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Abstract: Scientific and simulation applications are continuously gaining importance in many
fields of research and industries. These applications require massive amounts of memory and
substantial arithmetic computation. Therefore, general-purpose computing on graphics processing
units (GPGPU), which combines the computing power of graphics processing units (GPUs) and general
CPUs, have been used for computationally intensive scientific and big data processing applications.
Because current GPU architectures lack hardware support for error detection in computation logic,
GPGPU has low reliability. Unlike graphics applications, errors in GPGPU can lead to serious
problems in general-purpose computing applications. These applications are often intertwined with
human life, meaning that errors can be life threatening. Therefore, this paper proposes a novel
prediction-based error correction method called Prediction-based Error Correction (PRECOR) for
GPU reliability, which detects and corrects errors in GPGPU platforms with a focus on errors in
computational elements. The implementation of the proposed architecture needs a small number
of checkpoint buffers in order to fix errors in computational logic. The PRECOR architecture has
prediction buffers and controller units for predicting erroneous outputs before performing rollback.
Following a rollback, the architecture confirms the accuracy of its predictions. The proposed method
effectively reduces the hardware and time overheads required to correct errors. Experimental results
confirm that PRECOR efficiently fixes errors with low hardware and time overheads.

Keywords: GPGPU; GPUs; error correction; GPU reliability; data hazard

1. Introduction

High-performance computing (HPC) applications typically require massive amounts of memory
and a huge number of arithmetic computations. Special accelerators and processors have been proposed
to achieve massive parallel computing power [1–4]. However, these accelerators and processors are
very expensive to manufacture and cannot be used for general purposes. On the other hand, graphics
processing units (GPUs) contain a huge number of computation and memory units. Due to their
highly parallel structure, recent GPU researches have focused on general-purpose applications in the
high-performance computing (HPC) field [5]. Therefore, GPUs are widely used as parallel computing
accelerators in big data processing applications currently. Because big data processing applications have
become increasingly intertwined with humans, the reliability of GPUs designed for general applications
has become increasingly important, and such approaches are referred to as general-purpose computing
on graphics processing units (GPGPU).

However, because current GPUs are designed for creating images to be output to a display device,
they lack hardware support for detecting and correcting errors in combinational logic. Therefore,
incorrect results can be easily generated by GPUs, particularly in combinational logic. In GPU
architectures, memory storage is protected by error correction codes (ECCs), but combinational logic is
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not protected. This is so because storage structures have regular patterns that can be protected via
parity and ECCs, whereas combinational structures exhibit irregular patterns. Therefore, combinational
logic outcomes cannot be easily protected via parity and ECC approaches.

Furthermore, errors on GPUs are less critical in the control flow than these on CPUs. Because
of the functionality of GPUs, the area portion of the control flow units on GPUs is smaller than that
on CPUs. Moreover, the number of the instruction cache which can affect the control flow does not
increase on GPUs even though the problem size increases [6]. Therefore, the functional interruption
(FI) rate on GPUs is lower than that on CPUs and the SDC rate on GPUs is much higher than that
on CPUs [6,7]. Additionally, the increases in the SDC rate on the GPGPU system cause the higher
probability of obtaining incorrect outcomes in scientific applications. Therefore, methods for correcting
SDC errors in GPGPU architectures are becoming increasingly important.

Error detection and correction methods have always been imperative in space and nuclear
applications, but they have recently become more important in a wide variety of fields. As technological
devices continue to shrink, circuits are becoming more susceptible to radiation effects and
electromagnetic emissions owing to reduced node capacitance [8]. Furthermore, to meet low-power
requirements, the frequency and voltage settings of modern systems on chips (SoCs) are designed
to reach the edges of their performance limits. Because SoCs have become increasingly common
in various fields affecting daily life, errors in SoCs have in turn become increasingly dangerous for
humans. Thus, appropriate error detection and correction methods are essential for meeting the
reliability demands of modern SoCs.

This paper proposes the approach called the Prediction-based Error Correction (PRECOR) for GPU
reliability which predicts errors, checks prediction accuracy by re-executing instructions, and corrects
faulty prediction results. To test the efficacy of the proposed method, simulated PRECOR solutions
are compared with solutions obtained via dual and triple modular redundancy (DMR and TMR,
respectively). The area and time overheads required for correcting errors are compared to prove the
efficiency of the proposed method. The area overhead is reduced by 7% compared with the DMR
methods. In addition, the time overhead is also reduced up to 10%.

The remainder of this paper is organized as follows. Our major motivations are discussed
in Section 2. Section 3 presents the methodology and hardware details of the PRECOR method.
Experimental setups and results are discussed in Section 4. Section 5 summarizes our conclusions.

2. Motivation

In this section, demands of soft error resilience techniques for GPUs is explained. First, GPU
architecture is described in Section 2.1. Then, the present error resilience support in GPGPUs is
presented in Section 2.2. In Section 2.3, related works are explained.

2.1. GPU Architecture

Figure 1a presents the Fermi GPU architecture [9]. A GPU architecture consists of a scalable
number of streaming multi-processors (SMs). An SM consists of streaming processors (SPs) for
arithmetic calculations, special function units (SFUs) for sine, cosine, and square root functions,
load/store (LD/ST) units for memory operations, and several register file banks for caches.

SMs are designed to implement the single instruction, multiple threads (SIMT) execution model.
A warp consisting of 32 individual threads is executed within a single SM block. SIMT execution
is a lockstep execution mechanism that executes a given set of operations simultaneously. In the
pipeline stage, the 32 threads of a warp run simultaneously with the same instructions. Each warp is
scheduled by a two-level scheduler that checks the warp ID, the active mask, and a single program
counter. This two-level scheduler deploys ready warps in the fetch stage. Each thread in a warp
is executed in lockstep in each SP. There are two types of thread barrier instructions for preventing
the data race condition. One is used for individual warps and the other is used for all threads.
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These instructions ensure that a thread in a barrier will not pass the barrier until all concurrent threads
have been completed.
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Figure 1. Overview of the Fermi graphics processing unit (GPU) architecture and memory scheme:
(a) GPU architecture; (b) Memory scheme.

Caches consist of hierarchical structures. Figure 1b presents a typical cache structure. The global
memory of a GPGPU system is deployed in dynamic random-access memory. Every SM has access
to all global memory. L2 cache is shared memory, which is shared by the SPs in the SMs. Each SM
executes read and write instructions at the L2 cache level. The L2 cache size is 768 KB. The register
file is accessible to all SPs in an SM. This register file is mapped in the SMs to improve computational
performance by caching data for the threads running on each SM.

2.2. Resilience Support in GPU Architecture

Soft error resilience is becoming more and more important in GPU than in CPU. GPUs have a
relatively high error rate. For example, 1.8% of commodity GPU devices have a least one permanent
fault [10], and some GPUs were determined to have experienced transient memory faults at a rate
of 66% during evaluations in an HPC cluster environment [11]. Most analyses of GPGPU failures
have focused on memory faults, and combinational errors have not yet been extensively studied.
Because a large portion of the total GPGPU silicon area is used for GPU cores [12], a non-negligible
number of errors can be expected to occur in the cores of GPUs. However, unlike memory errors,
which can be detected via ECCs, it is difficult to find errors that occur in GPU cores (e.g., floating-point
units, arithmetic logic units (ALUs), local memory, or registers). Furthermore, miniaturization has
increased error rates in hardware, especially those of transient errors [12]. Thus, it is necessary to
develop a method to increase hardware reliability to avoid data corruption. In a previous research,
a detailed survey of GPU errors in the Titan supercomputer was presented to analyze the reliability
of the GPGPU architecture [13]. The authors gather the error history of Titan using simple event
correlators on software management workstations and could highlight many GPU memory errors
and GPU software/firmware-related errors, but they are unable to collect silent data corruption (SDC)
errors that occurred in the processor. Therefore, analysis of SDC by the architecture-level fault injection
has been studied [14]. In addition, error propagation and its effects on processing cores and memory
have been studied [15]. SDC is widespread in GPGPU kernels and propagates through memory states
via data corruption.

G. Li et al. [15] measures SDCs and benign errors by comparing the output memory of fault
injection run with that of the golden run. This corresponds to data recorded in output memory (OM)
after the programs finish their executions. On average, crashes comprise 17.52%, SDCs comprise
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18.98% and Benign errors comprise 63.35% of all injections. Finally, more than half of fault injections
except benign fault injections are SDCs. However, on CPUs, the ratio of SDCs and crash is 36.11% (13%
of SDCs and 23% of crash) [7]. SDC is dependent on the application, but such SDC errors certainly
affect the output results. Nearly 50% of the errors that occur in a GPU corrupt output data via SDC.

However, GPUs only have resilience support for memory storage. A single-error-correction,
double-error-detection (SECDED) ECC is included in the GPU device memory, L2 cache, instruction
cache, register files, shared memory, and L1 cache regions [9]. However, not all the blocks in GPUs are
protected because SECDED only tracks memory reads and writes. Therefore, other blocks, such as
logic blocks, queues, the two-level scheduler, the thread block scheduler, the instruction dispatch unit,
and the interconnecting network are vulnerable to errors. Such errors can have different types of
effects on circuits: (1) no effect on the program output (the failure does not affect any of the outputs),
(2) program crash, or (3) SDC error (incorrect output, but the program does not crash).

One of the keys to the resilience of some applications is that soft errors may not affect output states.
At the microarchitecture level, there are two factors that determine the soft error rate of a hardware
structure [16]: the failures-in-time (FIT) and the architecture vulnerability factor (AVF) [17]. The FIT
rate is the raw soft error rate (SER) per bit. It is dependent on process technology and circuit design.
The AVF represents the effects of the SER, meaning that a soft error that affects the output data and
damages a process can lead to crashes and SDC. Therefore, the AVF is dependent on the applications
and instructions in which errors occur and, thus, we will not focus on such errors and their effects.

However, the other issues discussed above are crucial. Regardless of the error resilience problems
in GPGPU systems, there may not be hardware support for detecting and correcting errors without
ECCs. However, many recent applications on GPGPU systems are business-critical, long-running,
and financially sensitive. Therefore, a single error can have a serious impact on users.

2.3. Related Works

Error detection and correction in combinational logic structures are traditionally performed using
modular redundancy, by which the same instructions are executed several times and errors are detected
by comparing the results.

Dual Modular Redundancy (DMR) is usually based on neighboring dual cores that make
synchronization, transfer, and comparison of the results upon error detection. The dual cores
are synchronized by special link and the results of the dual cores are compared upon error
detection [18]. DMR only detects errors in GPU lanes and requires correction schemes for recovering
any identified errors.

Triple Modular Redundancy (TMR) is usually based on the neighboring triple cores that make
synchronization, transfer, and comparison of the results upon error detection and collection [19]. If an
error occurs, the three results are compared with each other and two same results are selected to the
correct result. In a TMR design, each logic element is designed in triplicate and majority voters are
inserted after each register stage to remove logic upsets.

DMR threads are deployed with branch divergence, meaning that any remaining cores are idle.
Warped-DMR [20] is a DMR-based technique that exploits these underutilized GPGPU resources
(i.e., the many idle cores) for duplicating threads and detecting errors.

Warped-RE [21] is a fault-tolerant technique based on both DMR and TMR. DMR is an opportunistic
approach that checks results using native redundancy instructions in the GPU lane. After error detection
via DMR, TMR is used for error correction. Therefore, the DMR and TMR logics are also required.
Additionally, opportunistic DMR threads are difficult to detect and can only be obtained by deploying
additional control logic, which requires more than 1.5% hardware overhead and performance overhead
by two additional pipeline stages only for searching opportunistic thread within total threads.

The Clover scheme [22] introduced fault detection and correction techniques for sensing the waves
created by particle strikes. These techniques detect errors using sensors that react to particle strikes and
restart erroneous processes in idempotent regions. However, idempotent-region checkpoint regions
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(CRs) have a critical drawback. If errors occur at the end of these regions, the CR cannot restart at the
proper point because of the latency of the sensing process. Clover employs a method called Tail-DMR
to compensate for this drawback by resetting the program to the beginning of the code region where
the error was detected. However, this method only detects errors related to particle strikes, and the
hardware overhead required for particle strike sensors is unsustainable.

Argus-G [23] is another error detection architecture for GPGPU cores. It is an extension of the
Argus [24] architecture for CPU cores. Argus detects errors in three basic invariants, namely control flow,
computation, and dataflow, based on signatures to detect errors in GPGPU cores. However, significant
area overhead is required for generating signatures and comparing them with optimal values.

The proposed PRECOR method detects errors by combining partial and temporal redundancies
and corrects them using an error prediction buffer. This approach is based on warp-level DMR, which
duplicates and verifies instructions. The use of this DMR scheme improves the performance overhead
of PRECOR by nearly 100%. Additionally, the controller and checkpoint buffer are much simpler in
PRECOR compared with other competitive schemes.

3. Proposed Methodology

This section presents the main concepts of PRECOR. The proposed method exploits space and
time redundancies in GPU systems. Sections 3.1 and 3.2 describe the PRECOR algorithm and present
the architecture of PRECOR in detail, respectively.

3.1. The PRECOR Approach

In most approaches, erroneous results are corrected via traditional DMR using a checkpoint
method. The checkpoint buffers that are deployed in the pipeline stages store the previous state of
the data and recover that state after an error is detected. These checkpoint buffers require massive
overhead for duplicating all the data in the pipeline buffers. Furthermore, when restoring a state
during the recovery process, the entire system must be halted, which increases execution time.

To reduce execution time and the overhead of the checkpoint buffers, PRECOR implements an
error prediction method based on historical data. Figure 2 illustrates the detection and correction
flow of PRECOR. A thread is fetched at two cores, an original core and a redundancy core. Then
cores decode and execute the thread. After execution, a comparator compares the two outcomes.
This comparison is for checking an error occurrence. If outcomes are not the same, an error occurs to
one of two cores. So, if outcomes are the same, the process keeps continuing. If not, the prediction
controller anticipates the outcomes with a history of the cores. Then, the process keeps continuing with
anticipated outcomes and the error occurrence outcome is saved in the buffer of prediction controller.
During this process, the error occurrence instruction is issued to the core. After the execution of
the re-issued instruction, the re-executed outcome is compared with the outcome in the prediction
controller. If these are the same, the output value is changed to the re-executed outcome. If not,
the process is continued. However, since the proposed method corrects an error by comparing values
generated from the same two cores, permanent errors that continuously output a specific error value
at any moment cannot be corrected, therefore, these error values cannot be corrected through the
proposed method. So, only transient errors are targeted on the proposed method.

To better explain the PRECOR method and avoid confusion, the following four terminologies are
introduced to make the approach easier to understand.

Anticipated incorrect output (AIO): The output that is assumed to be incorrect by the prediction
controller and kept in the buffer.

Anticipated correct output (ACO): The output that is assumed to be correct by the prediction
controller and executed on the pipeline.
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Prediction success: The pipeline executes the next instruction with the correct/incorrect values.
It does not matter whether the values are correct or not.

Prediction failure: The pipeline returns to the process and changes the values. It does not matter
whether the values are correct or not.

PRECOR performs error detection on real GPUs by an efficient error correction using roll-back
with DMR. Thus, PRECOR is the same as DMR in detecting an error. In correction, it acts like TMR
by keeping the result in the buffer. In the first stage, the same instruction is fetched into two cores,
an original core and a redundancy core, similar to the initial steps of DMR. After the instruction is
executed, the two resulting values from the two cores are compared to check for errors. If the results are
mismatched, an error has occurred. To correct an error, PRECOR uses a restart scheme, meaning that
the instruction that resulted in the error is re-issued in the pipeline stage. Meanwhile, the controller
identifies the core that can cause the error via historical prediction and the next instruction continues
with the ACO value which means that the pipeline continues despite an error occurrence. The cores in
which errors occur are marked with a latch and the controller chooses the core based on the state of a
latch. However, this ACO must be verified.

To verify the output, the method must keep the output value in buffer. In the proposed method,
there are two ways to select the output value for verification. The first way, called ACO strategy, is that
the ACO value is kept in the buffer and the next instruction continues despite an error occurrence.
Thus, the next instruction continues with the ACO value, chosen by the control unit using the latches
of the two modules. The ACO is also stored in the buffer in the ACO strategy if the ACO value and the
new output value from re-executed instruction are matched in the ACO strategy. However, if they
are mismatched, the ACO value is the incorrect output value. In contrast, the AIO strategy is that the
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AIO value is kept in the buffer and the next instruction continues with the ACO value. If the AIO
value and the new output value from re-executed instruction are mismatched, the ACO value is the
correct output value. If the ACO value is found to be incorrect after comparison with the new output
value from re-executed instruction, the new output value from re-executed instruction is written to the
register in the WB stage and the pipeline stalls.

In the case of GPU, instructions can be classified into FP arithmetic instructions, Integer operations,
and memory operations. Therefore, the rollback operation is performed differently depending on
the type of instruction. First of all, the error detection and rollback operation are performed only for
integer instructions and FP instructions. Because memory instructions are protected by ECC. In the
case of branch instructions, when an error occurs, it affects the process flow, that is, the progress of
the next instruction, and unlike the FP instructions or integer arithmetic instructions, the operation
must be stopped and rollback must be performed. Moreover, there is a rollback operation already for
branch misprediction, so if an error occurs during branch operation, it can be operated again as if it
is misprediction.

As mentioned in the explanation of terminologies, the final output value of the prediction success
may be also incorrect. If two of the three results are incorrect, these errors cannot be corrected exactly in
TMR strategy. However, these cases rarely happen. If the probability of an error occurrence in a module
is Pm, the probability of more than two errored results of three results is 3Pm

2 + Pm
3. Additionally,

it rarely occurs that the erroneous output values have the same value, except stuck-at fault cases.
In addition, the case that all outputs from two modules have errors rarely happens. As studied in [6],
the SDC rate in GPUs is about (1.80 + 0.39) × 101

− (1.04 + 0.32) × 103 FIT (errors/109 h). Therefore, it is
highly unlikely to have more than one corruption during a single execution in the natural radioactive
environment. Thus, PRECOR chooses the AIO strategy because retaining the AIO is faster than
retaining the ACO.

The example of PRECOR is demonstrated in the general single-instruction multiple-data (SIMD)
pipeline stage, which consists of five sub-stages, namely instruction fetching, instruction decoding (ID),
execution (EX), memory (MEM), and write-back (WB). Figure 3 illustrates the detection and correction
example of PRECOR. In the example, it is also assumed that there is a precedent that an error occurred
in 1000 instructions before on EX2 and no error occurred on EX1. Errors are detected in the EX stage,
which outputs values as shown in Figure 3a. In an error-free case, the same instruction is fetched and
executed in two units. The output values O1 and O2 from execution units EX1 and EX2, respectively,
are compared for error detection.
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Figure 3. Example of a PRECOR execution. (a) The error detection step of PRECOR in pipeline stage.
(b) The roll-back step of PRECOR in pipeline stage. (c) The recovery step of PRECOR in pipeline stage,
prediction success case. (d) The recovery step of PRECOR in pipeline stage, prediction failure case.

If the two outputs are mismatched, the result is rechecked in one pipeline while another pipeline
executes the next instruction with the predicted correct results as described in Figure 3b. Therefore,
the same instruction is fetched for rechecking and is executed in the execution unit, EX1, which
generates the ACO. PRECOR assumes that the value on the right side is incorrect the first time this
happens. After that, the value that comes from the last error-causing core (EX2) is assumed to be the
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AIO. Because the output values O1 and O2 are different, the same instruction is fetched and executed
in a different execution unit, EX3 as described in Figure 3b. In the proposed correction method, O2 is
picked as AIO and kept in the buffer while the other pipelines keep running using the output value O1.

After the execution of the re-fetched instruction (EX3), the output value (O3) from the re-fetched
instruction and the output value in the buffer (O2) are compared. If O2 and O3 are different, the output
values O1 and O2 are correct as shown in Figure 3c. Consequently, the pipeline continues. Since O2

and O3 are the same, the output values O2 and O3 are correct as shown in Figure 3d. Because the
prediction fails, the latches of each module are toggled by the prediction control unit. Meanwhile,
the pipeline stops until the new value (O3) is written in the memory.

PRECOR chooses the AIO strategy because retaining the AIO is faster than retaining the ACO.
Because the AIO strategy has fewer pipeline stalls than the ACO strategy without any reliability loss,
all erroneous output cases of each method are shown in the Table 1. For the erroneous output values in
the first column of Table 1, the second, third, and fourth columns show the output, the prediction result,
and the correctness of the output in the TMR, ACO and AIO strategies, respectively. The “Output”,
“Prediction” and “Result” columns of each strategy show the final output written to the register,
the result of the prediction and the correctness of the final output, respectively. As shown in Table 1,
the ACO strategy fails in five cases, whereas the AIO strategy fails only once. Therefore, AIO strategy
is faster than the ACO strategy because AIO strategy is less stalling the pipeline during the rollback.
Moreover, the reliability of the AIO strategy in the PRECOR method is the same as that of the PRECOR
ACO strategy. Therefore, the AIO strategy is more efficient than the ACO strategy.

Table 1. All error cases in the triple modular redundancy (TMR) and Prediction-based Error Correction
(PRECOR) methods when retaining different outputs.

Erroneous
Output

TMR Anticipated Correct Output (ACO) Anticipated Incorrect Output
(AIO)

Output Result Output Prediction Result Output Prediction Result

O1 O2 Correct O3 Failure Correct O3 Failure Correct
O2 O1 Correct O1 Success Correct O1 Success Correct
O3 O1 Correct O1 Success Correct O1 Success Correct

O1, O2 X Incorrect O3 Failure Correct O1 Success Incorrect
O1, O2 X Incorrect O3 Failure Incorrect O1 Success Incorrect
O2, O3 X Incorrect O3 Failure Incorrect O1 Success Correct

O1, O2, O3 X Incorrect O3 Failure Incorrect O1 Success Incorrect

Table 1 shows all error cases in the TMR and PRECOR. EX1, EX2, and EX3 are assumed to be
independent and identical execution units. Therefore, each module has the same error occurrence rate
p and the reliability can be calculated using the binomial theorem as follows:

P(r; n, p) =
(

n
r

)
pr(1− p)n−r (1)

r is the number of the erroneous outputs, n is the number of total outputs, and p is the error
occurrence rate, respectively. For example, the cases of two erroneous outputs out of three outputs are

(O1, O2), (O1, O3), and (O2, O3). Thus, the probability of the cases is R =

(
3
2

)
p2(1− p)1. According

to Table 1, zero erroneous output or one erroneous output out of three outputs are correct in TMR.
Additionally, the reliability of the voter (RV) must be considered for the right selection in TMR. It is also
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assumed that all voters are independent and identical, and each voter has the same error occurrence
rate pv. Therefore, the reliability of TMR [19] is:

RTMR =

(
3
1

)
p1(1− p)2p3

V +

(
3
0

)
p0(1− p)3p3

V

= (1− p)3 (1− pv)
3 + 3× p(1− p)2(1− pv)

3
(2)

Compared with TMR, erroneous output cases (O1, O2) and (O2, O3) are also correct in PRECOR
ACO and PRECOR AIO, respectively. In addition, the reliability of the voters is not considered because
the voters are not required in PRECOR. Therefore, the reliability of PRECOR (ACO and AIO) is

RPRC =

(
3
3

)
p0(1− p)3 +

(
3
2

)
p1(1− p)2 + p2(1− p)1

= (1− p)3 + 3× p(1− p)2 + p2(1− p)1
(3)

PRECOR assesses whether or not an error occurs in a core based on historical prediction results.
As technological devices continue to shrink, cores become more vulnerable to outside influences.
Technology scaling has also increased process variation [11], meaning that some cores are more
affected by single-particle strikes or other environmental effects than others. Soundararajan et al. [16]
demonstrated that errors occur more frequently in more sensitive cores.

To avoid writing an erroneous result on a shared cache when using this method, a data-hazard
prevention scheme is implemented because similar situations occur in data hazard cases. By providing
microarchitectural and compiler support for data hazards, PRECOR can effectively fix errors. If an
error-affected cache is read from or written to, the re-launched instruction is terminated, and the
read/write instruction is halted by the detector. Once the correct value is obtained for the re-launched
instruction, the value in the cache is changed and the instruction restarts.

3.2. Microarchitectural Support

Figure 4 illustrates the microarchitectural support for PRECOR. This SM architecture includes a
prediction controller that manages the prediction and correction flows. In conventional instruction
pipelining, the throughput speed of the cores is increased by implementing instruction-level parallelism.
The states of the stages for establishing a pipeline are maintained in pipeline registers. If an error occurs,
the corrupted thread is re-executed to correct the result. In traditional implementations, the state of
an instruction is restored by checkpoint pipeline buffers. However, checkpoint buffers incur high
area overhead in pipeline registers. To overcome this drawback, PRECOR implements a prediction
controller that maintains a relatively simple instruction and position list rather than all thread contexts.
GPUs issue parallel thread execution (PTX) instructions that execute many threads simultaneously
on multiple GPU cores. Each PTX instruction is decomposed into 32 thread contexts for executing
32 threads in each SP. After the ID stage, the thread contexts are scheduled in each SP. Each SP is
controlled by the operand collector. Therefore, the thread context which has to be executed on each SP
is received from the decoder and is kept on the buffer of the operand collector until the thread context
is executed on each SP as shown in Figure 4.

In the general DMR architecture, these thread contexts are maintained in an extra cache for error
correction. Rather than the thread contexts themselves, the PRECOR architecture retains only the PTX
instructions and the positions of thread contexts (i.e., pointers to thread contexts that find specific
threads in decoded PTX instructions). After decoding a PTX instruction, the thread contexts that
should be re-executed are selected by specifying the positions of the corrupted threads.
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Figure 4. Overview of the proposed microarchitectural hardware support.

Figure 5 presents a decoder and a scheduler with a prediction controller. The prediction controller
consists of the copied instruction cache and a position list. The copied instruction cache saves the
PTX instructions for re-executing and the position list identifies thread contexts containing errors in
their PTX instructions. At the marked positions of the corrupted thread contexts, the mask bits in the
position list are set to one. Therefore, the scheduler can selectively launch threads whose bits are set
to one.
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Figure 5. Prediction flow with pipeline registers.

Therefore, the correction flow of the PRECOR architecture proceeds as follows. When an error
occurs, the prediction controller turns on the correction flow process. The erroneous instruction which
has to be re-executed is re-fetched and decoded by the prediction controller using the fetch and decode
units. Before scheduling the thread contexts, the prediction controller matches the mask bits using the
position list. The mask bits control whether or not specific thread contexts are scheduled. Accordingly,
the prediction controller masks 31 threads to transmit only previously erroneous thread context to
the operand collector. Meanwhile, the other thread contexts on queues of the operand collectors in
the GPU lane continue executing despite the re-execution of the erroneous instruction. The difference
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between the error occurrence and the non-error situation is that only previously erroneous thread
context is added on the queue of the operand collector in the specific SP which generates the ACO
without halting the GPU lane. After the output of the re-executed instruction is compared with the
buffer, the selected data is written in the register. During the correction flow, the PRECOR architecture
retains the address of the destination register to prevent data hazards.

Figure 6 presents the flow for preventing data hazards in the GPU. The GPU uses the scoreboard
algorithm to check for write-after-read and read-after-write dependency hazards [25]. PRECOR uses the
scoreboard algorithm to remedy data-hazard dependency problems. The destination register address
is obtained from the pipeline by the prediction controller and sent to the scoreboard. This address
prevents the stalling of a specific thread that uses the destination register as its source register. Specific
threads are selected to be re-executed and the destination registers are indicated for the scoreboard
while other threads continue their pipelining processes. In contrast, existing methods prevent data
hazards by simply stalling all threads during the correction flow.Electronics 2020, 9, x FOR PEER REVIEW 12 of 18 
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4. Experimental Results and Analysis

The experimental results are obtained to evaluate the performance overhead, area overhead,
and fault coverage of PRECOR. The experimental results are described in this section in comparison
to previous methods: (i) DMR: full duplication re-execution of GPU instructions and correction via
checkpoint buffers [18], (ii) TMR: full triplication re-execution of GPU instructions and correction via
majority-voter rules [19].

4.1. Experimental Setup

To evaluate the performance of PRECOR, two simulation setup environments were employed.
The GPGPU-sim was generally used for evaluating the performance overhead of methods.
This application was modeled from commercial NVIDIA GPU units, Fermi architecture. GPGPU-sim
simulation was not updated after Fermi architecture. Therefore, GPGPU-sim simulation only supports
Fermi architecture. It can easily simulate the benchmarks of the simulation and analyze their results.
However, it cannot check for fault coverage. GPGPU-sim v3.2.2 [25] was used to compare PRECOR
with other methods. In this simulation, the GPGPU had 30 SMs, each consisting of 32 SIMT lanes.
The SIMT lanes were grouped into four SIMT-lane clusters: four SPs, four SFUs, four LD/ST units,
and four register banks. Several applications from rodinia_3.1 were selected as benchmarks [26].
As mentioned previously, our target applications (scientific computing and financial applications)
demand very high accuracy.
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To complement the GPGPU-sim simulation, Nyami open-source architecture was also used to
build our experimental setup [27]. The DMR, TMR, and PRECOR architectures were designed using
the Nyami architecture to evaluate the efficiency of the PRECOR architecture. Testbenches with the
hash, dhrystone, and membench applications were built using this architecture. Figure 7 presents the
Nyami GPGPU architecture. The Nyami architecture has four FIFO fetch units and a program counter
(PC). Each thread is controlled by the mask signal and the thread-select stage. The 16 float and integer
units are grouped and execute the same instruction at the same time as the vector units. The results
of each instruction are stored in the same register file. Instructions for loading and storing 8-, 16-,
and 32-bit scalars are supported. The Nyami architecture was implemented via SystemVerilog [28].
Several applications in the NyuziToolChain were selected as benchmarks for the testbenches.Electronics 2020, 9, x FOR PEER REVIEW 13 of 18 
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4.2. Fault Coverage

To evaluate the fault coverage of PRECOR and the previous methods, they were designed
to match a physical architecture using Nyami emulators [27]. The fault coverage of the methods
cannot be checked on GPGPU-sim. Therefore, Nyami architecture was used for the fault-coverage
simulations. The benchmark applications were executed on the fault-coverage test architecture using
Nyami Processor and NyuziToolChain. Then, the faults were injected by modifying the emulators.
To select instructions in the testbenches for the injection of transient faults, a fault-injection program
was designed on the emulator using C++. An error was injected into the compiled thread at the
frequency of the mean instructions between failures (MIBF).

For the simulations, the ptx instructions from the unchanged simulation have parsed twice or
three times in ptx parse file except for the control flow instruction and the memory operations. Then,
the application without faults is executed for obtaining the full thread logs in the application. Therefore,
the full execution logs are gathered from the second run. Next, the erroneous threads are selected using
the number of the threads and MIBF by the fault injection random function. The predictions of success
and failure have been checked using the weighted random function in the erroneous thread selection.
Then, the rollback operation is executed for each erroneous thread during the next simulation.

As shown in Figure 8, the fault coverage of PRECOR was almost the same as that of TMR because
the number of masked threads increases when PRECOR re-executes instructions. Moreover, the fault
coverage for the dhrystone benchmark using the DMR method was lower than for the other benchmarks.
This is so because dhrystone contains much more arithmetic instructions than the other benchmarks,
which can generate more faults in the simulations. Therefore, more simultaneous transient faults occur
in the simulations, and simultaneous transient faults cause errors when using DMR methods. Thus,
the dhrystone benchmark resulted in less fault coverage than the other benchmarks.
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4.3. Comparison of Performance Overheads

Figure 9a shows the performance overheads of TMR, DMR, and PRECOR. The performance
overheads of PRECOR and DMR increase as MIBF decreases, whereas the performance overhead of
TMR is not changed regardless of the MIBF since TMR does not need the rollback operation when
errors occur. Therefore, TMR is not affected by MIBF. However, DMR and PRECOR are affected by
MIBF since the rollback operation is executed when errors occur. The performance overheads of
PRECOR and DMR do not show much difference when the MIBF is large. Because the difference
between DMR and PRECOR is the rollback overhead when an error occurs. Therefore, if MIBF is large
and the number of the rollback operations is small, the difference in performance overhead between
DMR and PRECOR also is small. However, as the MIBF decreases, the rollback overhead of PRECOR
increases less than that of DMR.
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Figure 9. Performance overhead of Dual Modular Redundancy (DMR), TMR and PRECOR: (a) hash
benchmark; (b) breadth first search benchmark.

Figure 9b describes the performance overheads of TMR, DMR, and PRECOR depending on the
prediction success rate. Since the pipeline is stalled if the prediction fails, the simulation cycle decreases
as the probability of prediction success increases. Therefore, the simulation cycle for the case of high
prediction success rate is less than that of low prediction success rate.

The performance overhead depending on forecasting accuracy was evaluated based on an
experiment on error injection and prediction simulated using C code. The target benchmark is the
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breadth first search application on the GPGPU simulator. As shown in Figure 10, as the forecasting
accuracy increases, the performance overhead decreases. Therefore, accurate prediction is important
for reducing the time overheads of the error correction. However, forecasting data in real-world cases
cannot be achieved, one can only assume the accuracy of the prediction. However, the prediction failure
only happens in O1 case on the proposed methodology as shown in Table 1. Therefore, the probability
of the prediction success is (1 – p× (1− p) × (1− p)) even if the results are not correct. Therefore,
the proposed methodology can reduce the performance overhead by increasing the probability of the
prediction success.Electronics 2020, 9, x FOR PEER REVIEW 15 of 18 
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Figure 10. Performance overhead on breadth first search benchmark with various prediction probability.

Simulations on the Nyami architecture were implemented via the Nyami emulator. PRECOR
selects results using history buffers to speed up the correction procedure. Therefore, the prediction
accuracy when using history buffers was selected to make a performance comparison. In the simulation,
prediction accuracy was set as the value that was referred to in the forecasting accuracy simulation.

Hash benchmark simulations were also performed for each MIBF 3000 times. As shown in
Figure 9, the difference between DMR and PRECOR increases as the MIBF increases.

4.4. Comparison of Area Overheads

Hardware overheads were calculated based on a one-SM layout in the Synopsys CAD software.
To synthesize additional hardware, Nyami architecture was implemented using the Synopsys Design
Compiler and the saedEDK32.28 nm library (saed32rvt_tt0p85v25c.db). We do not add the redundant
floating-point units and integer units for duplication with comparison. By combing the existing cores
with comparators and voters, DMR and TMR have been generated. Therefore, original, DMR, and TMR
cores have 18 lanes, 9 lanes and 6 lanes in the core, respectively. The results are listed in Table 2.
Additional area overhead indicates that the area exceeded the available space in the original Nyami
architecture. The total area is the entire area synthesized in the behavioral-level Nyami architecture
using systemverilog code.

TMR needs six voters, DMR needs the pipeline state buffer and nine comparators, and PRECOR
needs instruction buffer, history latch, and nine comparators. Since the pipeline buffer which saves the
thread context is large, DMR architecture is required large area overhead. On the other hand, PRECOR
architecture needs a 32-bit register to save the instruction, and the nine latches to keep history data.
The area overheads were 7% lower for PRECOR than for the DMR method, but are larger than those of
the TMR method. However, TMR has longer execution times than PRECOR.
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Table 2. Area overhead comparison (nm2).

Additional
Area Overhead

Total
Area

Overhead
(%)

Normal 0 768,824 0.00%
DMR [18] 56,388 825,213 6.83%

TMR 42,588 811,412 5.24%
PRECOR 52,974 821,798 6.44%

5. Conclusions

Recently, GPGPU systems have emerged in devices with strong parallel computing power for
high-end applications. However, GPGPU systems are very vulnerable to soft errors. Streaming
processors, which play important roles in data parallelism, critically determine the reliability of GPUs.

This paper proposes PRECOR as a low-cost error correction method for GPGPU architectures.
PRECOR accelerates the correction process by choosing a correct value before additional instructions
proceed, thereby avoiding additional errors. Therefore, the buffers for saving the outcome, and the
prediction controller is the area overhead of the proposed method. However, the buffers for the
rollback operation are reduced by the position buffers in the proposed method. Therefore, the total area
overhead of the proposed method is less than DMR. Additionally, the rollback performance overhead
is less than the conventional DMR because the entire process continues when the rollback operation
executes in the proposed method, unlike DMR, which stops the entire process.

The experimental results show that PRECOR can more reliably correct soft errors compared with
traditional error correction approaches. It also reduces the required time overhead by improving
prediction accuracy, allowing processes to continue instead of halting. Finally, it reduces hardware
overhead by 7% compared with DMR method.
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