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Abstract: Recently, convolutional neural networks have made a remarkable performance for video
super-resolution. However, how to exploit the spatial and temporal information of video efficiently and
effectively remains challenging. In this work, we design a bidirectional temporal-recurrent propagation
unit. The bidirectional temporal-recurrent propagation unit makes it possible to flow temporal
information in an RNN-like manner from frame to frame, which avoids complex motion estimation
modeling and motion compensation. To better fuse the information of the two temporal-recurrent
propagation units, we use channel attention mechanisms. Additionally, we recommend a progressive
up-sampling method instead of one-step up-sampling. We find that progressive up-sampling gets
better experimental results than one-stage up-sampling. Extensive experiments show that our
algorithm outperforms several recent state-of-the-art video super-resolution (VSR) methods with
a smaller model size.

Keywords: convolutional neural network; video super-resolution; temporal-recurrent propagation;
progressive up-sampling

1. Introduction

Super-resolution (SR) is a class of image processing techniques that generates a high-resolution
(HR) image or video from its corresponding low-resolution (LR) image or video. SR is widely used in
various fields, such as surveillance imaging [1], medical imaging [2], and satellite imaging [3]. With the
improvement of display technology, the video super-resolution (VSR) becomes more and more critical
for LR video.

Recently, neural networks have made remarkable achievements in the single-image super-resolution
(SISR) [4–8]. One way to perform VSR is to run the SISR frame by frame. However, SISR methods do not
consider the inter-frame temporal relationship. The output HR videos usually lack temporal consistency,
which results in the flickering artifact [9]. Most existing VSR methods [10–14] consist of similar steps:
motion estimation and compensation, feature fusion and up-sampling. They usually use optical flow to
estimate the motion between the reference frame and supporting frames, and then align all other frames
to the reference with warping operations. Therefore, the results of these methods depend heavily on the
accuracy of optical flow estimation. Inaccurate motion estimation and alignment may introduce artifacts
around image structures in the aligned supporting frames. Furthermore, it takes a lot of computational
resources to compute the optical flow on every pixel between frames.

To alleviate the above issues, we propose an end to end bidirectional temporal-recurrent
propagation network (BTRPN). We design a bidirectional temporal-recurrent propagation unit
(BTRP unit). The BTRP unit can implicitly utilize motion information without explicit estimation
and alignment. Therefore, the reconstructed HR video frames will have fewer artifacts due to inaccurate
motion estimation and alignment. In addition, instead of using multiple consecutive video frames

Electronics 2020, 9, 2085; doi:10.3390/electronics9122085 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-0036-4504
http://dx.doi.org/10.3390/electronics9122085
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2085?type=check_update&version=2


Electronics 2020, 9, 2085 2 of 15

to predict an intermediate frame, we use the reconstruction results of the previous frame to predict
the next frame in an RNN-like manner. Consider that a frame is associated with its before and after
frames, we exploit a bidirectional network to fully extract temporal information. One subnetwork
processes the positive sequence on the time axis, the other processes the reverse sequence. To better
integrate the forward and backward TRP unit, we take the channel attention mechanism [15] to better
fuse the extracted temporal and spatial information. Additionally, we use a progressive up-sampling
method [16] to replace one-step up-sampling.

Experimental results on the widely-used VSR benchmark: VID4 [17] show that our network
achieves promising performance beyond 0.4 dB improvements in terms of signal-to-noise ratio (PSNR)
over recent methods using optical flow such as DRVSR [11], FRVSR [14]. Compared to recent implicit
frame alignment methods such as RBPN [18], DUF [19], we also outperform them in terms of PSNR
and structural similarity index (SSIM) [20].

The contributions of this paper are summarized as follows:

1. We propose a novel end to end bidirectional temporal-recurrent propagation network,
which avoids the complicated combination network of optical estimation and super-resolution.
To better integrate the two subnetworks, we take the channel attention mechanism to fuse the
extracted temporal and spatial information.

2. We propose a progressive up-sampling version of BTRPN. Compared to one-step up-sampling,
progressive up-sampling means solving the SR optimization issue in a small solution space,
which decreases the difficulty of learning and boosts the performance of reconstructed images.

2. Related Work

2.1. Single-Image Super-Resolution

Since Dong et al. first proposed the SRCNN [21], neural networks have made promising
achievements in SISR. New improvements included sub-pixel convolution [9], residual learning [22],
recursive layers with skip connection [23], back-projection [24]. Recently, state-of-the-art SISR
networks [24–26] outperformed previous works by a large margin when trained on the DIV2K [27].
A recent survey was conducted in [28]. Many VSR methods use sub-pixel convolution [29,30] for
up-sampling and residuals [18,19] for feature extraction.

2.2. Video Super-Resolution

Temporal alignment, either explicitly or implicitly, plays an essential role in the performance of
VSR. Previous explicit methods, such as [10], split temporal alignment into two stages. They compute
optical flow in the first stage and perform motion compensation in the second stage. VESCPN [31]
is the first end-to-end VSR network that jointly trains optical flow estimation and spatial-temporal
networks. SPMC [11] proposed a new sub-pixel motion compensation layer (SPMC), which can
simultaneously achieve sub-pixel motion compensation and resolution enhancement. FRVSR [14]
introduced a frame-recurrent structure to process video super-resolution reconstruction, which avoided
the repeated redundant operation of the same frame image in some multiple-input VSR methods
and improved the computing efficiency of the network. Reference [12] achieved temporal alignment
through a proposed task-oriented flow (ToFlow), which achieved better VSR results than fixed flow
algorithms. However, all these methods rely on the accuracy of optical flow estimation. At present,
even state-of-the-art optical flow estimation algorithms are not easy to obtain sufficient high-quality
motion estimation. Even with accurate motion fields, the image warping for motion compensation
will also produce artifacts around the LR frames, which may affect the final reconstructed HR frames.
Our proposed BTRPN performs an implicit temporal alignment without depending on optical flows,
which will alleviate the issues caused by optical flow based methods.

Recently, some implicit algorithms were proposed. Reference [32] exploited a 3D convolution-based
residual network for VSR instead of explicit motion alignment. Reference [19] proposed a dynamic filter
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network for VSR. Reference [30,33] utilized deformable convolution to perform temporal alignment.
These methods used implicit temporal assignment and avoided the issues in optical flow. However,
they all used seven consecutive input frames to predict an intermediate frame, which led to huge
training costs.

The work most related to ours is FRVSR [14], which also used frame-recurrent. However, in [14],
the optical flow was used for explicit motion estimation, which may lead to artifacts around the image
structure. In addition, our BTRPN uses a bidirectional structure, which ensures full utilization of temporal
information. Compared to [14], our method achieves better VSR results with a smaller network.

3. The Progressive Up-Sampling Bidirectional Temporal-Recurrent Propagation Network

3.1. Network Architecture

The overall network framework is shown in Figure 1. The structure and weight of the two
subnetworks of BTRPN are precisely the same, and they process, respectively, the positive and reverse
LR input video on the time axis, thus allowing the bidirectional temporal information flow. In the TRP
unit, the method of progressive sampling is adopted to avoid the large one-step scale sampling. At the
end of BTRPN is a fusion module with the channel attention mechanism, through which the features
of the two sub-networks are combined, and the reconstructed video frames are output.

Figure 1. Bidirectional temporal-recurrent propagation network (BTRPN) network architecture.



Electronics 2020, 9, 2085 4 of 15

3.2. TRP Unit

The TRP unit is illustrated in Figure 2. The input of the TRP unit is composed of a three section
cascade: consecutive video frames Xt−1:t+1 (the current frame is in the middle), the temporal status of
the last moment St−1, the result of Space to Depth processing of the reconstructed output from the last
moment yt−1. The output of the TRP unit is the temporal status of the current moment St and the SR
result of the current frame yt.

St, yt = TRP(Xt−1:t+1, St−1, Space2Depth(yt−1)) (1)

The TRP unit is composed of two branches, which output temporal status St and SR reconstruction
results yt, respectively. These two branches share the feature extraction module, which consists of
multiple convolutional layers followed by the Rectified Linear Unit (Relu) activation layers. The Relu
activation layers can make convergence much faster while still present good image quality. The branch
of output yt can be regarded as a residual network with the number of channels r2. The output of the
residual network is up-sampled through Depth to Space to obtain the reconstructed frame yt. Space to
Depth is the inverse of Depth to Space proposed by FRVSR [14]. It is illustrated in Figure 3.

Figure 2. The architecture of the proposed TRP (Temporal-Recurrent Propagation) unit.
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Figure 3. Illustration of the Space-to-Depth transformation.

3.3. Bidirectional Network

We found that VSR results obtained by positive and reverse sequence input are different, as Table 1
shows. We set up a small FRVSR [14] network: FRVSR 3-64. The optical flow estimation is obtained
by stacking three residual blocks, and the number of channels in the hidden layer is 64. After the
FRVSR 3-64 was trained to convergence, we tested the model on the VID4 dataset and recorded results.
Then we processed the four videos on the VID4 dataset in reverse order on the timeline and tested the
model on the reverse VID4 dataset. From Table 1, we can see the difference between the forward and
reverse processing of the same video. Only unilateral information flows can provide limited temporal
information. So we designed a bidirectional network to extract inter-frame temporal information fully.

Table 1. FRVSR3-64 SR results on the positive and reverse VID4 dataset.

Calendar City Foliage Walk Average

Time Axis Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

positive 4 22.86 0.754 27.07 0.774 25.46 0.722 29.23 0.889 26.16 0.785
reverse 4 22.77 0.749 27.08 0.775 25.24 0.714 29.26 0.889 26.09 0.782

As shown in Figure 4, the network consists of two sub-networks, which input videos on the
forward and backward time axis, respectively. Then the two subnetworks are combined by a fusion
module to obtain the final output. The two subnetworks are identical in structure and parameters,
distinguished only by the timeline order of the input video.
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Figure 4. The bidirectional recurrent transmission mechanism.

3.4. Attentional Mechanism

We use a channel attention fusion module [15] in Figure 5 to fuse features from the two subnetworks.
The attention mechanism [15] has been applied to the SISR and improved SR performance. Attention can
be viewed as a guidance to bias the allocation of available processing resources towards the most
informative components of an input. In our network, the output features of the two subnetworks
can be regarded as a set of vectors in the space based on local priors. These different channels of the
two subnetworks feature vectors contain different information, and different channels have different
effects on the SR results. Adding channel attention in the fusion module in Figure 6 can help the
network adaptively rescale and adjust the features of the channel so that the network can focus on
more informative features and get better SR results. In the fusion module, firstly, features are scaled by
an attention mechanism after the two subnetwork outputs are concatenated and input into two 3 × 3
kernel 2D convolutional layers. Secondly, the scaled features are added to the original input at the pixel
level. Thirdly, the second-step result is channel-compressed through a 1 × 1 kernel convolutional layer.
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Finally, the channel compressed result performs Depth to Space to get the final SR result. The formula
for the whole process is as follows:

ISR = D2S(W1×1
3 × (Finput + CA(W3×3

2 × (ReLu(W3×3
1 × Finput))))) (2)

In the formula, Finput and ISR, respectively, represent the input feature vectors of the fusion
module and the final reconstruction results. CA(·) represents the channel attention mechanism.
ReLu(·) represents ReLU nonlinear activation unit. D2S(·) represents Depth to Space. W represents
the weight matrix. Subscripts 1, 2 and 3, respectively, represent the three convolutional layers from
shallow to deep in the fusion module, and the superscript represents the size of the convolution kernel.

Figure 5. Fusion module.

Figure 6. Channel attention mechanism with scaling factor r.

3.5. Progressive Up-Sampling

For the image SR work, one-step mapping on the large scale factor means that the optimization
solution will be carried out in a more extensive solution space compared with small scale factors,
which will increase the difficulty of model learning and affect the final image. Network design needs
to avoid one-time large scale mapping, as much as possible in the form of multiple small scales (2×)
mapping. Therefore, we propose a progressive improved TRP version, as Figure 7 shows. For 4×
enhancement, We used two 2× TRP units level 1 and level 2. The TRP Unit level 1 is the same as
Section 3.2 describes. The input of TRP Unit level 2 is the consecutive video frames Xt−1:t+1 after
interpolation, the temporal status of the last moment St−1 after interpolation, the result of Space to
Depth processing of TRP Unit level 1 SR output Xt−1 ↑2. The final output is 4× SR result yt.
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Figure 7. Progressive up-sampling TRP unit for 4× video super-resolution (VSR).

4. Experiments

4.1. Datasets and Training Details

We train all the networks using videos from the REDS [34] dataset proposed by NTIRE2019. REDS
consists of 300 high-quality (720p) clips: 240 training clips, 30 validation clips, and 30 testing clips
(each with 100 consecutive frames). We use the training clips and validation clips as a training dataset
(270 clips). Limited by the device, the REDS raw data need to be compressed and sampled randomly
before training to ensure storage space. Under the 4× VSR task, we firstly compress all the original
videos of 1280 × 720 into 960 ×540 as the training HR videos. Then the videos are down-sampled
four times to obtain the input LR videos of 240 × 135. The image resize function in Matlab (imresize)
completes the above sampling operation. Furthermore, the training data of the original 100 consecutive
video frames only takes the first 30 frames for the training to further save space.

We set the batch size as 8 with size 128 × 128 for HR patches. We set the learning rate as 1 × 10−4

and decrease it by a factor of 10 for every 200 K iterations for a total of 400 K iterations. We initialize all
the weights based on a Xavier Initialization. For all the activation units following the convolutional
layers, we use ReLu. We use Adam [35] with a momentum of 0.9 and weight decay of 1 × 10−4 for the
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optimization. We use Huber loss [36] as the loss function for training BTRPN referring to DUF-VSR [19].
The expression for Huber Loss is as follows:

L(Ŷ, Y) =

{
1
2 ||Ŷ−Y||22 ||Ŷ−Y|| < δ

δ||Ŷ−Y|| − 1
2 δ2 otherwise

(3)

When training, the δ is set as 0.01. All experiments are performed using Python3.7 and Pytorch1.1.0
on a 2.1 GHz CPU and NVIDIA 1080Ti GPU. All tensors involved in the training and testing process
are interpolated using the bilinear interpolation function provided in the Pytorch. According to
mainstream practice, training and testing are conducted only on the Y channel of the YCbCr space,
PSNR and SSIM are only calculated on the Y channel.

4.2. Model Analysis

4.2.1. Depth and Channel Analysis

We construct multiple BTRPN networks of different depths and channels: BTRPN10-64,
BTRPN10-128, BTRPN20-64, BTRPN20-128. 10/20 means that the network has 10/20 convolutional
layers. 64/128 means that each convolutional layer channel is 64/128. Table 2 shows the performance
of the four models for the 4× VSR. We can see that BTRPN20-128 has the best performance.
The BTRPN20-64 has double-depth compared with BTRPN10-64, but the performance was not
significantly improved. However, the BTRPN10-128 with double numbers of channels compared to
BTRPN10-64 has a significant performance improvement. It indicates that it is more useful for the
shallow network to increase the channel numbers in each layer than deepen the network.

Table 2. The comparison of different BTRPN models on the VID4 dataset for 4× VSR.

Calendar City Foliage Walk Average

Model Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BTRPN10-64 4 23.30 0.780 27.62 0.794 25.91 0.743 30.04 0.897 26.69 0.804
BTRPN20-64 4 23.39 0.786 27.68 0.799 25.99 0.746 30.26 0.900 26.83 0.808

BTRPN10-128 4 23.56 0.794 27.78 0.804 26.15 0.754 30.44 0.904 26.98 0.814
BTRPN20-128 4 23.69 0.804 27.84 0.811 26.37 0.766 30.72 0.909 27.15 0.822

Table 3 records training time for the four models. Table 4 records test time for the four models.
Figure 8 shows the convergence rates of different models. Since the BTRPN network is not extensive,
almost all BTRPN models converge at 250 K iterations.

Table 3. Time consumption of different BTRPN models for 50,000 iterations.

Model Scale Iterations Parameters Training Time

BTRPN10-64 4 50,000 670 K 40 min
BTRPN20-64 4 50,000 2600 K 45–50 min
BTRPN10-128 4 50,000 1040 K 50–55 min
BTRPN20-128 4 50,000 4070 K 1 h

Table 4. Test time of different BTRPN models.

Model Scale Parameters Test Time

BTRPN10-64 4 670 K 0.016 s
BTRPN20-64 4 2600 K 0.036 s
BTRPN10-128 4 1040 K 0.027 s
BTRPN20-128 4 4070 K 0.066 s



Electronics 2020, 9, 2085 10 of 15

Figure 8. The convergence of different models.

4.2.2. Bidirectional Model Analysis

We test bidirectional and unidirectional models on positive and reverse VID4 dataset. To simplify
the experiment and keep the same experimental conditions of the other control groups, we do not
use progressive up-sampling TRP unit in Table 5. BTRPN-5L consists of 5 convolutional layers,
and the fusion module is simplified to the convolutional layers concatenation. Due to the lack of a
fusion module in TRPN, we use seven convolutional layers represented as TRPN-7L to guarantee the
parameters consistent with BTRPN-5L. The parameters of TRPN-7L and BTRPN-5L are all around
1070 K. Experiments in Table 5 show that there is a big difference in the VSR results of positive and
reverse video sequences for unidirectional TRPN-7L. The average PSNR difference of the VID4 dataset
can reach 0.1db, and the maximum PSNR difference of a single video can reach 0.37db. However,
the VSR results of the positive and reverse video sequences for bidirectional BTRPN-5L are almost
identical. Furthermore, the results of BTRPN-5L on the VID4 dataset are better than those of TRPN-7L
in both positive and reverse sequence. These results indicate that the bidirectional temporal network
makes more use of temporal information and can reach better SR reconstruction.

Table 5. Results of the bidirectional and non-bidirectional model for 4× VSR on the VID4 dataset.

Calendar City Foliage Walk Average

Model Time Axis PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

TRPN-7L positive 23.01 0.766 27.13 0.778 25.63 0.733 29.38 0.891 26.29 0.792
TRPN-7L reverse 22.92 0.760 27.14 0.779 25.26 0.718 39.41 0.892 26.18 0.787

BTRPN-5L positive 22.95 0.761 27.23 0.785 25.54 0.728 29.74 0.897 26.36 0.793
BTRPN-5L reverse 22.95 0.761 27.23 0.785 25.54 0.728 29.73 0.897 26.36 0.793

4.2.3. Attention Mechanism

To demonstrate the effect of the attention mechanism, we use concatenation and channel attention
fusion module to deal with the output of the two subnetworks, respectively. Experiments in
Table 6 show that channel attention boosts the PSNR from 26.36 db to 26.78 db. This indicates
that channel attention can direct the network to focus on more informative features and improve
network performance.
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Table 6. The influence of the attention mechanism for 4× VSR.

Calendar City Foliage Walk Average

Attention Mechanism PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

not used 22.95 0.761 27.23 0.785 25.54 0.728 29.74 0.897 26.36 0.793
used 23.34 0.784 27.62 0.796 25.95 0.746 30.20 0.899 26.78 0.807

4.2.4. Progressive Up-Sampling

We test the BTRPN networks using one-step up-sampling and progressive up-sampling.
The models in Table 7 both contain ten layers of convolution and maintain the same level of model size.
Experiments show that the result of progressive up-sampling is better than that of one-step up-sampling.
This shows that progressive up-sampling can indeed help the network achieve better SR performance
than one-step up-sampling.

Table 7. The influence of the progressive up-sampling mechanism for 4× VSR.

Calendar City Foliage Walk Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

one-step up-sampling 23.34 0.784 27.62 0.796 25.95 0.746 30.20 0.899 26.78 0.807
progressive up-sampling 23.56 0.794 27.78 0.804 26.15 0.754 30.44 0.904 26.98 0.814

4.3. Comparison with State-of-the-Art Algorithms

4.3.1. Quantitive and Qualitative Comparison

We compare the proposed BTRPN20-128 (referred to as BTRPN in the later section) with several
the-state-of-the-art VSR algorithms on the VID4 dataset: VSRNet [10], VESPCN [31], DRVSR [11],
Bayesian [17], B1,2,3+T [13], BRCN [37], SOF-VSR [38], FRVSR [14], DUF-16L [19], RBPN [18],
RCAN [25]. Table 8 shows that our BTRPN network has the best average PSNR and the best average
SSIM on the VID4 dataset. The qualitative result in Figures 9 and 10 also validates the superiority of
the proposed method. In the short video of the city, BTRPN restores the clearest building edge lines,
which reflects that the BTRPN network with progressive up-sampling has a strong reconstruction ability
of regular patterns. In the foliage video, compared with other methods, BTRPN, accurately captures
the motion trajectory of the white car and achieves a good motion compensation effect, which again
proves the effectiveness of BTRPN’s temporal propagation mechanism.

Figure 9. Qualitative comparison on the city clip for 4× video SR. GT is the abbreviation of ground truth.
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Figure 10. Qualitative comparison on the foliage clip for 4× video SR.

Table 8. Quantitative comparison on the VID4 dataset for 4× video SR. Red and blue indicate the best
and second-best performance, respectively.

Calendar City Foliage Walk Average

Algorithm PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 20.39 0.572 25.16 0.603 23.47 0.567 26.10 0.797 23.78 0.635
RCAN 22.33 0.725 26.10 0.696 24.74 0.665 28.65 0.872 25.46 0.740

VSRNet - - - - - - - - 24.84 0.705
VESPCN - - - - - - - - 25.35 0.756
DRVSR 22.16 0.747 27.00 0.757 25.43 0.721 28.91 0.876 25.88 0.775

Bayesian - - - - - - - - 26.16 0.815
B1,2,3 + T 21.66 0.704 26.45 0.720 24.98 0.698 28.26 0.859 25.34 0.745

BRCN - - - - - - - - 24.43 0.662
SOF-VSR 22.64 0.745 26.93 0.752 25.45 0.718 29.19 0.881 26.05 0.767

FRVSR - - - - - - - - 26.69 0.822
DUF-16L - - - - - - - - 26.81 0.815

RBPN 23.99 0.807 27.73 0.803 26.22 0.757 30.70 0.909 27.12 0.808
BTRPN 23.69 0.804 27.84 0.811 26.37 0.766 30.72 0.909 27.15 0.822

4.3.2. Parameters and Test Time Comparison

We compare the parameters and test times of BTRPN and other networks. We take the calendar
clip in the VID4 dataset with 180 × 135 images input and 720 × 540 HR images output to record the
test time for 4× enlargement. Figure 11 shows that BTRPN has achieved a good trade-off between
model size and reconstruction effect. BTRPN makes an excellent reconstruction effect at only one-third
of the size of the RBPN model. Compared with the same frame-recurrent type of FRVSR, BTRPN also
obtains better video reconstruction quality with smaller network capacity. Table 9 shows that BTRPN
has a distinct speed advantage compared with other methods.

Table 9. Test time compared to other models for a frame on the calendar clip.

Model Scale Test Time

BRCN 4 0.024 s
SOF-VSR 4 0.120 s
DUF-16L 4 0.420 s
DUF-28L 4 0.500 s

RBPN 4 0.50 s
BTRPN 4 0.066 s
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Figure 11. Parameters of different models for 4x VSR on the VID4 dataset.

5. Conclusions

In this paper, we propose a novel bidirectional neural network that can integrate temporal information
between frames. To fuse the bidirectional neural network better, we use the channel attention. We also
find that progressive up-sampling is better than one-step up-sampling. Extensive experiments on the VID4
dataset demonstrate the effectiveness of the proposed method.
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