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Abstract: This paper suggests an optimisation approach in heterogeneous computing systems to
balance energy power consumption and efficiency. The work proposes a power measurement utility
for a reinforcement learning (PMU-RL) algorithm to dynamically adjust the resource utilisation
of heterogeneous platforms in order to minimise power consumption. A reinforcement learning
(RL) technique is applied to analyse and optimise the resource utilisation of field programmable
gate array (FPGA) control state capabilities, which is built for a simulation environment with a
Xilinx ZYNQ multi-processor systems-on-chip (MPSoC) board. In this study, the balance operation
mode for improving power consumption and performance is established to dynamically change the
programmable logic (PL) end work state. It is based on an RL algorithm that can quickly discover the
optimization effect of PL on different workloads to improve energy efficiency. The results demonstrate
a substantial reduction of 18% in energy consumption without affecting the application’s performance.
Thus, the proposed PMU-RL technique has the potential to be considered for other heterogeneous
computing platforms.

Keywords: machine learning; power and performance optimisation; reinforcement learning;
heterogeneous computing

1. Introduction

In an embedded system, conventional strategies of low power consumption techniques simply
slow down the processor’s running speed to reduce power consumption. Power-efficient computing
platforms require higher energy efficiency rather than power saving. On a downside, reducing power
consumption usually affects the performance efficiency and completion of tasks takes more time due
to this performance degradation [1]. At present, embedded systems have been employed to perform
multiple computer intensive operations, which demand higher performance and power efficiency.
Hence, controlling energy consumption is essential for the effective performance of embedded systems.

The traditional dynamic voltage frequency scaling (DVFS) [2] and adaptive voltage scaling
(AVS) [3] techniques are focused on the collaborative architecture of an ARM processing system (PS) [4]
and field programmable gate array (FPGA) programmable logic (PL) [5], and usually depend on
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the feedback controls. Furthermore, the optimum voltage and frequency can also be obtained by
some modelling methods on the system power and performance, such as the static and dynamic
synchronization-aware method [6], and nonlinear dynamics control modelling [7].

Both PS and PL have very distinct architectures enabling the possibility of optimising the power
consumption without compromising the performance of the overall system. Unlike the PS, PL enables
users to describe their architectures. In regular operation of the FPGA (PL end), the total power
consumption is composed of the static power consumption, dynamic power consumption and I/O
power consumption of the device. Digital logic computing does not consume a significant amount of
static power. The energy-saving will mainly focus on dynamic power consumption. Through different
PL work states to feed different workloads, the power consumption of internal circuit flipping can be
reduced, thus realising the energy saving of dynamic power consumption. In power consumption,
the static power is expressed as a logic circuit, which accounts for about 20% [8]. The additional
dynamic power, which accounts for 80% of the power consumption, is related to high-frequency
circuits that work with serialization and de-serialization of data and is exchanged at input/output
ports (IO) [9]. Typically, dynamic power consumption may be reduced by stopping the clocks when
no data is being exchanged via the IOs.

In this paper, a technique has been developed to use power measurement utility reinforcement
learning (PMU-RL) as a hardware switch control algorithm so that the PL power consumption can be
closely regulated. The authors have introduced an RL-algorithm-based power measurement utility
(PMU) model for controlling hardware power consumption. The proposed PMU-RL is implemented in
the Lynsyn board, which is connected to the Vision, Control and Sensor (VCS)-1 system (Figure A1) [10]
(Available online, https://www.sundance.com/vcs-1/, last accessed 01/10/2019) (i.e., PL and PS) via
the Joint Test Action Group (JTAG) BUS (shown in Figure 1). The results clearly demonstrate that an
excellent dynamic energy saving was achieved while meeting the strict performance requirements.

The rest of the paper is structured as follows: Section 2 lists some related works on energy-saving
methods based on machine learning. Section 3 describes the system-level model of the proposed
algorithm architecture and procedure. Section 4 includes some test and comparison results to verify
the designed PMU-RL algorithm. The discussion and future work are presented in Section 5. Finally,
Section 6 summarises the paper and draws conclusions.

2. Related Work

Embedded system platforms use dynamic voltage frequency scaling (DVFS) [2] and adaptive
voltage scaling (AVS) [3] technologies to save energy, and both use feedback control for power
monitoring. DVFS performs the dynamic adjustment of voltage and frequency states based on
variation in the workload of equipment to reduce the power consumption [11], while AVS regulates
and improves the power conversion efficiency and utilisation rate by adjusting the output voltage of
the electronic system power supply to address the requirements of the workload [12].

Baruah et al. [13] propose a machine-learning algorithm to reduce the energy consumption
based on the random forest model, where multiple decision trees are used for frequency selection.
The complexity of adaptive power management for voltage and frequency states is not suitable
for supervised learning methods. Traditional power and thermal management techniques are
based on prior knowledge of the hardware power consumption model and information to adjust
the power policy, which is the processing executed workload/application state, such as transient
and average power consumption. However, this prior information is not entirely reliable, and it
cannot reflect the temporal and spatial uncertainty and changes from the environment, input data
or workload/application [14]. The system-level power management policy can consider these
uncertainties and variability. It is difficult to achieve the maximum efficiency with optimised resources
and power management technologies when such characteristic improvements are ignored [15].
Meanwhile, the complexity and processing overheads of the different machine learning (ML)
technologies depend on data types and fundamental principles. For example, compared with

https://www.sundance.com/vcs-1/
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unsupervised learning (such as K-means clustering) and reinforcement learning, neural networks
in supervised learning have higher model complexity and require more prior information on
computing [14].

Hence, the use of unsupervised learning models is deemed to be an adequate and reliable
option for learning patterns from the voltage and frequency states [16]. Hardware scheduling control
algorithms using reinforcement learning (RL) are suitable for heterogeneous computational power
management applications. For the reinforcement learning algorithm, the main advantage is that it can
achieve the best strategy for interacting with the environment without any prior knowledge about the
system model. Therefore, developments in hardware can shorten developments in system processing
time. This is more friendly to the development of the overall hardware and software codesign, and it
achieves the best matching rate even in unknown hardware situations [17]. The hardware parameters
are designed to enable a trade-off between quality and computational complexity in the power
management solution. By adjusting the parameters of the hierarchical approach, several trade-offs can
be achieved, which can be used to optimise energy consumption [18].

In Dhiman and Rosing [19], an RL algorithm is proposed on the multi-task system platform.
The approach uses the performance metrics provided by DVFS to control the hardware core to
obtain better voltage and frequency. Shen et al. [20] designed an RL solution that uses temperature,
performance and power balance samples to calculate the optimum power states of the target embedded
system. Fettes et al. [21] suggested an RL method that minimises throughput and delay in controlling
dynamic energy. Other works focus on voltage regulator hierarchy using RL for softening voltage
switching and achieving higher efficiency [16]. There are a range of works using the RL design
for hardware control management that can be applied to CPUs or other on-chip components [21].
Therefore, PMU-RL is an adequate algorithm to decrease the power consumption of heterogeneous
hardware architectures.

3. Methodology

Based on a heterogeneous computing platform, this paper proposes a PMU-RL algorithm to
select the appropriate working state of the global system and realise energy and performance trade-off
optimisation. In this work, the operation of energy-saving is carried out by collecting the hardware
operation information for both the PS and PL ends, and the working state of the PL terminal hardware
is controlled. An algorithm that is based on the overall topological structure of the heterogeneous
model considers the energy-saving action. By collecting the operating information of modules in the
heterogeneous system, the algorithm can evaluate and predict the working state of the heterogeneous
system, and then select the optimal working state for the overall heterogeneous system.

3.1. System Model

The Tulipp EU (STHEM) (Available online: https://github.com/tulipp-eu/sthem (accessed on
1 October 2019)) project (Available online: http://tulipp.eu/ (accessed on 30 September 2019)) provides
an electronic hardware measurement platform with a power measurement utility (PMU) [22]. It has
a built-in field programmable gate array (FPGA) power analysis tool. The PMU-RL algorithm in
this research used the Tulipp power analysis tool [23] to control the clock state of the PL, which can
manage the dynamic power consumption. It was found that the estimated clock state dynamically
controlled PL operation, thereby reducing PL power. The closed-loop training for power management
is carried out through the real-time power consumption information of PS and PL. The hardware aims
to reduce the overall power consumption and balance the performance and power consumption on the
operations. The test evaluated PMU-RL algorithm optimization performance by different application
scenarios. Meanwhile, in our developed simulation environment, this method could easily be made
suitable for different hardware platforms after simply modifying the hardware parameters.

Figure 1 shows the system architecture of the VCS-1 board which is based on the Xilinx UltraScale+
multi-processor systems-on-chip (MPSoC) hardware of the PS and PL ends [24]. The Lynsyn board has

https://github.com/tulipp-eu/sthem
http://tulipp.eu/
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a built-in microprogrammed control unit (MCU) [25] and FPGA [26], which work together with the
host computer to operate the Tulipp profiling tools. The Lynsyn board based on the MCU and FPGA
samples up to 1 kilo sample per second (kS/s) on the current sensors, and the PMU-RL algorithm
analyses the power information to provide feedback for the optimization action in order to control the
PL end with profiling tools.

Figure 1. System architecture for field programmable gate array (FPGA) control by power management
utility (PMU) module.

3.2. Power Measurement Utility (PMU)

The power measurement utility (PMU) Lynsyn board (Available online: https://store.sundance.c
om/product/LynSyn/ (accessed on 1 October 2019)) is a device primarily designed for measuring
currents of up to 7 different sensors and delivers up to 1 kS/s. For the PMU, it can analyse current
measurements and program counter (PC) sampling simultaneously, for example by relying on the
PMU to collect power consumption and PC tracking information, which helps to measure the power
consumption and source code structures (including processes and loops). The PC sampling counts the
power consumption for each function running time, such as operation time and number of operations.
Afterwards, the Tulipp analysis utility collects and displays the data from the PMU.

Table 1 lists the power sources being monitored by the current sensors. The built-in sensors
connect to different onboard units to closely measure and monitor power consumption. The purpose
of each sensor is to collect the current information on different hardware modules, which assists
in understanding the current total power consumption. The hardware power consumption under
different workload states is monitored by the sensors. These data are then written as parameters into
the simulation environment. The simulation environment can provide different power consumption
information for the PL end under different workloads, which is similar to the power consumption
changes in the real environment.

Table 1. Built-in current sensors to monitor power source.

Sensor Measurement Voltage Supplied Hardware

1 3.3 V VCS-1 bottom board
2 5 V VCS-1 bottom board
3 5 V VCS-1 top board
4 3.3 V VCS-1 top board
5 12 V VCS-1 top board
6 12 V VCS-1 bottom board
7 Empty Empty

https://store.sundance.com/product/LynSyn/
https://store.sundance.com/product/LynSyn/
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3.3. Simulation Environment

The PL end (FPGA) and PS end of power consumption data are sampled during operation.
Xilinx ZYNQ MPSoC hardware operates in the power range of 1 to 6 W, which is the minimum
operating power condition (220 mA operating current and 100 mW power), and can be achieved
in sleep mode. These obtained data are used for setting the initial parameters for the simulation
environment. Meanwhile, the environment simulates the FPGA function calling and processing
rules. Two measurement applications were applied for performing simulations: ChaiDNN (Xilinx
Deep Neural Network library) (Available online: https://github.com/Xilinx/chaidnn (accessed on
1 April 2020)) and Xilinx Deep Learning Processor Unit (DPU) (Available online: https://www.xilinx.c
om/products/intellectual-property/dpu.html (accessed on 1 April 2020)).

CHaiDNN [27] is XILINX’s hardware acceleration library of deep neural network frameworks.
It is designed to maximise the computational efficiency on 6-bit and 8-bit integer data that achieves
the highest performance and the best accuracy. Neural networks work in the fixed-point domain for
better performance. Users can convert all feature maps and training parameters from float points to
fixed points under specified precision parameters [28]. DPU [29] is a convolution neural network IP
core, which supports convolution sizes ranging from 1 × 1, 2 × 2, 3 × 3, . . . , to 8 × 8. It can accelerate
convolution computing and achieve efficient object recognition, detection and classification. The DPU
computing core is designed on a full pipeline structure, and integrates a large number of convolution
operators, adders and non-linear Pulling/ReLu operators, which can support quantization methods
with different dynamic precision [30].

These two frameworks cover the complex scenes of neural networks and machine learning
computations. They can be applied to object recognition, classification and detection applications in
popular image processing areas. Different applications can be realised through the above architecture,
and then the real operating power consumption information of the hardware can be acquired by
current sensors. Finally, the simulation environment can be built according to the collected information.
The PMU-RL algorithm follows the above simulation environment to understand the FPGA clock start
and stop rules by different applications that optimise PL call times to save power.

3.4. Reinforcement Learning Algorithm

Reinforcement learning is a special machine learning method that can be trained without prior
knowledge [31]. Instead, the RL algorithm learns the control behaviour, the feedback state and repeated
patterns while correcting the state of behaviour during the learning phase [32]. The RL work concept
is as follows: in the repeated interaction between the control behaviour of the reinforcement learning
system and the state of environment feedback and evaluation, the mapping strategy from state to
action is continuously modified to learn to optimise the system performance. The learning originates
from the behaviour of the environment state mapping and selected strategy of the system. The learning
comes from the behaviour of the environment state mapping, and the selected strategy of the system
infers the optimal state for optimizing the performance whilst reducing the power consumption.

The PMU-RL algorithm learns from the power consumption patterns and measurements and
controls the PL clock states. Each estimated state of the clock is rewarded when the power consumption
is decreased without deteriorating the application performance. The closed-loop relationship of the
VCS-1 (running the test application), Lynsyn and a host computer (Tulipp profiling tools) enables the
constant validation of the estimated power consumption states. The learning processing focuses on the
study of environmental status mapping and PL clock state estimation. The workflow of the PMU-RL
algorithm is shown in Figure 2. The agent operates on the Lynsyn board of the PMU, and it controls
the PL dynamic power consumption via the JTAG port. The test application running on the VCS-1
board provides the agent with current workload to understand the power consumption mode.

https://github.com/Xilinx/chaidnn
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
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Figure 2. System setup for power measurement utility for reinforcement learning (PMU-RL)
algorithm workflow.

3.5. Training Algorithm

The reinforcement learning algorithm is loaded into the built simulation environment, which tests
different applications to train the algorithm. All PMU-RL and simulation environment parameters are
listed in Table 2. The algorithm is based on a random function to simulate the different applications
of the PL making the request for setting PL run time. Meanwhile, the random function settings can
be modified to adjust for different hardware. The algorithm deploys a reward growth function that
increases the impact on reward feedback to improve the learning process. Algorithm 1 describes the
main steps of the proposed PMU-RL algorithm. Setting the Q values to 0 during the initialisation,
the algorithm selects actions from the policies available in the Q table. Actions a, observations r and
next states s′ are updated by the Bellman Equation in Algorithm 1. Finally, the algorithm updates
states s and s′. The above steps are repeated to reinforce learning. The algorithm evaluates the effect
of learning after each iteration. The learning phase ends when the power optimisation difference is
smaller than the theoretical value of power consumption. Therefore, the PMU-RL algorithm learns
power consumption data based on the RL algorithm and returns the optimised action to the PMU.

Table 2. PMU-RL algorithm hyper-parameters.

Hyper-Parameter Value

1. Train Start Size 1000 ms × n min + Random (0–1024)
2. Minibatch Size (Granularity) 64 ms

3. α (Learning Rate) 0.1
4. γ (Discount Rate) 0.9
5. ε (Epsilon Greedy) 0.9

6. Reward Growth Rate 0.6
7. Learning Stop Different < 0.9%

8. FPGA Clock Stop POWER 0.1 w
9. FPGA Low POWER 1 w

10. FPGA Fully Operation POWER 6 w
11. ARM Idle POWER 1 w

12. ARM STEP POWER 2 w
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Algorithm 1 Proposed PMU-RL algorithm

1: Initialise Q-values of table Q(s, a) to full zero matrices.
2: Observe the current state s.

Require: :
3: States S = (S1, S2..., S32)
4: Action A = A1 and A2 (PL clock start and stop)
5: Reward function: S * A→ R
6: Set Greedy = 0.1, LearningRate : α ∈[0, 1] (typically α = 0.1), RewardDiscountFunction γ ∈ [0, 1]

(typically γ = 0.9)
7: Update the Q-value with the reward.
8: Find a maximum reward for the next n steps state.
9: Bellman Equation: Q(s, a)← Q(s, a) + α [ R + γ maxα * Q(s’, a’)–Q(s, a)]

10: Model[S][A].R = R;
11: Model[S][A].S_ = S;
12: unsigned S2, A2, S_2 , float R2
13: for n=0; n < 4;++ n do
14: Q(s2, a2)← Q(s2, a2) + α [ R2 + γ maxα * Q(s2’, a2’)–Q(s2, a2);
15: S2 = S_2; A2 = GET_ACTION_SATE(S_2);
16: A = GET_ACTION_SATE(S_);
17: S = S_;
18: end
19: return Action;
20: Set state to the new state, until S is termination.

At time step t, the agent perceives the corresponding state St from the environment, and then
selects action At based on the condition rules. When the action is taken, the environment responds
to the reward Rt + 1. Agents constantly interact with the environment, using a trial and error
method to get the best strategy [33]. The training follows the greedy algorithm, which is set to
90% exploration and 10% prediction for action selection. The new state is controlled by the selected
action and the reward R. The goal is to achieve the theoretical PL total power consumption, which is
considered as a threshold in the PMU-RL algorithm. The PMU-RL learning will stop operating when
the algorithm power consumption is below the theoretical data of best power consumption. Through
the power consumption data captured by the sensor in the real environment, the corresponding power
consumption of the whole hardware by running different applications and different workloads is
achieved. The power consumption information is loaded into the simulation environment, and the
corresponding workload is given by controlling the parameters. When all the power consumption of
the workload in the simulated environment is known, the optimal power consumption of the system
can be realised by theoretical analysis and calculation under ideal conditions. It can then be set as the
training goal of the RL algorithm.

The algorithm continuously interacts with the environment through state feedback and evaluation,
and constantly corrects the mapping strategy from state to action during the learning process.
The expectation of state s and action a for revenue q(s, a) tries to influence the reward r under the
agent’s action. The states and actions are stored on a Q-table that stores the Q value, then selects the
action that obtains the maximum benefit according to the Q value. The reward of Rt is the performance
of a given agent at the time step t. Rt is used for maximising the accumulated rewards, and the selected
actions trigger this reward maximisation/punishing.

The PMU-RL algorithm collects the power states from both PS and PL. The state details are
as follows.

PS and PL states: The level of smoothing power consumption depends on the direction of the
power change and the updated operating conditions. The definition of high and low smoothing
power consumption is as follows. When power consumption increases and then goes into a stabilised
state, this is defined as high-smooth power consumption. On the contrary, when power consumption
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decreases and then achieves the stabilization state, this will be characterised as low-smooth power
consumption. Hence, this suggests that after the power inflection point, the smooth power
consumption is obtained, and then enters a stable time interval, and no further adjustments will be
needed. However, there is no numerical relationship between high and low smoothing values. In some
cases, low smoothing power consumption has a higher value than high smoothing power consumption.

• Up—<Power rises>
• Down—<Power falls>
• High-smooth—<Power consumption rises and then stabilises>
• Low-smooth—<Power consumption drops and then stabilises>

PL states:

• Fully-operational—<Full load for hardware>
• Idle—<Waiting for FPGA hardware acceleration calling>
• OFF—<FPGA clock stop>

There are 32 states and 2 possible actions that are available per Q-table. These 32 states form
the different definitions of PS and PL cooperative working states, including 4 changes of each PS
end and PL end (power rises/power falls/high-smooth power consumption/low-smooth power
consumption) and 2 action states of the PL end (work On and Off). In the algorithm decision-making
phase, the information processed by the algorithm is not distributed independently, it is a combination
sequence of PS and PL working states.

4. Implementation and Evaluation

The Lynsyn board collects up to 1 kS/s; therefore, the simulation environment was designed
using this sampling rate for training and testing of the PMU-RL algorithm. The testing was based on
simulation of an application’s call function of hardware acceleration.

4.1. Test Setup

In the simulation environment, four processing cases are described which are considered as
internal phase operations. There are random permutation and combination generations to simulate
various test applications. In this way, the tests align with a realistic function implementation
scenario, and can fulfil the different application requirements for hardware acceleration demands.
The application is a periodical request known as a PL of hardware acceleration function, as the
proposed algorithm is used to start and stop PL clock rules to anticipate and control the PL mode of
operation in a reasonable time.

The simulation function set outs calculations for PS and PL functions per time-step. The PS and
PL have the following four states. In the first state, both PL and PS are in low power mode. In the
second state, PS power consumption increases, and the PL remains in low power mode. In the third
state, the PS is in high power mode, while the PL is in low power mode. Finally, in the fourth state,
the power consumption of the PS is dropped, and PL power consumption shows increments. In the
aforementioned states, the main objective is to learn and define the present states and anticipate the
next states.

Figure 3 shows the one-step and multistep learning curves for the PMU-RL learning process
that demonstrate the PMU-RL agent’s gradual approach to additional rewards by taking appropriate
action, and then increasing the energy efficiency. Meanwhile, it is also suggested that this multistep
PMU-RL algorithm achieves high energy efficiency in learning faster, which means that it is more
suitable for power saving. Following the results of multi-step Q learning, it is compared with the Q
learning algorithm to obtain the optimal power under different steps, and the differences are shown.
The algorithm of 4 steps can achieve the fastest learning effect without requiring more steps.
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Figure 3. Comparison results for one-step and multistep reinforcement learning (RL) curves.

Reinforcement learning needs to delay the current decision for a period of time only to determine
whether the right outcome result is obtained. Therefore, the adverse effect of the decision is not entirely
caused by the most recent decision, and could be influenced by an error that might have occurred in
the prior phase. Therefore, when selecting the estimate value, the use of n measures for Q learning
has more long-term consideration than one step. The basic principle of reinforcement learning is to
escape the current state fast when making mistakes, and carefully adjust to achieve convergence when
making the right choice.

The n-steps output reflects the duration of time gradient to observe the impact of the current
selected action on the entire system. When the current value function is required to be updated,
the next n-steps state is employed to ensure that the reward is maximised. The results show that the
larger the step size, the better the overall influence of the selected action. Meanwhile, it can learn to
choose the best power consumption of the overall environment faster.

Figure 4 is the PMU-RL algorithm learning output for the FPGA power consumption effects and is
compared to system power without the PMU-RL algorithm. According to the simulation environment
settings, the PMU-RL algorithm can understand the appropriate time for the PL clock start and stop
rules for different processing conditions required by hardware acceleration. Meanwhile, the energy
efficiency of the system is improved, and energy consumption during idle periods is reduced.

Figure 4. Comparison of power consumption effects with and without RL algorithm.
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4.2. Reinforcement Learning Agent Evaluation

The reinforcement learning agent is based on off-policy learning and continued testing after every
iteration of instructions. When the agent is tested, the learning algorithm ends, and its strategy remains
static and deterministic. At this point, the experience is no longer applicable to the agent. The learning
process should avoid the decision based on the disparity between the effects of optimisation results and
theoretical values. These tests are based on different simulations of program running times to achieve
various application effects. The obtained data are shown in Table 3, which shows power consumption
comparison and an improvement in energy efficiency. Through the random operation of different
applications in the test, the impact on energy consumption at different times is achieved. The PMU-RL
improves the energy efficiency of hardware by up to 18.47%. This means that the algorithm can save
power while meeting the performance requirements, and it depends on choosing a suitable time to
start and stop the PL clock.

Table 3. Energy efficiency evaluation.

Work

Energy Times
1 s 10 s 30 s 1 min 2 min

Normal Work Mode 0.98 mWh 95.40 mWh 878.46 mWh 3517.43 mWh 14,000.34 mWh
RL for Hardware Control 0.79 mWh 79.54 mWh 741.84 mWh 2976.09 mWh 11,822.75 mWh
Energy Efficiency Improvement 18.47% 16.62% 15.55% 15.39% 15.55%

5. Discussion

In this study, we aimed to provide a framework for hardware simulation to validate and evaluate
the performance and power consumption balance of the Xilinx ZYNQ MPSoC platform. We simulated
the running environment of the real program to demonstrate how to use the PMU module of the
Lsynsy board to run the RL algorithm to achieve energy savings. Meanwhile, our method was
compared to DVFS and AVS, which do not require preprocessing of frequency performance data.
The RL algorithm directly provides appropriate energy-saving actions through self-learning feedback.
The test results provide theoretical and algorithmic feasibility for extending this method to different
heterogeneous hardware, and provide an adjustable decision-making environment to match different
hardware parameters.

Table 4 shows a comparison of results achieved in this work with a couple of other similar works.
Our designed method was not based on host system processing, and does not include the existing
DVFS and AVS tools. In contrast, the conventional approach is based on the voltage and frequency
control functions of the DVFA and AVS instruments, which depend on the host device to operate.
It requires data preprocessing methods to obtain mass data resources for analysis, and then to perform
the voltage and frequency scaling function of the system to save energy. Previous experimental
findings were focused on the adaptation of particular applications, which makes it difficult to apply to
other types of applications, such as variable proportions of the hardware acceleration requirements set.

Table 4. Comparison of energy efficiency with similar work.

Project Hardware Method Power Efficiency
Improved

Our Work

VSC-1 board based
on Xilinx ZYNQ
UltraScale+ MPSoC
Chip and Lynsyn
board

RL on the MCU to control
and stop the clocks when
no data are being
exchanged via the I/Os.

Up to 18% power
reduction compared
with the original
model
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Table 4. Cont.

Project Hardware Method Power Efficiency
Improved

Wei-xiong et al.
[34]

Xilinx ZYNQ
UltraScale+ MPSoC
ZCU104

Designed fine-grained
DVFS by mixed-mode
clock manager (MMCM) as
the clock generator

About 15% power
reduction at
680 mV/285 MHz

Lilia et al. [35] Xilinx ZYNQ ZC702

Based on the adaptive
frequency scaling (AFS),
which is a software
configuration of the
MMCM for frequency
scaling and power
management bus (PMBus)
for voltage scaling

Up to 12% for power
savings on the AFS

Our suggested method works on the peripheral hardware of the PMU module, which collects
power information directly from the built-in sensors that are considered to be more precise. The RL
algorithm attempts to run on the MCU of the PMU and does not consume additional computing
resources and data requests. Finally, the hardware connected to the JTAG debug port with the host
platform ensures the reliability of hardware control. In addition, the RL algorithm is robust for
acquiring data and is easily adapted to optimise power consumption for various types of applications.
The algorithm performs the actions for each context switch between tasks, for each FPGA invocation.
It depends on monitoring the PL dynamic power consumption by controlling clock states.

In the future, the goal is to develop a more realistic and practical research algorithm that enables
a comparison of energy-saving results in longer and more complex scenario outcomes. Finally,
the hardware simulation environment will be expanded and not limited to ARM and FPGA hardware.
This could control more work modes for coordinated hardware modules, such as sensors, ASICs and
other integrated models.

6. Conclusions

In this work, a reinforcement-based learning approach was proposed on the Xilinx ZNYQ board,
to automatically explore power usage and performance using current sensor signal processing. We used
Tulipp’s PMU measurement module in this heterogeneous computing platform to collect the hardware
control information for the voltage and current sensors. An intelligent algorithm based on PMU-RL
was employed to analyse the collected data for the hardware power information. The suggested
algorithm reduces unproductive energy consumption by controlling the FPGA clock start and stop
states to prevent sleeping and waking modes in order to comply with the hardware acceleration
algorithm requirements. The proposed framework also studied hardware acceleration specifications
in the heterogeneous computing model in the simulation environment of the hardware through the
suggested energy optimisation approach and can achieve the required hardware control state to
enhance energy efficiency. The new PMU-RL methodology can be applied to boards in the future to
obtain real hardware impact tests. In future, the proposed PMU-RL algorithm can be deployed to
boards to get the required results to investigate real hardware effects.
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Appendix A. Hardware Platform

Figure A1 Hardware support vision, control and sensor (VCS)-1 system by Sundance Multiprocessor
Technology Ltd. (Chesham, UK).

Figure A1. VSC-1 Hardware platform.
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