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Abstract: The histological assessment of glomeruli is fundamental for determining if a kidney
is suitable for transplantation. The Karpinski score is essential to evaluate the need for a single
or dual kidney transplant and includes the ratio between the number of sclerotic glomeruli and
the overall number of glomeruli in a kidney section. The manual evaluation of kidney biopsies
performed by pathologists is time-consuming and error-prone, so an automatic framework to
delineate all the glomeruli present in a kidney section can be very useful. Our experiments have
been conducted on a dataset provided by the Department of Emergency and Organ Transplantations
(DETO) of Bari University Hospital. This dataset is composed of 26 kidney biopsies coming from
19 donors. The rise of Convolutional Neural Networks (CNNs) has led to a realm of methods
which are widely applied in Medical Imaging. Deep learning techniques are also very promising
for the segmentation of glomeruli, with a variety of existing approaches. Many methods only focus
on semantic segmentation—which consists in segmentation of individual pixels—or ignore the
problem of discriminating between non-sclerotic and sclerotic glomeruli, so these approaches are
not optimal or inadequate for transplantation assessment. In this work, we employed an end-to-end
fully automatic approach based on Mask R-CNN for instance segmentation and classification
of glomeruli. We also compared the results obtained with a baseline based on Faster R-CNN,
which only allows detection at bounding boxes level. With respect to the existing literature,
we improved the Mask R-CNN approach in sliding window contexts, by employing a variant of the
Non-Maximum Suppression (NMS) algorithm, which we called Non-Maximum-Area Suppression
(NMAS). The obtained results are very promising, leading to improvements over existing literature.
The baseline Faster R-CNN-based approach obtained an F-Measure of 0.904 and 0.667 for non-sclerotic
and sclerotic glomeruli, respectively. The Mask R-CNN approach has a significant improvement
over the baseline, obtaining an F-Measure of 0.925 and 0.777 for non-sclerotic and sclerotic glomeruli,
respectively. The proposed method is very promising for the instance segmentation and classification
of glomeruli, and allows to make a robust evaluation of global glomerulosclerosis. We also compared
Karpinski score obtained with our algorithm to that obtained with pathologists’ annotations to show
the soundness of the proposed workflow from a clinical point of view.
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1. Introduction

In order to evaluate if a kidney is eligible for transplantation, a key step is the histological
assessment of renal biopsies by expert pathologists. The determination, by a pathologist, of the
number of globally sclerosed glomeruli with respect to the total number of glomeruli is a fundamental
criteria for accepting or discarding donor kidneys. Considering the shortage of organs suitable for
transplantation, the possibility to have an automatic system for a rapid and effective evaluation
of global glomerulosclerosis would be very important, permitting to retain the largest quantity of
eligible kidneys. In this paper, we propose a Computer-Aided Diagnosis (CAD) system which has the
purpose to support the expert pathologists in the glomerular detection and classification task, allowing
them to easily obtain global glomerulosclerosis information. Automated systems proved to be useful
in a variety of medical applications, including biometrical analysis for personal identification [1],
cancer system biology [2], blood parameters evaluation [3], breast cancer classification [4], diagnosis of
neurological disorders [5], analysis of nasal cytology [6], segmentation and investigation of the
conjunctiva [7,8], and prediction of the on-target cleavage efficiency from sgRNA sequences [9].
The rise of Convolutional Neural Networks (CNNs) opened many opportunities for Computer
Vision tasks like object detection, semantic segmentation, and instance segmentation. This has led
to a large development of deep learning methods and techniques in these tasks, which cannot be
extensively detailed here. A comprehensive review on object detection and instance segmentation
approaches can be found in [10], whereas one for semantic segmentation is [11]. In the realm of
Digital Pathology, several recent studies have employed CNNs for glomerulus identification in renal
biopsies [12–23]. Glomerulus detection has been approached as object detection task (e.g., [13]) or as
semantic segmentation task (e.g., [17,22]). In this paper, we treat it like an instance segmentation task
(e.g., [23]). CNN and medical imaging techniques have proven to be useful for evaluation of eligibility
of donor kidneys [14,15,17,22,23].

A fundamental quantitative measure for assessing the eligibility for transplantation of kidneys
from expanded criteria donors (ECD) is the Karpinski score [24]. Glomerular, tubular, interstitial,
and vascular compartments are evaluated from an histological point of view. Then, for each of
these compartments, it is assigned a score in the range 0 to 3, where 0 corresponds to normal
histology and 3 to the worst degree of, respectively, global glomerulosclerosis, tubular atrophy,
interstitial fibrosis, and arterial and arteriolar narrowing [24,25]. The identification of all non-sclerotic
and sclerotic glomeruli in the kidney biopsy is the preliminary task required to define a score for global
glomerulosclerosis. Non-sclerotic glomeruli tend to have an elliptic shape. They are characterized
by the Bowman’s capsule and by the capillary tuft with the mesangium. The latter is sited inside the
glomerulus, whereas the first is peripheral and contains the tuft. There is a space between these two
elements, which is known as Bowman’s space. The capillary tufts features nuclei of cells (blue points),
capillary lumens (white areas), and the mesangial matrix (regions with similar tonality and different
levels of saturation), so it resembles a pomegranate. A (globally) sclerotic glomerulus is characterized
by capillary lumens which are obliterated for an increase in extracellular matrix, and collagenous
material which completely fills the Bowman’s space. Examples of non-sclerotic and sclerotic glomeruli
are depicted in Figure 1.

In this paper, we propose a deep learning framework, based on Mask R-CNN [26],
for glomerular detection and classification with an end-to-end instance segmentation approach.
Semantic segmentation networks can guarantee very high pixel-level results, but they may perform
worse in the object detection task, if compared to specialized architectures [15]. The key points of the
proposed method are:
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• the possibility to train an end-to-end instance segmentation neural network, by exploiting Mask
R-CNN, strongly reducing the need of post processing operations and allowing to learn all the
required features in a unified process;

• the use of a variant of the standard Non-Maximum Suppression (NMS) algorithm, which we
called Non-Maximum-Area Suppression (NMAS) that led to an improvement of the performances
in our sliding window approach. Note that NMAS, like NMS, is a general purpose algorithm and
can be useful also for other detection tasks;

• it shows superior performances to other alternatives proposed in literature, without computational
drawbacks. Alternatives include object detection approaches, as Faster R-CNN (adopted in [13]),
which is herein used as baseline, and semantic segmentation approaches (adopted in [15,17]).

Figure 1. Glomeruli. Green: non-sclerotic glomeruli. Yellow: sclerotic glomeruli. Ground truth
annotations provided by pathologists.

2. Methods and Materials

2.1. Dataset

All the experiments conducted in this paper exploited a dataset provided by the Department of
Emergency and Organ Transplantations (DETO) of Bari University Hospital. This dataset is composed
of 26 kidney biopsies coming from 19 donors. Kidney donors sections contain 2344 non-sclerotic
glomeruli and 428 sclerotic glomeruli [15]. The dataset has been split into a train-validation set
composed of 19 biopsies and a test set composed of 7 biopsies. The train-validation set has been
exploited for model fitting and hyperparameters tuning, whereas the final estimation of the results has
been computed on the test set. The whole train-validation set contains 1852 non-sclerotic glomeruli
and 341 sclerotic glomeruli; the test set contains 492 non-sclerotic glomeruli and 87 sclerotic glomeruli.

2.2. Object Detection with Deep Learning

Deep learning refers to the adoption of architectural processing models, composed by different
layers, at the purpose of learning structured representation of the input data. The role of deep learning
has been pivotal in different sectors, including visual object recognition and object detection [27].
Starting from the breakthrough obtained by AlexNet [28], CNNs have become widely used for almost
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every kind of computer vision problem. In this work, we will focus on CNNs for object detection,
a problem which consists of finding the bounding boxes for all the objects of interest present in the
image, and for instance segmentation, in which it is also required to delineate precise masks for
the objects.

Among the CNN-based methods for object detection, a particular mention is devoted to the
Region-Based Convolutional Neural Networks (R-CNN) family of models. The original R-CNN was
proposed in 2014 by R. Girshick et al. from UC Berkeley [29]. The method fuses region proposals
with CNNs at the purpose of performing object detection. The first part of the R-CNN algorithm is
devoted in generating region proposals which are category-agnostic and that may contain objects.
Then, those regions are fed to a CNN which extracts a vector representing the features for each
region. Finally, the feature vector is given as input to a set of class-specific linear support vector
machines (SVMs).

In 2015, R. Girshick improved the R-CNN method, creating a new object detection network named
Fast R-CNN [30]. In Fast R-CNN, the whole input image is fed to the CNN to generate convolutional
feature maps. Then, region proposals are discovered from the convolutional feature maps, and are
warped into squares. An RoI-pooling layer (RoI stands for Region of Interest) is adopted to reshape
the proposals to a fixed size, so that they can be forwarded to fully connected layers. The inclusion of
region proposals based on selective search causes performance issues in Fast R-CNN.

This concern was solved in 2016 with a further evolution of the R-CNN architecture, Faster R-CNN,
proposed by S. Ren, K. He, R. Girshick, and J. Sun [31]. The team of Microsoft Research discovered
that feature maps computed in the first part of Fast R-CNN can be used to generate region proposals
instead of slower and not-learnable algorithms as selective search. The big evolution in Faster R-CNN
is the introduction of a Region Proposal Network (RPN) after the feature maps extraction of Fast
R-CNN. RPN exploits a novel concept, namely anchor boxes, instead of previous architectures which
adopted pyramids of images or pyramids or filters. In order to generate anchor boxes, it is possible
to employ a small network which input is an n× n spatial window of the feature map; the resulting
anchor boxes are a collection of the rectangular bounding boxes proposals, with the related scores.
The scale and aspect ratio of anchor boxes are parameters that can be decided from the architecture
designer. In order to identify objects at different resolutions, it is required to make use of anchor boxes
with different shapes.

A further improvement from the R-CNN family of detectors is Mask R-CNN, developed by a team
of Facebook AI Research (FAIR) in 2017 [26]. Mask R-CNN allows to solve instance segmentation tasks,
whereas Faster R-CNN and previous approaches were only able to perform object detection. The overall
Mask R-CNN architecture is composed by two parts: the backbone architecture, which performs feature
extraction, and the head architecture, which performs classification, bounding box regression and
mask prediction.

2.3. Object Detection Definitions and Metrics

Reference metrics used for evaluating object detection models are based on object detection
challenges as PASCAL VOC (http://host.robots.ox.ac.uk/pascal/VOC/), Google Open Images
(https://opensource.google/projects/open-images-dataset), and COCO (https://cocodataset.org/).
In general, the performance metrics used in these challenges offer a global level evaluation, estimating
the performances of the model in the whole dataset. The adoption of global metrics makes
benchmarking much simpler, but it does not provide insights on how and why the mistakes have
been made.

In order to define object detection metrics, we have to outline what we intend with a detection
first. For this purpose, we introduce Intersection over Union (IoU) and Intersection over Minimum

http://host.robots.ox.ac.uk/pascal/VOC/
https://opensource.google/projects/open-images-dataset
https://cocodataset.org/
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(IoM) Given two bounding boxes A and B we can define the IoU as the ratio between the intersection
of their areas and the union of their areas:

IoU(A, B) =
|A ∩ B|
|A ∪ B| (1)

In (1), | · | denotes the set cardinality operator. IoU values lie in the range [0, 1], where 1 indicates
a perfect match. We say that a predicted object matches with a ground truth object when IoU between
them is above a certain threshold (a common choice for the threshold is 0.5). Another concept related to
IoU is IoM, which can be quite useful for defining detections in post processing algorithms. The IoM
between two bounding boxes A and B is the ratio between the intersection of their areas and the
minimum of their areas:

IoM(A, B) =
|A ∩ B|

min(|A|, |B|) (2)

IoM values lie in the range [0, 1], where 1 indicates a perfect match. Note that in these definitions
we referred to bounding boxes, but IoU and IoM can be calculated between any finite sample sets.
Widespread evaluation metrics are Average Precision (AP), which can be mainly defined as the area
under the precision–recall curve, and mean Average Precision (mAP), that is AP averaged over all
classes. A naive implementation of AP is described by the following equation:

AP =
∫ 1

0
p(r)dr (3)

Anyway, we have to note that AP is usually calculated (e.g., PASCAL VOC) by adopting the
average interpolated precision value of the positive examples [32]. We can explicate the dependence of
precision and recall from confidence c using the notation p = P(c) and r = R(c). Recall R(c) is the
fraction of objects detected with confidence of at least c. Precision P(c) is the fraction of detections that
are correct:

P(c) =
R(c) · Nj

R(c) · Nj + F(c)
(4)

In (4), Nj is the number of objects in class j and F(c) is the number of incorrect detections with at
least confidence c.

Mean Average Precision (mAP) for K classes can be calculated as reported in (5):

mAP =
1
K

K

∑
j=1

APj (5)

2.4. Non-Maximum Suppression

The NMS algorithm is a fundamental post-processing step for object detection when it is required
to remove overlapped bounding boxes for avoiding duplicate detections. Object detection and
instance segmentation architectures from the R-CNN family discussed before adopt NMS to reduce
the number of proposals, since many of them are overlapped. NMS is reported in Algorithm 1.
Different improvements of the NMS algorithm have been proposed, as Soft-NMS by N. Bodla et al. [33].
In NMS, we pick the detection box B with the maximum score, and then we suppress all other detection
boxes that overlap more than a predefined threshold. We continue with this procedure in a recursive
way until all boxes have been processed. The NMS algorithm is designed so that objects lying within
the predefined overlap threshold lead to misses. Soft-NMS attempts to solve this problem by decaying
the detection scores of all other objects as a continuous function of their overlap with B. Therefore,
no object is discarded in this procedure.
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Algorithm 1: Non-Maximum Suppression (NMS) [33].
input : Bi = b1, ..., bNi , the Ni initial detections

bj = (xj, yj, wj, hj), j = 1, ..., Ni
Si = si1 , ..., siNi

, the Ni initial scores
Tiou, the NMS threshold on IoU

output : Bo = b1, ..., bNo , the No ≤ Ni final detections
So = so1 , ..., soNo

, the No ≤ Ni final scores
1 Bo = {};
2 So = Si;
3 while Bi is not empty do
4 m = argmax(So);
5 Bo = Bo ∪ {bm};
6 Bi = Bi \ {bm};
7 while bj ∈ Bi do
8 if iou(bm, bj) ≥ Tiou then
9 Bi = Bi \ {bj};

10 So = So \ {sj};
11 end
12 end
13 end

NMS can be used also when applying object detectors in a sliding window fashion, to remove
duplicate detections at the boundaries of adjacent windows. Anyway, both NMS and Soft-NMS suffer
from the problem of not considering the area of the detected objects. This means that, if for an object
there are two detected bounding boxes, one inside the other, the algorithm can choose the smaller
box even if it has only a very slightly higher confidence score. In this paper, we define an algorithm,
similar to NMS, but better suited for the purpose of handling overlapped bounding boxes in sliding
window approaches. We called it NMAS, since it is a modification of NMS which considers also the
area of the bounding box and not only its confidence sj. We introduced a new parameter f j = wjhjs2

j ,

which incorporates also the area of the bounding box (wjhj) and the square of the confidence (s2
j ).

Since sj falls in the range from 0 to 1, we used the square of the confidence to penalize lower values.
NMAS is reported in Algorithm 2. Another improvement of NMAS is the usage of IoM together with
IoU to detect overlapping boxes. IoM easily allows to recognize bounding boxes mainly contained in
other ones, a common case in overlapping sliding window approaches.
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Algorithm 2: Non-Maximum-Area Suppression (NMAS).
input : Bi = b1, ..., bNi , the Ni initial detections

bj = (xj, yj, wj, hj), j = 1, ..., Ni
Si = si1 , ..., siNi

, the Ni initial scores
Tiou, the NMAS threshold on IoU
Tiom, the NMAS threshold on IoM

output : Bo = b1, ..., bNo , the No ≤ Ni final detections
So = so1 , ..., soNo

, the No ≤ Ni final scores
1 Bo = {};
2 So = (w1h1s2

i1
, w2h2s2

i2
, ..., wNi hNi s

2
iNi
);

3 while Bi is not empty do
4 m = argmax(So);
5 Bo = Bo ∪ {bm};
6 Bi = Bi \ {bm};
7 while bj ∈ Bi do
8 if iou(bm, bj) ≥ Tiou ∨ iom(bm, bj) ≥ Tiom then
9 Bi = Bi \ {bj};

10 So = So \ {sj};
11 end
12 end
13 end

2.5. Workflow

The methods and algorithms proposed for Faster R-CNN are based on MATLAB R2019a,
whereas a Python implementation, with TensorFlow and Keras libraries, developed by Waleed
Abdulla from Matterport, Inc. (Sunnyvale, CA, USA) [34] and published under the MIT License
(https://opensource.org/licenses/MIT), has been exploited for Mask R-CNN.

A high-level overview of the proposed CAD system is depicted in Figure 2.

Figure 2. Computer-Aided Diagnosis (CAD) System overview. The pathologist can visualize network
results and annotate images through ImageScope, exploiting the XML interface implemented by
our CAD.

The pathologists can visualize and annotate whole slide images (WSIs) using Aperio ImageScope.
An XML interface has been implemented for both the MATLAB and Python environments. This allows
to create the training set and also to make the network predictions available to the clinicians, with a very

https://opensource.org/licenses/MIT
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smooth integration. To accomplish the task of calculating the Karpinski histological score, we have
to make a careful choice for the architecture of the network. In this work, we compare an object
detection framework with an instance segmentation one. For a semantic segmentation approach,
consider our previous work [15]. All the models have been trained and validated on the same machine
of [15]. We used a dual boot system; the MATLAB implementation has been tested on Windows,
whereas Ubuntu has been exploited for the Python implementation.

2.5.1. Faster R-CNN

The implemented baseline is based on Faster R-CNN, with the workflow depicted in Figure 3.
Starting from a WSI, we segmented its sections using Section Extractor [15]; then we got kidney sections
undersampled by a factor of 4. These undersampled biopsy sections are divided into patches of size
500× 500, with stride of 250× 250. The stride has been chosen to guarantee an overlap of 250× 250,
so that there is at least one patch in which each glomerulus is fully contained. Since the dimensions of
glomeruli in images at full resolution (20×) are lesser than 800× 800, at undersampled resolution (5×)
they are lesser than 200× 200, thus the claimed condition is easily obtained. In this way we did not
discard any glomerulus from training data. Note that in inferencing phase we can apply again this
procedure, reducing the eventuality of missing glomeruli. Dividing the original image into patches
poses the problem on how the partially contained glomeruli should be considered in the training patch
(compare Figures 4 and 5). At the purpose of solving this issue, a hyperparameter has been introduced,
the tolerance, indicating the maximum allowed percentage of glomerulus size that can be out of patch
to consider that glomerulus as positive example for training. For example, if we set tolerance = 0,
then only glomeruli fully contained in each patch are considered as positive examples for training.
This means that, even if a glomerulus is out of 1 px, it will not be used as positive example (again,
compare Figures 4 and 5). Optimal values for this parameter are approximately in the range [0.2, 0.4].
These values have been found in empirical way. Our final proposed Faster R-CNN detector has been
trained with tolerance = 0.3.

Figure 3. Baseline approach based on Faster Region-Based Convolutional Neural Network (R-CNN).
The top part describes how to perform the training of the model, exploiting the train-validation set
(19 whole slide images). The bottom part explains how to use the trained model for performing
inference on the test set sections (7 whole slide images).
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Figure 4. Patches with tolerance = 0.3.

Figure 5. Patches with tolerance = 0.

Due to the small dataset sample size, composed of 26 WSIs which contain 101 sections,
we exploited oversampling as data rebalancing methodology. In particular, for each training patch that
has at least a sclerotic glomerulus inside (underrepresented class), we performed data augmentation
by rotating this patch by 90◦, 180◦ and 270◦. In this way, we roughly quadruplicated the number of
scleroic glomeruli (note that also the number of non-sclerotic glomeruli is increased by this operation).

Since our model has been trained on small patches (with size of 500× 500), it is not advisable to
directly adopt it for performing inferences on images of full sections (up to 2500× 2500). Moreover,
some sections can be too large to fit in memory. The proposed solution is straightforward: we divided
in patches also the images used for inferences. Again, we used patches of 500× 500 with stride of
250× 250, thus reducing the probability of a glomerulus miss (since, as stated before, we have at
least a full glomerulus in each patch). The use of overlaid windows for patches posed the problem
of overlapped detections in full image (when we projected patch-level detections on original image),
as can be seen in Figure 6. For suppressing duplicated bounding boxes, we used two iterations of NMS
(Algorithm 1): standard NMS and NMS with matches computed on IoM instead of IoU. We exploited
MATLAB selectStrongestBboxMulticlass function https://www.mathworks.com/help/vision/
ref/selectstrongestbboxmulticlass.html. The result of applying NMS with threshold for IoU set to 0.3
to bounding boxes in Figure 6 is depicted in Figure 7. Since in some cases there are small bounding
boxes mainly contained inside larger ones, we performed also NMS on IoM with the threshold set to
0.5 (i.e., we performed NMS on all the boxes that overlaps with IoM greater or equal than 0.5). In the
case of Figure 7, this step did not result in further suppression. Further details about hyperparameters
configuration of Faster R-CNN approach can be found in Appendix A.1.

https://www.mathworks.com/help/vision/ref/selectstrongestbboxmulticlass.html
https://www.mathworks.com/help/vision/ref/selectstrongestbboxmulticlass.html
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Figure 6. Overlapped bounding boxes after projection in full image.

Figure 7. Detection on section after Non-Maximum Suppression based on Intersection over Union.

2.5.2. Mask R-CNN

The general schema that we used for the instance segmentation approach is depicted in Figure 8.
In the training phase we sampled from each section (obtained using the Sections Extractor

algorithm already employed in [15]) random patches of 1024 × 1024 pixels, then we performed
random data augmentations on-the-fly, so that the network processes different data for each epoch.
In the inferencing phase we used larger windows, since the memory requirements are less restrictive.
We selected patches with size 1536× 1536, with an overlap between adjacent patches of 250× 250,
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for the same reason we explained in Faster R-CNN based detector. We performed zero padding for
the missing information. When we project back the patch-level detections to WSI-level detections,
we perform NMAS described in Algorithm 2, which results in an improvement over NMS. Examples of
patch-level and WSI-level detections can be seen in Figures 9 and 10, respectively.

Figure 8. Proposed approach based on Mask R-CNN. The top part describes how to perform the
training of the model, exploiting the train-validation set (19 whole slide images). The bottom part
explains how to use the trained model for performing inference on the test set sections (7 whole slide
images). Note that in the inference phase we take advantage of the proposed Non-Maximum-Area
Suppression (NMAS) algorithm.

Figure 9. Patch-level detection with Mask R-CNN.

Note that, compared with Faster R-CNN, we have also a mask besides the bounding box,
since Mask R-CNN purpose is to solve instance segmentation task and not only object detection
task. Using NMAS proved to be very useful in sliding window approaches. An example is depicted in
Figure 11. We can see that using simple NMS, the chosen bounding box in one case is not the most
suitable, since it does not overlay the whole glomerulus. NMAS solves this problem by considering
also the areas of involved bounding boxes and not only their confidence scores.

We used ResNet-50 as backbone, since it allows quality feature extraction but is lighter than
ResNet-101 [35]. In the training process, we used a pretrained model on the COCO dataset. In order to
exploit in the best way the pretraining, we trained only the network heads for the first 20 epochs. Then,
for the subsequent 40 epochs, we fine-tuned ResNet stage 4 and layers above. For the last 40 epochs,
we trained all the layers of the network, and we lowered the learning rate to 0.0001. Further details
about hyperparameters configuration of Mask R-CNN approach can be found in Appendix A.2.
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Figure 10. Whole slide image (WSI)-level detection with Mask R-CNN. Overlapping bounding boxes
have been eliminated with the proposed Non-Maximum-Area Suppression algorithm.

Figure 11. Mask R-CNN predictions, after removal of overlapping bounding boxes with
the two considered algorithms: Non-Maximum Suppression (Left) and Non-Maximum-Area
Suppression (Right).

3. Results

3.1. Baseline: Faster R-CNN

With the Faster R-CNN-based approach, we get the results reported in Tables 1 and 2. The mAP
for the Faster R-CNN approach is 0.803.
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Table 1. Object detection confusion matrix with the baseline Faster R-CNN workflow. NS stands for
non-sclerotic glomeruli, S stands for sclerotic glomeruli, and B for background.

Prediction

NS S B

Ground Truth
NS 463 0 29

S 7 61 19

B 62 35 –

Table 2. Detection metrics with the baseline Faster R-CNN workflow.

Class Recall Precision F-Score

Non-sclerotic 0.941 0.870 0.904
Sclerotic 0.701 0.635 0.667

3.2. Mask R-CNN

The results obtained with the Mask R-CNN-based approach are reported in Tables 3 and 4.
Using NMAS instead of NMS for suppressing overlapped bounding boxes leads to an improvement of
mAP from 0.881 to 0.902, and of F-measure for non-sclerotic glomeruli from 0.917 to 0.925.

Table 3. Object detection confusion matrix with the proposed Mask R-CNN workflow. NS stands for
non-sclerotic glomeruli, S stands for sclerotic glomeruli, and B for background.

Prediction

NS S B

Ground Truth
NS 470 0 22

S 8 61 18

B 46 9 –

Table 4. Detection metrics with the proposed Mask R-CNN workflow.

Class Recall Precision F-Score

Non-sclerotic 0.955 0.897 0.925
Sclerotic 0.701 0.871 0.777

3.3. Karpinski Score Assessment

In order to assess the clinical validity of the obtained results, we compared the Karpinski score
computed by our CNN with that of expert pathologists.

The comparison between the baseline Faster R-CNN and Mask R-CNN is shown in Table 5. Ratio
refers to number of sclerosed glomeruli divided by the overall number of glomeruli: Ratio = S

S+NS .
The corresponding Karpinski score for the glomerular compart is determined according to the
following: 0, if there are no globally sclerosed glomeruli; 1, if there is <20% global glomerulosclerosis;
2, if there is 20-50% global glomerulosclerosis; 3, if there is >50% global glomerulosclerosis [24]. We note
that the Faster R-CNN approach makes five errors in assessing the Karpiski score: four times it gives a
score of 1 instead of a score of 2; one time it gives a score of 2 instead of a score of 1. The Mask R-CNN
approach makes only three errors in assessing the Karpinski score: one time it gives a score of a score
of 0 instead of a score of 1; two times it gives a score of 1 instead of a score of 2.
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Table 5. Karpinski score, results on hold-out test set. Comparison between Faster R-CNN, Mask R-CNN,
and ground truth annotations. NS stands for non-sclerotic, S stands for sclerotic. Score belongs to the
range [0–3].

Donor Kidney Section
Mask R-CNN Faster R-CNN Ground Truth

NS S Ratio Score NS S Ratio Score NS S Ratio Score

1 Left

1 30 3 0.09 1 31 3 0.09 1 30 3 0.09 1
2 30 2 0.06 1 32 2 0.06 1 30 2 0.06 1
3 31 4 0.11 1 29 5 0.15 1 28 4 0.13 1
4 29 5 0.15 1 31 5 0.14 1 25 4 0.14 1
5 32 0 0.00 0 30 1 0.03 1 31 1 0.03 1
6 31 1 0.03 1 35 3 0.08 1 31 1 0.03 1

2 Right 1 11 5 0.31 2 9 8 0.47 2 10 5 0.33 2

3 Right 1 41 1 0.02 1 40 8 0.17 1 38 2 0.05 1
Left 1 39 3 0.07 1 38 3 0.07 1 41 4 0.09 1

4 Right

1 19 4 0.17 1 23 7 0.23 2 17 5 0.23 2
2 26 3 0.10 1 29 4 0.12 1 25 3 0.11 1
3 30 2 0.06 1 29 5 0.15 1 25 3 0.11 1
4 29 5 0.15 1 28 9 0.24 2 25 5 0.17 1

5 Right 1 22 4 0.15 1 23 3 0.12 1 22 4 0.15 1
2 30 5 0.14 1 27 3 0.10 1 28 5 0.15 1

6 Right

1 14 4 0.22 2 14 3 0.18 1 13 6 0.32 2
2 14 4 0.22 2 13 3 0.19 1 13 6 0.32 2
3 13 4 0.24 2 13 3 0.19 1 14 5 0.26 2
4 14 2 0.13 1 12 1 0.08 1 12 2 0.14 1
5 17 5 0.23 2 16 4 0.20 2 14 6 0.30 2
6 19 4 0.17 1 20 4 0.17 1 17 10 0.37 2

4. Discussion

Recent studies tried to accomplish glomerular detection in kidney biopsies, using a wealth of
techniques, most of which based on deep learning. Nonetheless, many of these approaches did not
consider the task of classifying between non-sclerotic glomeruli and sclerotic ones. A full comparison
of our approach with the recent research works in the task of glomerular detection is in Table 6,
extending the one proposed by Kawazoe et al. [13] to the glomerulosclerosis classification case when
available. We note that our model performs well in the detection of non-sclerotic glomeruli, with very
high recall and precision values, but metrics for sclerotic glomeruli suffer from a higher number of
false negatives.

From the tests performed in this paper, it is possible to observe that glomerular detection and
classification tasks should be approached as an instance segmentation tasks. Even if object detection
approaches can guarantee respectable results, they do not exploit the mask information in the dataset.
Semantic segmentation approaches allow to obtain decent results too, but they are slightly worse than
instance segmentation ones. Indeed, training a CNN which classifies at pixel-level in a detection task is
a less powerful method. Difficulties that occur with semantic segmentation networks include presence
of noisy points in the output and lack of distinction between touching objects. Semantic segmentation
networks can principally exploit texture information but are less capable to understand concepts as
shapes, thus working worse on detection task comparing to specialized architectures. Nonetheless,
in [17], Marsh et al. used fully convolutional network (FCN) (together with BLOB detection as
post-processing of semantic segmentation network output) to measure global glomerulosclerosis
from kidney biopsies. The proposed Mask R-CNN approach outperforms their FCN-based one,
improving F-score for healthy glomeruli from 0.848 to 0.925 and F-score for sclerosed glomeruli from
0.649 to 0.777. An important reason for these better performances may lie in the choice of the better
model, relying on an instance segmentation network instead of a semantic segmentation one. Anyway,
it has to be noted that Marsh et al. dealt with HE stained biopsies, whereas the dataset adopted for our
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experiments is made up by Periodic acid–Schiff (PAS) stained biopsies, which can be a better staining
for glomerular recognition tasks. Although, it has to be demonstrated that CNNs work consistently
better on PAS compared to HE. It is also worth noting that in [17] the unbalancing ratio is less than ours,
being 3.44:1 compared to 5.48 : 1, thus allowing a smoother training process for the underrepresented
class. Other works do not address the task of determining glomerulosclerosis, but focus only on
glomerular detection. Though this is a simpler task, we confront our work also with them, considering
healthy and sclerotic glomeruli as a single class. In [19,20] the authors used classical machine learning
approaches, obtaining worse results than us. In [21], Temerinac-Ott et al. compared a machine learning
approach, based on Histogram of Oriented Gradients (HOG) [36]) feature extraction and a support
vector machine (SVM) classifier, and a deep learning one with CNN. Anyway, both obtained lower
performances than our end-to-end instance segmentation framework. Gallego et al. exploited a CNN
for classifying if each patch is a glomerulus or not in a sliding window fashion [16]. Although this may
look like a more naive approach, compared to adopting a detector from the R-CNN family (which can
also reduce the problem of redundant computation across neighboring patches), the results obtained
in the paper are quite impressive, with a recall of 1. However, it is worth noting that Gallego et al.
considered only glomeruli with area of at least 200× 200 pixel (>100 µm of diameter), whereas we
consider glomeruli of all sizes in the metrics, and many of our false negatives are among the small
glomeruli. Furthermore, we provide a precise mask for each glomerulus found, while Gallego et al.
can only determine coarse masks composed by the union of rectangular patches they considered.
Kawazoe et al. used Faster R-CNN for the glomerular detection task, obtaining results comparable
with the proposed Mask R-CNN approach, with an F-score of 0.925 (ours is 0.919) [13]. We believe
that the possibility to use a larger training dataset (200 WSIs instead of 26) can explain why they can
get comparable (or even slightly better) results even with a less powerful model. As already noted,
our Faster R-CNN model performs worse than our Mask R-CNN one.

Table 6. Comparison with literature, extending the one proposed by Kawazoe et al. [13]. Stain acronyms:
HE stands for Hematoxylin and Eosin, PAS stands for Periodic acid–Schiff, PAM stands for periodic
acid-methenamine silver, D stands for Desmin, JS stands for Jones Silver, TRI stands for Gömöri’s
Trichrome, CR stands for Congo Red, SR stands for Sirius Red, M1 stands for HE/PAS/JS/TRI/CR,
M2 stands for HE/PAS/CD10/SR. Species (Sp) acronyms: H stands for human, R stands for rat,
M stands for mouse. Method acronyms: R-HOG stands for Rectangle-Histogram of Oriented Gradients,
S-HOG stands for Segmental-Histogram of Oriented Gradients, SVM stands for support vector machine,
mrcLBP stands for multi-radial color local binary patterns, CNN stands for Convolutional Neural
Network, R-CNN stands for Region-based Convolutional Neural Network, FCN stands for fully
convolutional network. Class acronyms: A stands for all (no distinction between non-sclerotic and
sclerotic glomeruli), NS stands for non-sclerotic glomeruli, and S stands for sclerotic glomeruli.

Author Sp Stain WSIs Method Class
Performances

Recall Precision F-Measure

Kato et al. [19] R D 20 R-HOG + SVM A 0.911 0.777 0.838

S-HOG + SVM A 0.897 0.874 0.866

Temerinac-Ott et al. [21] H M2 80 R-HOG + SVM A N/A N/A 0.405–0.551

CNN A N/A N/A 0.522–0.716

Gallego et al. [16] H PAS 108 CNN A 1.000 0.881 0.937

Simon et al. [20]

M HE 15

mrcLBP + SVM

A 0.800 0.900 0.850

R M1 25 A 0.560–0.730 0.750–0.914 0.680–0.801

H PAS 25 A 0.761 0.917 0.832
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Table 6. Cont.

Author Sp Stain WSIs Method Class
Performances

Recall Precision F-Measure

Kawazoe et al. [13] H

PAS 200

Faster R-CNN

A 0.919 0.931 0.925

PAM 200 A 0.918 0.939 0.928

MT 200 A 0.878 0.915 0.896

Azan 200 A 0.849 0.904 0.876

Marsh et al. [17] H HE 48 FCN + BLOB NS 0.885 0.813 0.848

S 0.698 0.607 0.649

Altini et al. [15] H PAS 26

SegNet

A 0.855 0.832 0.843

NS 0.886 0.834 0.859

S 0.667 0.806 0.730

DeepLab v3+

A 0.858 0.952 0.903

NS 0.913 0.935 0.924

S 0.471 0.976 0.636

Proposed H PAS 26

Faster R-CNN

A 0.917 0.846 0.880

NS 0.941 0.870 0.904

S 0.701 0.635 0.667

Mask R-CNN

A 0.931 0.907 0.919

NS 0.955 0.897 0.925

S 0.701 0.871 0.777

5. Conclusions

In this paper, we develop a framework that could aid pathologists in the process of automatically
detecting and classifying non-sclerotic and sclerotic glomeruli from sections of kidney biopsies.
The proposed approach relies on Mask R-CNN, which proved to be a very sensible choice for a
glomerular detection and classification task, improving over the baseline Faster R-CNN method and
our previous works based on semantic segmentation approaches [15]. The proposed method allows
to train an end-to-end instance segmentation neural network, therefore strongly reducing the need
for post processing operations and allowing to learn all the required features in a unified process.
An interesting novelty concerning post processing is the development of the Non-Maximum-Area
suppression algorithm, that with seemingly minor changes compared to standard NMS algorithm,
led to an improvement of the performances in our sliding window approaches. Note that NMAS,
like NMS, is a general purpose algorithm and can be useful also for other detection tasks. The best
model we trained is based on Mask R-CNN, and exploits NMAS for projection on full images.
It outperforms related works in the field of the determination of global glomerulosclerosis, as [15,17].
The methods we used for evaluating the validity of our detection models are more specific than
widespread global metrics (as mAP) used in benchmark datasets as PASCAL VOC or COCO.
The analysis of object detection confusion matrices allows a better understanding of the model
performance, bringing an an insight on the model response for each problem class. At the moment,
the proposed framework allows to get a reliable estimate of global glomerulosclerosis; the pathologists
can benefit from glomeruli annotations provided by our CAD through an XML interface with the
commonly used Aperio ImageScope software, easing the burden of the manual annotation. In the
future, it could be extended to other kidney biopsies analysis tasks, consenting to define the complete
Karpinski histological score.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Meaning
AP Average Precision
CAD Computer-Aided Diagnosis
CNN Convolutional Neural Network
CR Congo Red
DETO Department of Emergency and Organ transplantation
FCN Fully convolutional network
HE Hematoxylin and Eosin
HOG Histogram of Oriented Gradients
IoM Intersection over Minimum
IoU Intersection over Union
JS Jones Silver
mAP mean average precision
mrcLBP multi-radial color local binary patterns
NMAS Non-Maximum-Area Suppression
NMS Non-Maximum Suppression
PAM Periodic acid-methenamine silver
PAS Periodic acid–Schiff
R-CNN Region-based Convolutional Neural Network
R-HOG Rectangle-Histogram of Oriented Gradients
RoI Region of Interest
RPN Region Proposal Network
S-HOG Segmental-Histogram of Oriented Gradients
SR Sirius Red
SVM Support vector machine
TRI Gömöri’s Trichrome
VOC Visual object classes
WSI Whole slide image

Appendix A. Implementation Details

Appendix A.1. Faster R-CNN-Based Detector

For training a Faster R-CNN detector, we use the patches obtained using the procedures
described so far, including data augmentation techniques for rebalancing the dataset. Here we
describe how we tuned the most important hyperparameters for the Faster R-CNN approach.
Faster R-CNN hyperparameters are in Table A1. Since the training of a Faster R-CNN involves
4 different stages, we have to specify training options for each of these stages. We used Adam
Optimizer for all the stages. We tuned hyperparameters for each of these stages according to
Table A2. We trained 10 epochs for each stage, and we lowered the learning rate in the 3rd and
4th stage. Further details regarding hyperparameters used in each stage can be found in MATLAB
documentation of trainfasterrcnnobjectdetector method (https://www.mathworks.com/help/
vision/ref/trainfasterrcnnobjectdetector.html).

https://www.mathworks.com/help/vision/ref/trainfasterrcnnobjectdetector.html
https://www.mathworks.com/help/vision/ref/trainfasterrcnnobjectdetector.html
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Table A1. Faster R-CNN hyperparameters.

Faster R-CNN

Hyperparameter Value

CNN resnet50
NegativeOverlapRange [0 0.3]
PositiveOverlapRange [0.6 1]
NumRegionsToSample 256
BoxPyramidScale 1.2

NumStrongestRegions 512

Table A2. Hyperparameters per stages of Faster R-CNN.

Hyperparameters per stages of Faster R-CNN

Hyperparameter Value

All stages
Optimizer ADAM
MaxEpochs 10

MiniBatchSize 1

Stage 1
InitialLearnRate 0.0001

Stage 2
InitialLearnRate 0.0001

Stage 3
InitialLearnRate 0.000001

Stage 4
InitialLearnRate 0.000001

Appendix A.2. Mask R-CNN Based Detector

We tuned training hyperparameters according to Table A3. These hyperparameters refer to
Mask R-CNN implementation realized by Matterport Inc., so more details are available in the
documentation [34]. The inference configuration is slightly different, with IMAGE_RESIZE_MODE =
"pad64" and RPN_NMS_THRESHOLD = 0.7.

Table A3. Hyperparameter tuning for Mask R-CNN-based detector.

Training Configuration

Hyperparameter Value

BACKBONE resnet50
RPN_ANCHOR_SCALES (32, 96, 160, 200, 256)
RPN_ANCHOR_RATIOS [0.5, 1, 2]

POST_NMS_ROIS_TRAINING 800
POST_NMS_ROIS_INFERENCE 1600

RPN_NMS_THRESHOLD 0.8
RPN_TRAIN_ANCHORS_PER_IMAGE 64

MEAN_PIXEL [218.85, 198.25, 207.18]
MINI_MASK_SHAPE (56, 56)

TRAIN_ROIS_PER_IMAGE 128
IMAGE_RESIZE_MODE crop

IMAGE_MIN_DIM 1024
IMAGE_MAX_DIM 1024
LEARNING_RATE 0.001

LEARNING_MOMENTUM 0.9
WEIGHT_DECAY 0.0001

GRADIENT_CLIP_NORM 5.0

We performed data augmentation, exploiting the imgaug library (https://imgaug.readthedocs.io/
en/latest/) [37], as reported in Table A4. In particular, of the augmentations listed there, we randomly
performed none, one, or two augmentations.

https://imgaug.readthedocs.io/en/latest/
https://imgaug.readthedocs.io/en/latest/
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Table A4. Augmentations for Mask R-CNN approach.

Data Augmentation

Type Details

Flip upside-down P( f lipud) = 0.5
Flip left-right P( f liplr) = 0.5

Rotate θ ∈ {90◦, 180◦, 270◦}
Multiply α ∈ [0.8, 1.1]

Gaussian Blur σ ∈ [0, 0.1]
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