artificial consciousness, which takes into account Sensation,
Perception, Emotion, and Affection cognitive levels as a function of time. In addition to demonstrating
that the model functions in reproducing artificial emotional activity, providing good results with a limited
amount of samples, this study provides a framework, never presented before, enforced by psychological
and behavioral literature, which encourages the development of artificial intelligence systems through
the observation of human sensations, perceptions, emotions, and affections. We argue that, at the current
stage of research in artificial intelligence, it is no longer suitable to design cognitive systems that neglect
the highlighted cognitive levels and the inter-functional relationships between them. As we have seen,
emotion depends on the way the stimuli are perceived through sensory sources and on the level of affection
related to the stimuli themselves; this is a statement revealed to be true for human beings, thus testable by
everyone, and should be true also for artificial “minds”. The research community can contribute to the
present research line by performing experiments that also take other sensory channels into account, e.g.,
auditory or tactile, and by expanding Smart Sensing with further cognitive levels. From an applicative
point of view, through our implementation choices, it is possible to neglect the use of neural networks,
which, by definition, need large amounts of samples, when developing emotional sensor systems, e.g.,
agents with affective capacity. Future developments could consist in trying to turn the learner used to
output emotional classes into a formal model that does not include any form of supervision, which is a
challenging task. The solution to this last issue may involve the dependence of the Emotion cognitive level
on a mechanism of consciousness capable of distinguishing emotionally positive stimuli from negative and
neutral ones. Another future extension of this work is the support of cognitive instance classification with
a facial expression recognition model, a smart way of providing the agent with empathic functionalities.
The present work lays the foundations for the design of our idea of artificial consciousness, which will be
addressed in a subsequent paper. We will present an info-structural model of cognition based on attention,
awareness, and consciousness, which, as we will see, intrinsically depends on Smart Sensing.

We intend to underline the novelty of this study from a methodological point of view. It opens a
unitary perspective regarding the interaction between all the cognitive levels reproducible in an artificial
agent. This is a great challenge for the research community, since it also favors the concurrence of the
human sciences and the overall branches of knowledge, which, in a logic of integration, can offer a
renewed technological–scientific and humanistic path in the present moment of research, elaboration, and
applications. The present work intends to outline a research hypothesis and illustrate horizons according
to an overall vision of the subject-man/artificial agent relationship.

8. Conclusions

In this work, we presented an initial reflection on the human–machine relationship and traced a
possible methodology through which to design a computational model able to provide emotions to an
artificial agent. We described our hierarchical idea of a cognitive model regarding intelligence activities for
non-interacting agents, showing Smart Sensing layers’ mathematical translation. We showed how cognitive
levels of Sensation, Perception, Emotion, and Affection were modeled, as well as their characteristics and
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interactions. In doing so, we described how the model is supported by evanescent window memories.
We also exposed the experimental results obtained by running the model with simple test input signals,
analyzing numerical outcomes, and highlighting the differences between cognitive levels’ outputs in terms
of their parameters and characteristics. In the last section, taking inspiration from a real human case, we
illustrated a demonstration of the model functioning on the task of producing artificial emotions, obtaining
results that are suitable in terms of emotional generalization and reasonable from a behavioral point of
view. Following an analysis of human aptitudes, we begin to deepen our understanding of the cognitive
levels of attention, awareness, and consciousness and of how Smart Sensing potentials improve when an
artificial consciousness comes into play.
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