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Abstract: Cells wear fast in NAND flash memory of high storage density (HSD), so it is very necessary
to have a long-term frequent in-time monitoring on its raw bit error rate (RBER) changes through
a fast RBER estimation method. As the flash of HSD already has relatively lower reading speed,
the method should not further degrade its read performance. This paper proposes an improved
estimation method utilizing known data comparison, includes interleaving to balance the uneven
error distribution in the flash of HSD, a fast RBER estimation module to make the estimated RBER
highly linearly correlated with the actual RBER, and enhancement strategies to accelerate the
decoding convergence of low-density parity-check (LDPC) codes and thereby make up the rate
penalty caused by the known data. Experimental results show that when RBER is close to the upper
bound of LDPC code, the reading efficiency can be increased by 35.8% compared to the case of no
rate penalty. The proposed method only occupies 0.039 mm? at 40 nm process condition. Hence,
the fast, read-performance-improving, and low-cost method is of great application potential on RBER
monitoring in the flash of HSD.

Keywords: low-density parity-check (LDPC) code; NAND flash memory; parameter estimation

1. Introduction

NAND flash memory technology has been flourishing since the first flash memory being invented
by Dr Fujio Masuoka [1] in 1984. The development of NAND technology has brought tremendous
changes to the memory market and the electronics industry. However, the cost of flash memory
still needs to be reduced to gain wider acceptance in mass storage by increasing the storage density.
The innovation of etching technology has made NAND flash develop from 2D structure [2] to 3D
structure [3], and the application of incremental step pulse program (ISPP) scheme [4,5] has realized
the precise program voltage control, which makes it possible to increase the storage density of NAND
flash. The density of storage has been rising from 2D-256Kb single-level cell (SLC) [6], 2D multi-level
cell (MLC) [7], and 3D MLC [8], to the current 3D-768Gb triple-level cell (TLC) [3], 3D quad-level
cell (QLC) [9,10], and the under-developed penta-level cell (PLC). NAND cells can be designed as
n bits/cell by precisely controlling the levels of the program threshold voltage V};,, where SLC to
PLC stores 1-5 bits/cell corresponding to 2!-2° voltage levels respectively. The high-storage-density
NAND flash memories like QLC and PLC start to receive much attention due to the high demands on
storage capacity and the low cost. However, the increase in storage density makes the data stored in
these NAND flash memories vulnerable to noise interference [11-14].

Some error control strategies such as decoding statuses selection [15], ANN-coupled decoding [16],
retention optimized reading [13] are of high potential to be applied in the NAND flash memory of
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high storage density (HSD) to improve its error performance and extend its lifetime, considering that
it has more errors and shorter lifetime as the storage density gets higher. The idea is to adopt different
strategies for low raw bit error rate (RBER) and high RBER respectively, including using different
decoding algorithms for low and high RBER, inputting more accurate soft information to the decoder
based on RBER change learned with artificial neural networks (ANN)), shifting read reference voltages
Vis or configuring multi-level V;s in read operation when RBER goes high due to V}, shift. Therefore,
having RBER estimated would be a great help to these strategies for memory management and wearing
level monitoring. As RBER grows fast in HSD NAND flash, it is very necessary to frequently monitor
the RBER in a long term so that the error control methods can be executed at the right time to maintain
the performance of the flash. Ref. [17] proposed a method of using parity violation to estimate RBER,
and it needs to multiply a pre-set quantized scalar with the number of parity violations, which is
a function of the number of parity violations and determines the accuracy of the estimated BER.
However, considering that parity violation can only reflect the odd number of errors in a codeword,
it needs a large sample size N to ensure accurate estimation. For example, it needs to collect N = 2880
for a 16 KB-page-size flash, which is a very time-consuming collection. The pre-set parameter may not
be able to cope with the complex and changing noise condition in HSD flash in time. Hence, it is of
hysteresis for HSD NAND flash, where the noise, including Program /Erase (P/E) cycle effects [12],
retention error [13], and read disturb error [14], will cause RBER increasing quickly with reading
times or P/E cycles and the quickly changed error condition that happens during a read operation
is necessary to be measured and reflected in time. Ref. [18] proposed a fast estimation method by
comparing the test data with the data read from the flash memory, but it may not be so suitable for
HSD flash memory because frames from different pages have unbalanced error distribution due to
data modulation, which can cause inaccuracy in estimation. Meanwhile, the extra redundancy caused
by test data reduces the efficiency of reading, especially for the HSD flash which has relatively lower
speed but needs the long-term, frequent and in-time RBER monitoring. The read speed of the flash has
already been lower than MLC and TLC due to the higher storage density, so to avoid further slowing
down, the RBER estimation method should not slow down or even would be better to speed up the
reading process.

In this paper, we proposed an improved and easy-to-implement fast RBER estimation method for
HSD NAND flash utilizing true-value data comparison, which can also strengthen error performance of
error control code (ECC), thereby increasing reading efficiency of the flash. The method includes
an interleaving module to balance the errors from different pages, an RBER estimation module,
and enhancement strategies for hard-decision and soft-decision decoding to improve error performance.

The rest of the paper is organized as follows. Section 2 explains how the data modulation
affects the error distribution on pages and how the interleaving module alleviates the unbalance.
Section 3 describes the procedure and parameter setting of the RBER estimation. Section 4 depicts the
strategies of improving error performance of ECC by using extrinsic information from the redundant
true-value data. Section 5 presents a hardware implementation of the proposed method. Section 6
draws a conclusion.

2. Data Modulation in NAND Flash

Data modulation refers to how to map the bit codes to a voltage level programmed into a NAND
flash cell. The distribution of bit errors in the NAND flash highly depends on the pattern of data
modulation. The currently widely used data mapping method is 1/2 division gray coding, or 1/2 gray
coding for short. The term “1/2 division” means that the first line of the mapping table is divided
by “1” and “0” in half, and each line half-divides the previous line by “1” and “0” again, as shown in
Figure la. Another pattern is balanced gray coding, which is mentioned in [19] as an alternative for
QLC data modulation. The term “balanced” means that each line of the mapping table has almost the
same times of toggling between “1” and “0”. Since the errors in the flash is mainly due to the V};, in the
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cell being shifted to the neighbouring levels by the noise interference, using gray coding can minimize
the number of bit errors caused by the shift.

Voltage level LO L1 L2 L3 L4 L5 L6 L7
page 0 1 1 1 1 0 0 0 0
Page | 1 1 0 0 0 0 1 1
Page 2 1 [ I 1 0] o0 I eg., Vy =1L3 Data retained
1 ! 0 Page0 Vi, < Vu 1
1 : 0 : 1 Page 1 Vo< Vy <V 0
. > Page2 Vis < Vy, < Vs 1
1, 0 , 1 ; 0 |1 ()
Vi V2 Vs Via Vs Ve Vo7
(a)

Figure 1. (a) A example of read reference voltages in triple-level cell (TLC) with 1/2 gray coding
modulation; (b) how the data is demodulated from a TLC NAND flash cell.

Data are programmed or erased in the NAND flash cells through the Fowler-Nordheim (FN)
tunnelling effect [20]. The level of the program voltage can be controlled by how much charge the cell
stores since the program voltage is proportional to the tunnelling charge density in the cell. When the
1/2 gray coding data modulation is used, the data are stored via ISPP, which increases the threshold
voltage V};, step by step to charge a cell to a certain program voltage level. The tunnelling electrons of
the cell are gradually stored and accumulated to a certain level as required. When the balanced gray
coding method is used, the data are stored in a cache first, and the cells are then charged to the voltage
levels by incremental steps or in one pass.

Data are read from cells by comparing Vy;, with V;s on each page to demodulate them to
corresponding codes, as shown in Figure 1a,b. However, the widths of discriminant intervals are
different on pages and wider interval has a higher tolerance to errors caused by the shift of V},.
Therefore, the frames from the upper page have higher frame error rates (FER) than the lower page.
The experimental data of MLC in [21] shows that the error rate on the upper page has already been
slightly higher than the lower page. Although the difference is not much problematic in MLC because
of its low storage density, it will be in QLC and PLC as the storage density goes higher and FER of the
most upper page can become huge, as shown in Figures 2 and 3. The unbalanced page error rates (PER)
will cause inaccuracy in RBER estimation. The balanced gray coding modulation has less unbalanced
PER, but there is still at least one page having higher PER than the others. We use PLC to illustrate
the situation because it is the flash of the highest storage density currently known, so the situation is
more obvious on it. As shown in Figure 2, the PERs are hugely unbalanced when 1/2 gray coding
modulation is used, and frames from page 4 have FERs about 2.5 times as high as the RBER of the
NAND flash. Meanwhile, the errors grow much faster on upper pages that the slope of page 4 is 9.7
times of page 0. Consequently, a very large FER will appear on page 4, causing inaccurate estimation
as the sample frames are from different pages. When the balanced modulation is used, in Figure 3,
the PERs are still not completely balanced that the frames from page 4 still have FERs about 1.5 times
of the RBER, which will also affect the accuracy.

The accuracy of RBER estimation will be affected by whether every frame sampled for the RBER
estimator having similar FER. Since both types of modulation are possibly used in HSD flash, it is
important that the RBER estimation method can be compatible with them both to balance the errors.

To meet this requirement, an interleaving module is applied to alleviate the effect of the data
modulations and making FERs of each frame as equally as possible, in order to achieve more accurate
estimation. Interleaving is to swap the places of the message bits in the frames before modulating them
to voltage levels. Correspondingly, a deinterleaving module is applied to restore the swapped message
bits after the frames are retained. In our implementation, we built a uniformly randomly generated
lookup table to allocate each bit to a specific position and the same lookup table will be used for all
frames. For example, message bit 1 is allocated to position 5, bit 2 is allocated to position 11, and so on.
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The interleaving aims to spread the message bits evenly across the memory cells. The deinterleaving
restores the original order of the message bits by using the lookup table reversely. For instance,
the bit in position 5 is back to message bit 1, and the bit in position 11 is back to bit 2, and so on.
The interleaving scheme is not unique, one can apply other interleaving schemes for his own design
purposes. The effect of interleaving depends on the length of the interleaved message bits and can be
measured with the variance of FERs. As shown in Figure 4, the effect is better when the interleaved
message bits become longer, but the variance drops slowly when the length exceeds 500 and almost no
longer drops when the length exceeds 1200. Considering that the longer interleaving requires larger
read-only memory and takes more clock cycles, which will increase the hardware complexity and
extend processing time, it is recommended that interleaving a message in every 1024 bits is sufficient.
As shown in Figures 5 and 6, for both types of data modulation, interleaving makes the disturbed
bits evenly distributed to each frame and turns the increasing rates of FERs from each page to almost
the same.
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Figure 2. Frame error rates (FERs) of frames from different pages using 1/2 gray code modulation.
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Figure 3. FERs of frames from different pages using the balanced gray coding modulation.
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Figure 4. The variance of page error rates vs. lengths of interleaved messages bits tested at RBER = 0.01.
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Figure 5. FERs of frames from different pages using 1/2 gray coding modulation with interleaving.
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Figure 6. FERs of frames from different pages using balanced gray coding modulation with interleaving.



Electronics 2020, 9, 1900 6 of 14

3. RBER Estimation

The RBER is estimated by comparing the true-value sequence inserted into specific positions of
each frame with the one read from the flash to get an estimated FER. To ensure the accuracy of the
estimated RBER, averaging the estimated FERs of multiple sample frames is required. The accuracy
depends on two factors, the length of the true-value sequence L and the number of sample frames N.
With the interleaving module to balance the errors of frames from different pages, there will be no
huge difference in FERs obtained from the frames. Otherwise, it may result in inaccurate estimation in
HSD NAND flash.

We estimated RBER with the mean of N = 16 sample frames because the division by 16 in
estimation can be implemented with a right shifter. Moreover, it is a short time to wait and collect
16 frames in the HSD NAND flash, especially when the parallel structure of encoding and decoding
is used, so the RBER of the flash can be reflected in time. The larger N can certainly lead to more
accurate estimation, but it will take longer. The length L of the true-value sequence should also be
selected carefully because a too-long sequence will cause too much rate penalty, whereas a too-short
one will cause inaccurate estimation. Figure 7 shows how the lengths of the true-value sequence affect
the mean square error (MSE) between BER,s;, the estimated BER, and the actual RBER when tested
with a (10,080, 8400) QC-LDPC from [22]. The MSE is about 1.7 x 1075 at the length of 200/8400,
about 5 times larger than 3.4 x 10~° at 300/8400, and then stays at the same order of magnitude down
to 2.9 x 10~° at 400/8400. Namely, the MSE is decreasing with the increase of the length, but the trend
is gradually slowing down when the length exceeds 300/8400. To balance the rate penalty and the
accuracy of estimation, the length is suggested to be less than 3.5% of the total length of the frame.
We set L = 256 in our test for the convenience of hardware implementation. Figure 8 illustrate two
cases of estimation at RBER = 0.01 and 0.1. In the HSD flash using 1/2 gray coding modulation,
the estimation is very inaccurate when directly comparing data without interleaving. In this case,
only 55.49% and 36.99% of the estimated values fall in [0.009, 0.011] and [0.09, 0.11], respectively,
the £10% range of the actual RBER. The interleaving module greatly improves the accuracy of the
estimation for such flashes, making 85.37% and 99.55% of the estimated values fall within [0.009, 0.011]
and [0.09, 0.11], respectively, and significantly narrowing the distribution interval. For the flash using
balanced gray coding modulation, where about 83.4% and 97.89% of the estimated values are located
within [0.009, 0.011] and [0.09, 0.11], respectively, interleaving only slightly increases the accuracy and
narrows the distribution interval. Nevertheless, in general, interleaving can improve the accuracy
of RBER estimation in HSD NAND flash using either modulation. Figure 9 shows that with the
interleaving, the method can make BER,s very close to the actual RBER, and they are highly linearly
correlated though there exist some small fluctuations. Therefore, it is credible to estimate RBER in
NAND flash with the true-value insertion method equipped with interleaving, and the good linearity
can make the BER,s; sensitive to RBER change. Hence, it is suitable to measure and reflect RBER in
HSD NAND flash in time.

BER,s: can help select decoding statuses. Usually, the soft-decision decoding is selected after the
default reading level with hard-decision decoding and retry level with hard-decision decoding are
failed, which wastes time on trial and error. Based on the current BER estimated, the decoding
status can be directly selected so that the controller does not have to try through all decoding
statuses, which thereby increase the reading speed for NAND flash. To realize this, a threshold
RBER BERy, can be set to trigger switching between hard-decision and soft-decision decoding statuses
that hard-decision decoding is applied when BER,s;<BERy;,, and the soft-decision decoding is used

otherwise. The method can also be used for cell wearing monitoring. The RBER will be rising when
NAND flash cells are gradually wearing out as the number of P/E cycles increasing, so the long-term
recorded BER,s can reflect the cell wearing condition in NAND flash. A block is possibly being worn
out when its BER,s; reaches a certain threshold, and the controller should be informed to execute error
management strategies or migrant the data to other blocks.
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4. Enhancement Strategy for Decoding

Since the HSD NAND flash has high storage space but relatively lower read speed, we care
more about reading performance than the extra storage space taken up. We hereby proposed the
enhancement strategies to accelerate decoding convergence with extrinsic information from the
redundancy, making up the rate penalty caused by it.

To detect and correct errors in HSD NAND flash, the low-density parity-check codes (LDPC) [23,24]
are usually used, which are suitable for scenarios that the code rates are higher than 2/3 [25]. Typically,
the code rate in NAND flash is above 0.8 and even reaches 0.95, and the block length is also very
large, up to 8 Kbit or even 20 Kbit [26-28]. Moreover, the encoding and decoding of LDPC can
be easily implemented in parallel to increase throughput [22,29-31]. Among types of LDPC codes,
quasi-cyclic LDPC (QC-LDPC) code [32] is a structured LDPC code recommended because it satisfies
the row /column constraint to make sure no loop iteration in decoding which otherwise can result in
decoding failure [33-35]. The decoding of QC-LDPC can have no error floor down to 10710 [29].

There are two kinds of LDPC decoding algorithms, hard-decision decoding and soft-decision
decoding. The hard-decision directly converts received symbols into demodulated bits “0” or “1”,
whereas the soft decision is based on the probability of received symbols, expressed using logarithmic
likelihood rate (LLR), to decide the most likely value for the corresponding bit. LLR is presented as

@

where Ly, is the LLR value, j; is the transmitted bit, and y; is the received bit. The posterior probability
Pr (9; | y;) is determined by BER of the received codeword. The hard-decision decoding algorithms
include majority logic decoding and bit flip decoding [23], which are characterized by low complexity,
fast speed, but weak error correction capability. The most widely used soft-decision decoding
algorithms are sum—product algorithm (SPA) and minimum sum algorithm (MSA), a simplification
of SPA [24,30]. The computational complexity of soft-decision algorithms is much higher than the
hard-decision ones, but their error-correction capability is stronger.

Figure 10 represents our enhancement strategies for bit-flip decoding and SPA decoding.
The content and position of the true-value sequence are known. For bit flip decoding, as in Figure 10a,
denote the position of true-value sequence as loc,, the number of parity violation for each bit of
the read codeword as f;;—123, .., the positions of the maximum in f as locy,, and the position of
bit flipping as loc,s. Before decoding starts, fill back the true values to the read codeword. Then,
calculate the number of parity violation for each bit. Find the positions where the maximum number
of parity violations are, and remove the positions of the true values if there is any to get the position of
the bits to be flipped loc,r. While locyf is null, give locy the positions of the second maximum in f.
Repeat the above procedures until there is no parity violation or the program reaches its max iterations.
As shown in Figure 11, the enhancement strategy gives the bit flip decoding better error performance,
so more errors can be corrected by hard decision in the same number of iterations. Therefore, BERy,
can be slightly increased in switching decoding statuses accordingly, and more decoding can use the
hard-decision algorithm. The flash reading speed is thus increased at lower RBER. For SPA decoding,
as Figure 10b, denote v;;_1,3, .. as variable node j, c;i=1723,.. as check node i, ij as the LLR of
variable node j, Ly, —; as the value passed by variable node j to check node i, and 1, o, as the value
passed by check node i to variable node j. Before decoding starts, the LLRs at the positions of the true
values are set to very large values, usually at least 10 times larger than the others, because we have a
strong belief that the true values backfilled are correct. The LLRs will be propagated as the initial values
of Lv]. and ijfcf- Me;—o; is updated with Lz,].,cl. of each v; connected to ¢;, and then Lz,].,ci is updated
with Me;—o; of each ¢; connected to v;. The LZ,]. is then updated with LZ,]. = Zf\i 1 LU/._CI., where M is the
total number of check nodes. Then J; is discriminated based on Ly, and parity check is done for j.
The above procedures are repeated until there is no parity violation, or the program reaches its max
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iterations. As shown in Figure 12, with the enhancement strategy, the SPA decoding achieves better
error performance and converges faster at higher RBER, which means that some iterations can be saved
in decoding. The iteration of soft-decision decoding is time-consuming, compared with hard-decision
decoding, so saving iterations can certainly improve the read speed, especially at higher RBER.

L
Backfill the true values Set LLRs at loc,»to very
large values
Calculate the number of | o
parity violation, Initialize L and Ly«=Ly
Find the positions of (the |
next) max(f), locy Update meiy <
loc,,s ={l| 1 € loc,,,| & loc,,}
! t NO Update Ly
=@?
locyr = & Update Ly NO
YES ‘
Discriminate L. to bit
Flip the bits at locy values
HY = 0? HY =07
or reach the max or reach the max
iteration? iteration?
YES YES
End End
(a) (b)
Figure 10. The enhancement strategies for (a) bit flip decoding and (b) sum-product algorithm

(SPA) decoding.

Taking QC-LDPC (10,080, 8400) [22] as an instance for latency analysis, whose parity check matrix
has 288 non-zero circulants, supposing that the decoder is capable to process one circulant per clock,
the decoder requires 288 clock cycles to finish an iteration. As shown in Figure 13, when RBER = 0.008,
the average number of iterations at FER = 1072 is 10 iterations with the proposed enhancement
strategy whereas the iteration time is 18 without it. Supposing that 64 bits are read from the memory
per clock cycle, the interleaving and de-interleaving each takes [10,800/64] = 158 clock cycles,
and true-value sequence inserting, backfilling and removing each takes extra [256/64]| = 4 clock
cycles. Hence, 288 x 18 — (288 x 10 + 158 x 2 +4 x 3) = 1976 clock cycles can be saved in every
decoding, which indicates that the read is sped up by 38.12%. Hence, the enhancement strategy can
strengthen the error performance of SPA and thus speed up reading operation when RBER becomes
high to the upper bound of ECC. From the perspective of transmission efficiency, decoding 28 frames
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with the redundancy transmits almost as much amount of data as decoding 27 frames without the
redundancy. The former takes 28 x (288 x 10 + 158 x 2 + 4 x 3) = 89,824 clock cycles whereas the latter
takes 27 x 18 x 288 = 139,968 clock cycles, so the former saves 50,144 clock cycles when transmitting
almost the same amount of data, which is equivalent to a 35.8% increase in efficiency.

0.01 5
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1E-5 5

1E-6 -

—&— Bit flip decoding
—@— Enhanced bit flip decoding

1E-7 T T T T T T T T
0.000 0.002 0.004 0.006 0.008
RBER

Figure 11. Bit flip decoding in maximum 10 iterations with or without the enhancement strategy, where
a (10,080, 8400) QC-LDPC code is considered. True value bits are not counted in FER calculation.
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Figure 12. SPA decoding in maximum 10 iterations with or without the enhancement strategy, where a
(10,080, 8400) QC-LDPC code is considered. True value bits are not counted in FER calculation.

The difference of the iterations gets larger when RBER gets higher, especially when RBER reaches
the upper bound of the LDPC code, which is 0.01 in this case. Since the maximum iterations are set
much less than 70 in practice, such a frame may be judged as a decoding failure and will be switched
to re-read status, which will take much more clock cycles than the soft-decision decoding. Namely,
the ECC can correct more error patterns with the enhancement strategy under the same decoding
status. The HSD NAND flash tends to produce high RBER, so the proposed enhancement strategy
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can save many clock cycles for it and thus improve read performance. Since the flash cares more
about read performance than storage space, the proposed enhancement strategy will be helpful at both
lower and higher RBER, especially when RBER reaches a high value near the upper bound of the ECC.
Therefore, the redundancy brought by the true-value sequence is worth the increase in the converging
speed of decoding.

0.01
0.001 ~
14
L
L 1E-4 4
1E-5 4
{ ——RBER=0.01; SPA —— RBER=0.01; SPA enhanced
] ——RBER=0.008; SPA —— RBER=0.008; SPA enhanced
1E-6 T T T T T T T T T T T T T T T T 1

0 10 20 30 40 50 60 70 80
Number of Iterations

Figure 13. Frame error rate vs. number of iterations in the NAND flash memory, where the (10,800,
8400) QC-LDPC code is considered. In fact, the last iteration drops the FER to 0, but we set it to 105
for the plotting purpose, indicating that the FER less than 1,/10,800.

5. Hardware Implementation

Figure 14 represents the datapath of the proposed RBER estimation method, which is embedded
in the ECC framework. When implemented with 40 nm technology library, the modules only occupy
0.039 mm? in total at 333 MHz clock speed at worst process corner condition, which is a very low cost
for the NAND flash controller. For data programming, the input message is firstly inserted with a
true-value sequence, which is for RBER estimation. The message is then encoded with the QC-LDPC
code, and the codeword is interleaved for alleviating the unbalanced error distribution on pages.
Afterwards, the interleaved codeword is modulated to corresponding voltage levels before it is finally
programmed into the cells. For data reading, the voltage charged in cells is firstly demodulated to
corresponding codes, and these codes are then deinterleaved to the original orders. Subsequently,
the correct known true-value sequence is filled back into the restored codeword, and the errors are
counted at the same time. The RBER estimation module will wait until collecting N frames to calculate
a BER,st and the collection can be done during the normal work process without the extra time
required. The codeword is then decoded with the help of BER,s; to select a proper decoding status.
Meanwhile, the enhanced strategies are applied to improve the error performance of the decoder and
speed up the converge of decoding. Finally, the true-value sequence is removed before the message
is output.
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—Input— Insert True — Encoder Interleaving > Data
Values Modulation
NAND Flash
A
+Output— Ren\l,(;‘;:;rue «— Decoder «— Backfill «— Deinterleaving < Dem(I))(;lltlzlla tion
A4
RBER
Estimation

Figure 14. Datapath of the RBER estimation method embedded into the error control framework of the
high storage density (HSD) NAND flash, where the grey modules are related to the proposed RBER
estimation method and the white modules are related to the low-density parity-check (LDPC) error
control process.

6. Conclusions

This paper proposed a fast, read-performance-improving, and low-cost RBER estimation method
suitable for HSD NAND flash, including interleaving, RBER estimating and enhancement strategies
for decoding. Interleaving alleviates the effect of unbalanced error distribution on pages caused by
data modulation and thus improves accuracy for RBER estimation. RBER estimation is achieved
with true-value data comparison, which can make estimation fast. The estimated BER is close to the
actual one and they are highly linearly correlated, so the estimated BER can be sensitive to RBER
change and reflect it in time. However, the redundancy brought by the true-value data reduces
reading efficiency of the flash, so to solve the problem, two enhancement strategies are proposed to
improve error performance of ECC in both hard-decision and soft-decision decoding. For hard-decision
decoding, the improvement can raise the BERy;, in decoding status selection so that some frames with
relatively higher FER, which should have been decoded with soft-decision, can be decoded by the
hard-decision decoding. Considering that hard-decision decoding has much lower computational
complexity than soft-decision decoding, the enhancement will improve read performance at low RBER.
For soft-decision decoding, the enhancement strategy speeds up the decoding convergence so that
errors can be corrected with fewer iterations. Moreover, with the enhancement strategy, the frames
with high FER close to the upper bound of ECC can be corrected within the maximum iteration times
without falling in re-read status, which will take much longer than soft-decision decoding. Hence,
the read performance at high RBER is also increased. The hardware complexity of the proposed RBER
estimation method is very low. Therefore, the method has a high potential for long-term and frequent
monitoring on RBER in HSD NAND flash.

Incidentally, more applications of the proposed method can be developed. The future work will
focus on designing a reading mechanism with a neural network aided by the RBER estimation to soft
sense the Vy, shift for the SPA decoder to achieve better error correction performance.
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