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Abstract: In this paper, we investigated the cell-to-cell interference in scaled-down 3D NAND flash
memory by using a Technology Computer-Aided Design (TCAD) simulation. The fundamental cause
of cell-to-cell interference is that the electric field crowding point is changed by the programmed
adjacent cell so that the electric field is not sufficiently directed to the channel surface. Therefore,
the channel concentration of the selected cell is changed, leading to a Vth shift. Furthermore,
this phenomenon occurs more severely when the selected cell is in an erased state rather than in a
programmed state. In addition, it was confirmed that the cell-to-cell interference by the programmed
WLn+1 is more severe than that of WLn−1 due to the degradation of the effective mobility effect.
To solve this fundamental problem, a new read scheme is proposed. Through TCAD simulation,
the cell-to-cell interference was alleviated with a bias having a ∆V of 1.5 V from Vread through an
optimization process to have appropriate bias conditions in three ways that are suitable for each
pattern. As a result, this scheme narrowed the Vth shift of 67.5% for erased cells and narrowed the
Vth shift of 70% for programmed cells. The proposed scheme is one way to solve the cell-to-cell
interference that may occur as the cell-to-cell distance decreases for a high stacked 3D NAND structure.
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1. Introduction

Since the release of the 3D NAND flash product for the first time in 2014 [1], the bit density
could be increased rapidly by increasing the number of WL (Word line) stacking layers, which starts
at 24, came up to 128 [1–6], and it is unpredictable how many it will increase to fulfill the explosive
growth of data demand. In this situation, while increasing the number of stacked WL layers, the mold
stacking height should be scaled down due to the limitations of the channel hole etching process.
However, if the gate and space length are reduced through the height being scaled down, the memory
characteristics change, and it leads to reliability issues [7–14]. One of the issues is due to the junction-less
poly silicon channel of 3D NAND structure. In effect, the channel of the main cells is based on the
ultra-thin body (UTB) structure, which is not connected to the substrate [15,16]. Therefore, during
the read operation, the selected cell is affected by the Vread (read voltage) of the adjacent cell, which
leads to cell-to-cell interference [11,12,17]. Since the cell-to-cell interference is different from the
conventional FG (floating gate) of a planar 2D NAND structure [18–20], research on the cell-to-cell
interference in 3D NAND has not been investigated yet. Therefore, in this paper, when scaled down
in a 3D NAND structure, cell-to-cell interference according to each pattern was studied using TCAD
simulation (Synopsys SentaurusTM). This is not only to investigate the interference according to the
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bias condition of the adjacent cells but also to consider the program state of all cells in the NAND
string. After that, we proposed a new read scheme using a local bias condition that can alleviate the
cell-to-cell interference.

2. Simulation Set-Up

In this paper, TCAD simulation was performed to analyze the cell-to-cell interference of 3D NAND
flash memory. The 3D structure used is shown in Figure 1a. The NAND string is a 16-layer structure,
in which a BL (Bit-Line), SSL (String Select Line), GSL (Ground Select Line), and CSL (Common Source
Line) are constructed. Typically, both the gate and space lengths are scaled down at the same time
in 3D NAND flash memory. However, in this simulation, the gate length was set equal to 30 nm for
all structures, and the space length was reduced by 5 nm from 30 nm and scaled down to 10 nm.
The reason for this setting is if the gate length is changed, a difference in both the gate controllability
and the charge trap density occurs. We set WL9 as a selected cell of the read operation and confirmed
cell-to-cell interference using the states of adjacent cells WLn−1 and WLn+1. Figure 1b is the equivalent
circuit and bias conditions to read through a 3D NAND string. Figure 1c is the pulse diagram of the
program and read operation. The program voltage is 20 V and the pass voltage is 6 V with 3.3 V
applied to the SSL in the selected bit line. The read voltage is 6 V with 3.3 V applied to the SSL/GSL.
The selected cell bias is swept from −5 V to 5 V to verify the cell state and the BL voltage is set to 1 V.
The list in Table 1 shows patterns for investigating interference in selected cells (WLn) according to the
state of the adjacent cell. We have listed all patterns for three cells. Patterns A, B, C, and D are used to
identify interference when the selected cell is in the erased state, and the patterns E, F, G, and H are
configured to identify interference when the selected cell is in the programmed state. Lastly, in the
TCAD simulation, the physics model in poly-silicon used a doping dependence model and high-field
saturation model for mobility. Furthermore, the recombination model used the doping dependence of
the SRH (Shockley–Read–Hall) lifetime model, respectively. In addition, the poly-silicon channel is
affected by the GBT (Grain Boundary Trap) for memory operation [21]. In this simulation, we excluded
this effect to avoid complexity and only considering the cell-to-cell distance effect.

Figure 1. (a) Cross-section view of the simulated 3D NAND Flash memory. Bit-Line (BL) and Common
Source Line (CSL) are doped with a donor concentration of 1019 cm−3, and the channel is doped with
an acceptor concentration of 1015 cm−3. O/N/O is tunneling oxide, nitride trap layer, and blocking
oxide. Each thickness is 4/7/7 nm. In addition, the channel thickness (Tpoly) is 10 nm, and the macaroni
oxide thickness (Tmaca) is 20 nm. (b) Equivalent circuit and bias condition of the read scheme with
3D NAND flash memory. (c) Pulse diagrams corresponding to the bias methods for the conventional
read operation.
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Table 1. Patterns for cell-to-cell interference.

WLn+1 WLn WLn−1

Pattern A ERS ERS ERS
Pattern B ERS ERS PGM
Pattern C PGM ERS ERS
Pattern D PGM ERS PGM
Pattern E ERS PGM ERS
Pattern F ERS PGM PGM
Pattern G PGM PGM ERS
Pattern H PGM PGM PGM

* Program sequence (WLn−1→WLn→WLn+1).

3. Cell-To-Cell Interference

Figure 2 shows the Vth shift caused by cell-to-cell interference with scaled down in 3D NAND flash
memory according to each pattern. As the space length decreases, it can be seen that the interference
increases regardless of the pattern type. However, the interference is more severe than the programmed
state when the selected cell is in the erased state. In addition, patterns D and H, where WLn+1 and
WLn−1 are programmed, have the most serious cell-to-cell interference; however, we should note that
the interference caused by programmed WLn+1 is more severe than that of WLn−1.

Figure 2. Simulation results of the Vth shift caused by cell-to-cell interference with scaled down in 3D
NAND flash memory according to each pattern.

First, the cell-to-cell interference caused by the reduction in the space length was examined
through the process of changing the state from pattern A to B, and E and F. Figure 3a,b show the
conduction band at the channel surface when the selected cell is turned on (Vverify = Vth of selected
cell) in the read operation. In Figure 3a, which has both gate and space length and a 30 nm structure,
it can be confirmed that the conduction band at pattern B is relatively higher than that of pattern A
at the WLn−1 channel region despite the Vread bias. This acts as a source resistance during the read
operation, but the interference is considered negligible because there is no change in the conduction
band in the selected cell channel region nearby. In the case of patterns E and F, there is no change in
the conduction band.

However, the space length is scaled down to 10 nm in the 3D NAND structure in Figure 3b; when
the read operation is changed from pattern A to B, the raised conduction band of the programmed
WLn−1 overlaps the selected cell channel area. As a result, the conduction band distortion occurs.
Finally, when comparing the conduction bands of patterns E and F in a 10 nm length structure, it was
found that the distortion is relatively negligible compared with patterns A and B.



Electronics 2020, 9, 1775 4 of 9

Figure 3. Conduction band diagram at the channel surface according to each pattern. (a) Gate length
30 nm, space length 30 nm; (b) gate length 30 nm, space length 10 nm.

To examine these causes in detail, Figure 4 confirmed the electron density at the channel area
during the read operation at each pattern. Figure 4a,b shows the electron density contour according to
the pattern in the space length, which is 30 nm when the selected cell is turned on during the read
operation. As WLn−1 was programmed as the pattern changed from A to B, the electron density of the
inversion layer by Vread was lower than that of pattern A. However, it does not affect the channel area
of the selected cell. This is because it maintains a strong inversion state nearby the selected cell. As a
result, the verify voltage in Figure 4b is −0.761, which is as high as 0.067 V than Figure 4a. Likewise,
in Figure 4c,d, when the space length is 10 nm, the electron concentration contour changing from
pattern A to B can be confirmed. Compared with Figure 4a,b, and since the space length is shortened
to 10 nm, Figure 4d shows that the insufficient electron concentration in the WLn−1 channel region
overlaps the channel concentration of the selected cell. As a result, it maintains the light inversion state
at a nearby selected cell. Therefore, the verify voltage in Figure 4d is −1.860, which is as high as 0.279 V
in Figure 4c. Lastly, in Figure 5e,f, when the space length is 10 nm, the electron concentration contour
changing from pattern E to F can be confirmed. As in Figure 4b, it can be confirmed that the electron
concentration of the selected cell is not affected due to the strong inversion. As a result, the verify
voltage in Figure 5f is 2.540, which is as high as 0.04 V compared with Figure 5e. Therefore, if the space
length is short enough, cell-to-cell interference is negligible in the programmed selected cell.

Figure 4. Simulation result of electron density contour at the turn-on state of the selected cell during
the read operation of the 3D NAND flash memory in each pattern. (a) Gate and space length 30 nm at
pattern A, (b) gate length 30 nm, space length 30 nm at pattern B, (c) gate length 30 nm, space length
10 nm at pattern A, (d) gate length 30 nm, space length 10 nm at pattern B, (e) gate length 30 nm, space
length 10 nm at pattern E, (f) gate length 30 nm, space length 10 nm at pattern F.
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Figure 5. The E-field according to each pattern during the read operation. (a) Both gate and space
length 30 nm, and pattern A, (b) gate length 30 nm space length 10 nm, and pattern B, (c) gate length
30 nm, space length 10 nm, and pattern F.

Specifically, to investigate the difference of electron concentration at each state, Figure 5a shows
the electric field contour and direction generated during the read operation. The electric field crowding
point occurs near the nitride trap layer of the WLn−1 due to the trapped electron charge and near
the selected cell gate region due to the low verify voltage compared to the read voltage. As a result,
the electric field generated through the Vread voltage applied to WLn−1 is directed to the crowding
point, but the fringe field can bypass the channel region through sufficient space length; as a result,
it can be confirmed that the electric field is directed to the channel surface leading to strong inversion
nearby the selected cell, as shown in Figure 4b However, as shown in Figure 5b, when the space length
is short, there is no distance that the electric field can bypass. So, it can be confirmed that the electric
field is not directed to the channel region leading to light inversion as shown in Figure 4d. Finally,
Figure 5c shows the electric field in Figure 4f. Compared to Figure 5b, the verify voltage increased
due to the programmed state; therefore, the electric field crowding point was changed from the gate
to the nitride trap layer. As a result, the fringe field can reach the channel surface region, leading to
strong inversion.

In conclusion, due to the difference in field direction, a difference in electron concentration in the
channel surface region occurs. Through the cell-to-cell interference due to the change from pattern A
to B and E to F, we confirmed that the interference with WLn−1 is the inability to form a junction due to
an insufficient electric field.

However, as shown in Figure 3, the cell-to-cell interference due to the change from pattern A to C
and E to G is more severe. Figure 6d shows all the conduction bands at the channel surface in patterns
A, B, C, and D at a space length of 10 nm in the 3D NAND Structure during the read operation.

Figure 6. Effective mobility at the channel surface during the read operation (a) gate length 30 nm
and space length 30 nm, (b) gate length 30 nm and space length 10 nm, (c) SRH (Shockley–Read–Hall)
recombination at channel surface during the read operation at gate length 30 nm and space length
10 nm, (d) conduction band diagram at the channel surface according to each pattern at gate length 30
nm and space length 10 nm.
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The conduction band is significantly increased by the programmed WLn+1 compared with the
programmed WLn−1. The conduction band slope between WLn+1 and WLn becomes smooth, leading
to conduction band distortion. Through this point, cell-to-cell interference from pattern C is more
severe than pattern B. and this conduction band distortion effect inferred a significant drop in the
electric field.

In effect, during the read operation, drift current occurs through the Vbl and Vread, but the electric
field due to Vread is weakened by the programmed WLn+1. Therefore, as shown in Figure 6a, while in
the gate and space length of a 30 nm structure, there is no change in effective mobility in patterns C
and D because sufficient fringe fields by Vread are directed to the space region, when the space length
is 10 nm as shown in Figure 6b, effective mobility is significantly degraded because the fringe field
could not be directed to the channel surface. Therefore, as shown in Figure 6c, due to this mobility
degradation, electrons flowing through the field over the channel increase SRH recombination, leading
to lowering the channel concentration and more severe cell-to-cell interference than programmed
WLn−1 induced interference.

Lastly, in simple terms, pattern D has the greatest interference because it affects both WLn−1 and
WLn+1 interference. As for the patterns E, F, G, and H, which is the interference of the programmed
selected cell, the fringe field is directed near the channel surface, as shown in Figure 4c; so, it is relatively
lower than the interference shown in patterns A, B, C, and D.

In order to alleviate this interference, it is necessary to resolve the insufficient field on a local bias
in the read operation. Therefore, in the next section, we describe the proposed method to solve this.

4. Proposed Read Scheme

To summarize the above, we have compared and analyzed the interference phenomenon for
all patterns of one selected cell and two adjacent cells in a scaled-down 3D NAND flash memory.
The fundamental reason for the cell-to-cell interference is that the electron concentration changes by
the fringe field to the channel surface area near the selected cell.

Therefore, we proposed to alleviate the cell-to-cell interference by controlling the Vread bias
condition of adjacent cells. Figure 7a–c shows the word line bias schemes 1, 2, and 3 to alleviate the field
degradation with each pattern. Figure 7a tries to alleviate the cell-to-cell interference due to electric
field degradation by applying VV_P bias, which is higher by ∆V than Vread in the case of patterns
B and F. Likewise, in Figure 7b, to alleviate the mobility degradation in pattern C and G, as shown
in Figure 6b, it is also intended to alleviate the cell-to-cell interference through VV_P bias. However,
for the simplification of the scheme, if patterns A and E are read through schemes 1 or 2, the Vth shift is
minimized through VV_E, which is lower by ∆V than Vread, to compensate for the increased electron
concentration at channel surface by VV_P. So, schemes 1 and 2 attempt to solve patterns A, B, C, E, F,
and G through asymmetric read operation through VV_P and VV_E. For patterns D and H, scheme 3 as
shown in Figure 7c is used to alleviate electric field degradation through VV_P bias. However, if the ∆V
in scheme 3 is too high, a short channel effect may occur [11]. Therefore, the VV_P bias increase should
not be too large.

Schemes 1, 2, and 3 can alleviate the cell-to-cell interference for each pattern, but all schemes have
different Vth values for ∆V, one ∆V must be set that satisfies for all patterns.

Figure 7d shows the Vth for each pattern according to ∆V. As mentioned above, for simplicity
of the scheme, patterns A and E will perform a read operation using schemes 1 or 2, but the scheme
closest to Vth of the other patterns will be selected. As a result, in Figure 7d, the point where the
patterns A, B, C, and D are gathered is 2 V of ∆V. In pattern A, scheme 1 was closer to the Vth values of
all patterns than scheme 2. In addition, in Figure 7e, the Vth values of all the patterns are adjacent at the
point where the ∆V was 1. Furthermore, pattern E is more adjacent to the Vth values of all the patterns
of Scheme 1 than Scheme 2. Therefore, it is judged that ∆V is compatible with 1.5 in all patterns.
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Figure 7. (a,b,c) Proposed bias condition when read operation according to the pattern. (d,e) The Vth

value according to ∆V of each pattern for optimization of the proposed scheme.

Figure 8 shows the result of the I-V curve characteristic curve of the selected cell for each pattern
through TACD simulation using the conventional and proposed read scheme with a ∆V of 1.5 V
in a 3D NAND flash memory structure with a gate length of 30 nm and a space length of 10 nm.
When comparing Figure 8a,c, the Vth shift range was 0.914 V in a conventional read scheme, but it
decreased by approximately 67.5% to 0.297 V through the proposed read scheme, and when comparing
Figure 8 b,d, the Vth shift range was reduced by approximately 70.7% to 0.571 V in the conventional
scheme and 0.167 V in the proposed scheme. In addition, it can be seen that the reduction rate of
the BL current of the proposed scheme is smaller than that of the conventional scheme. Therefore,
the proposed scheme can minimize cell-to-cell interference when the space length is reduced by
scaled-down in 3D NAND flash memory.

Figure 8. Simulation result of the selected cell I-V curve characteristic of each pattern through the
conventional read scheme at the space length of 10 nm 3D NAND flash memory string: (a) patterns A,
B, C, and D, (b) patterns E, F, G, and H, proposed using optimized 1.5 V of ∆V string, (c) patterns A, B,
C, and D, (d) patterns E, F, G, and H.
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5. Conclusions

In this paper, we analyzed the cell-to-cell interference that occurs as the space length decreases.
When the adjacent cells were programmed, the Vread bias during the read operation affects the channel
concentration of the selected cell region due to the insufficient bias condition of the electric field to
the channel surface. To solve the cell-to-cell interference caused by the electric field, it is necessary to
optimize the bias for adjacent cells, which have the most influence on the channel concentration of the
selected cell, in each pattern during the read operation.

Therefore, the proposed read scheme was able to alleviate the Vth shift of the selected cells by the
program of the adjacent cells by changing the ∆V of 1.5 V in the Vread bias applied to the adjacent cells
according to each pattern. In a high-stacking structure, such a cell-to-cell interference issue cannot be
avoided. Therefore, if the gate and space length are further scaled down and the cell-to-cell interference
is severe, through the string patterning and read operation using the proposed scheme, it will be able
to alleviate the interference problem.
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