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Abstract: This paper explores a methodology to locate battery energy storage systems (BESS) in rural
alternating current (AC) distribution networks fed by diesel generators to minimize total greenhouse
gas emissions. A mixed-integer nonlinear programming (MINLP) model is formulated to represent
the problem of greenhouse gas emissions minimization, considering power balance and devices
capabilities as constraints. To model the BESS systems, a linear relationship is considered between
the state of charge and the power injection/consumption using a charging/discharging coefficient.
The solution of the MINLP model is reached through the general algebraic modeling system by
employing the BONMIN solver. Numerical results in a medium-voltage AC distribution network
composed of 33 nodes and 32 branches operated with 12.66 kV demonstrate the effectiveness of
including BESS systems to minimize greenhouse gas emissions in diesel generators that feeds rural
distribution networks.

Keywords: battery energy storage systems; rural distribution networks; greenhouse gas emissions;
optimization problem; diesel generation

1. Introduction

The growing integration of renewable energy sources in the alternating current (AC) distribution
network has been promoted worldwide by government organizations in order to reduce greenhouse
emissions [1,2]; however, the integration of renewable energy sources, mainly photovoltaic and wind
power plants, carries some challenges as estimating the uncertainties generated by weather conditions
(i.e., wind speed and solar radiation) [3,4]. These conditions are highly related to the distribution
network location and the year’s seasons (e.g., winter or summer) [5,6]. Therefore, it has been necessary
to implement other additional devices to balance the distribution network operation, such as energy
storage systems, which can reduce power oscillations. The most used energy storage system are
batteries [7], superconductors [8], supercapacitors [9], flywheels [10], pumped-hydro systems [11],
and compressed air systems [12]. Their integration depends on their function in the electrical network;
for example, superconductors, supercapacitors, and flywheel systems are usually implemented in
voltage or frequency compensation [13,14]. In contrast, pumped-hydro and battery systems are
typically employed in long-term power supplies [15].
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The combination of renewable energy sources and energy storage systems is a key strategy
to overcome the problems of uncertainty and variability in primary resources from renewable
sources [16]. In addition, it allows the distribution network to be more reliable and cost-effective [17].
Nevertheless, this combination generates many problems in the planning, operation, and dispatch in
the AC distribution network since energy storage systems must be appropriately located to balance
generation-demand and enhance the voltage profiles and power quality [18].

Battery energy storage systems (BESS) are the most natural storage devices to be integrated into
networks since they can provide a wide range of varied applications. BESS still have many challenges to
face for its safe integration, operation, and function. A lot of research exists in the specialized literature
focused on integrating the BESS into AC distribution networks. In [19], a review of planning, operating,
and controlling of energy storage systems and wind power was presented. In [20], an economic
overview of the different battery kinds employed for large-scale electricity storage was provided.
In [21], dynamic programming to achieve the optimal placement, chosen, and charge–discharge
scheme of BESS in distribution networks was presented. This dynamic programming was carried out
by implementing a genetic algorithm and minimizing a weighted single-objective function. In [22],
a recurrent neural network was used to manage the state-of-charge (SoC) of BESS. In [23], a joint
integration between the BESS and smart photovoltaic (PV) inverters was presented to help demand
management by improving the voltage profiles. This integration was solver with simulated annealing
that selected the placement of the BESS, while an inner optimal power flow (OPF) determined the
power active delivered/absorbed by each BESS. In [24], an optimization method using a loss sensitivity
index for optimal location of the BESS in the AC unbalanced distributed system was developed.
In [25], a mix between a genetic algorithm and particle swarm optimization for optimal location and
sizing in distribution systems reducing power losses in a microgrid. In [26], a bi-level optimization
model was developed to obtain the siting and sizing optimal of multiple BESS in the AC distribution
networks. The first level locates the BESS by taking into account the charging capacity. The second
level defines the operation optimal of the BESS to reduce the power losses in distribution networks.
In [27], a stochastic programming model for the optimal operation of the BESS was shown. This model
considered uncertainties in the supply and demand for energy, as well as economic and environmental
aspects. In [7], a Chu and Beasley genetic algorithm optimization was proposed to determine the
optimal placement and selection of the BESS and capacitors banks in the AC distribution systems.
The proposed objective was to minimize network power losses using a master–slave methodology,
where the master stage determined the placement and selection of the BESS. While the slave stage
computed the objective function in each configuration given by the master stage. Finally, the best
charge–discharge coordination of the BESS was found.

The application of the optimization techniques to manage the energy flow in distribution systems
with high penetration of renewable energy systems and BESS is strictly necessary to guarantee the best
possible performance of the distribution grid at the same time that is ensured the adequate operation
of the batteries to enlarge their use-life.

The authors in [28] presented a multi-objective optimization model with nonlinear constraints
to operate lithium-ion batteries considering three optimization objectives, such as battery
health, charging time, and energy conversion efficiency simultaneously. The solution of this
multi-objective optimization model is reached with the application of the ensemble multi-objective
bio-geography-based optimization approach. Numerical results demonstrated two main charging
patterns, namely the constant current-constant voltage (CC-CV) and multistage CC-CV, which are
optimized to balance various combinations of charging objectives. Pareto frontiers demonstrate
different trade-offs and sensitive behaviors between objective functions, which will help to take
the operation decision for the battery pack. In [29], the authors presented an optimal average
state-of-charge trajectory through a multi-objective optimization with consideration of user demand
and battery pack’s energy loss. The proposed distributed charging strategy makes the state-of-charge
follow the prescheduled trajectory, which can effectively suppress the violation of the safety-related
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charging constraints through online battery model bias compensation. Numerical results based on an
illustrative example shows the efficiency and robustness of the proposed approach regarding existing
literature approaches by combining optimization and control procedures in the optimal operation of
batteries for electric vehicle applications. In [30], the authors proposed a constrained multi-objective
optimization framework to achieve economy-conscious battery charging management. The authors
propose a coupled electrothermal-aging model to be first applied to capture the nonlinear electrical,
thermal, and aging dynamics of a lithium-ion battery with different timescales. The solution of
the multi-objective optimization model is made by the application of the second generation of the
non-dominated sorting genetic algorithm, which allowed finding an adequate equilibrium among
charging speed and thermal variations during charging to ensure the useful life of the battery in electric
vehicle applications.

The main difference of our proposed approach regarding literature reports is that we proposed an
exact mixed-integer nonlinear programming model (MINLP) solvable at any optimization package
equipped with branch and bound and interior-point methods, such as the general algebraic modeling
system, i.e., (GAMS); in addition, our model allows for reducing the amount of CO2 emissions to the
atmosphere by diesel generation considering BESS locations in one or multiple optimization nodes,
showing additional reductions in the order of tens of pounds of CO2 per day regarding heuristic reports
in the literature. An additional contribution of our approach is the location of the BESS considering
the presence of slack node or not, which demonstrates that if the slack node is relaxed, additional
reductions of about 140 lb/day are also reached after the solution of the proposed MINLP model.

Regarding multi-objective approaches previously presented in the literature review
(see references [28–30]) for the operation of batteries in electric vehicle applications, note that these
works were concentrated on proposing efficient charging/discharging methodologies that include
aging model, thermal behaviors, energy efficiency, among others. These approaches are completely
different from the proposed optimization approach addressed in this paper since we are interested
in operating these batteries to improve electrical network performance in relation to the amount of
greenhouse gas emissions. In this sense, here, we consider batteries as devices that can be linearly
modeled inside of the proposed MINLP formulation. However, we are interested in including the
internal behaviors presented in those references into electrical grid analyses, and will be investigated
in future works.

The rest of this study is organized as follows: Section 2 described the mathematical formulation
for optimal location and selection of BESS. Section 3 presents the strategy of solving the proposed
optimization model. Section 4 shows the electrical distribution system and considered scenarios.
Section 5 presents all the results and analysis of the proposed methodology. Lastly, the main conclusions
derived from this study are given in Section 6.

2. Mathematical Formulation

The optimal selection of batteries in AC distribution networks corresponds to an MINLP model
since it involves binary and continuous variables [31]. The binary variables are used to select the node
and the type of battery to be located, and the continuous variables are associated with voltages, angles,
power generation, and energy stored in batteries, among others [24]. The objective function of the
MINLP model is to minimize the total greenhouse gas emissions produced in the combustion process of
the diesel for power generation. The constraints are associated with power balance, voltage regulation
bounds, and device capabilities. The mathematical formulation of the MINLP problem is given
as follows.

2.1. Objective Function

The main greenhouse gas emissions produced by diesel generators for providing energy are
concentrated in carbon dioxide CO2; in addition, for medium voltage networks due to the amount of
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power provided in rural grids (from 3 to 5 MW), this function takes a linear structure as presented
below [32]:

min ECO2 = ∑
t∈T

∑
i∈N

TCO2
i pdg

i,t ∆t, (1)

where ECO2 is the fitness function, which calculates the number of pounds of greenhouse gas emissions;
TCO2

i is the amount of CO2 released into the atmosphere in kg
kWh by a diesel generator connected to

at node i; the active power generated at node i in the period of time t by by the diesel generator is
represented as pdg

i,t . ∆t is the duration of the time period considered (in general 1 h). Observe that N
and T denote the sets of all nodes in the network and the total time periods of the operational horizon.

2.2. Set of Constraints

The main complex constraints in AC distribution system analysis correspond to the power balance
equations, which represent the active and reactive power injected into each node i in each period t [33].
These expressions have the following form:

pdg
i,t + prs

i,t + ∑
b∈B

pb
i,t − pd

i,t = vi,t ∑
j∈N

Yijvj,t cos
(
δi,t − δj,t − θij

)
, {i ∈ N , t ∈ T } , (2)

qdg
i,t + qrs

i,t + ∑
b∈B

qb
i,t − qd

i,t = vi,t ∑
j∈N

Yijvj,t sin
(
δi,t − δj,t − θij

)
, {i ∈ N , t ∈ T } , (3)

where Yij represents the admittance value in nodes i and j, which contain the voltages vi,t and vj,t in
each period t. δi,t (δj,t) denotes the voltage angle at node i (j) in the period t, θij is the angle of the
admittance between nodes i and j. The active and reactive power generated by renewable sources
connected at node i in the period t are presented as prs

i,t and qrs
i,t, respectively. While for the batteries,

the active and reactive power capabilities are denoted as pb
i,t and qb

i,t and the active and reactive power
demands are represented as pd

i,t and qd
i,t, respectively.

Constraints related to batteries are listed below:

SoCb
i,t+1 = SoCb

i,t − ϕb
i pb

i,t∆t, {i ∈ N , t ∈ T } , (4)

xb
i SoCb,min

i ≤ SoCb
i,t ≤ xb

i SoCb,max
i , {i ∈ N , t ∈ T } , (5)

xb
i pb,min

i ≤ pb
i,t ≤ xb

i pb,max
i , {i ∈ N , t ∈ T } , (6)

SoCb
i,t0

= xb
i SoCb,initial

i , {i ∈ N , t ∈ T } , (7)

SoCb
i,t f

= xb
i SoCb,final

i , {i ∈ N , t ∈ T } , (8)

∑
b∈B

∑
i∈N

xb
i ≤ ∑

b∈B
Nmax

b , (9)

∑
b∈B

xb
i ≤ 1, {i ∈ N} , (10)

where SoCb
i,t represents the state of charge in each BESS b located at node i for the period t and ts

operational limits are indicated as SoCb,min
i and SoCb,max

i . xb
i represents the binary variable for the

placement of a BESS-type b at node i. Observe that SoC is interpreted as the amount of energy stored
in the BESS in percent. The battery charge/discharge coefficient b is denoted as ϕb

i . The minimum
and maximum admissible power injected/absorbed for the BESS b at node i in each period t are
presented as pb,min

i and pb,max
i , and the initial and final SoC are denoted as SoCb,initial

i and SoCb,final
i .

These state-of-charges are defined by the utility company to operate the BESS. Nmax
b represents the

number of BESS available by technology type. Observe that B is the set of all the BESS-types available
for installation.
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An important constraint regarding the adequate operation of electrical distribution networks is
the voltage regulation in all the nodes, which takes the following form:

vmin
i ≤ vi,t ≤ vmax

i , {i ∈ N , t ∈ T } , (11)

where vmin
i and vmax

i represent the minimum and maximum voltage bounds admissible for each node
in the AC distribution network at each period of time.

The complete understanding of the mathematical model represented by (1)–(11) is as presented
below: Expression (1) is the fitness function of the problem, which is associated with the minimization
of the total emissions of CO2 to the atmosphere by diesel generators; Expressions (2) and (3)
correspond to the balance of active and reactive power in each node of the network in each
period; Inequality constraint (4) determines the linear relationship between the SoC and the
power absorbed/injected by a BESS-type b connected at node i in each period. Expressions (5)
and (6) determine the lower and upper bounds for battery variables, i.e., state-of-charge and
power injection/absorption, respectively. Inequality constraints (7) and (8) determine the initial and
final operative desired conditions regarding the operation of batteries in the distribution network.
Expressions (9) and (10) define the maximum number of BESS available for location in the AC
distribution network as well as the possibility of installation of one type of battery per node.
Finally, the box-type constraint (11) determines the minimum and maximum voltage regulation
bounds admitted by regulatory entities in the operation of medium-voltage distribution networks.
The optimization model defined from (1) to (11) exhibits a nonlinear non-convex structure, where the
main complicating constraints are related to power balance equations due to the presence of products
between variables and trigonometric functions. The general algebraic modeling system (GAMS) is
used to resolve this MINLP model as this software has powerful tools to tackle complex optimization
problems involving binary variables, as recommended in [34] for power system analysis.

In the following section, we briefly present the solution methodology of the proposed MINLP
approach to select and locate batteries in AC rural distribution networks for greenhouse gas
emissions’ minimization.

3. Solution Strategy

To solve the optimal selection and placement of BESS in rural AC distribution networks,
taking into account the MINLP formulation described from (1) to (11), we employed the GAMS
optimization software. This optimization package has been primarily used in mathematical
optimization, mainly when the optimization problems have a nonlinear non-convex structure,
including binary variables [31]. Some of the applications of the GAMS optimization package
in optimization problems are: parameter decisions on the product features of a bike frame [35],
parametric estimation in single-phase transformers [36], optimal planning of AC distribution
networks [37], optimal placement and dimensioning of distributed generation in distribution
systems [38], superstructure optimization with accurate thermodynamic models [39], the optimal
location of batteries in DC distribution networks [40], optimal design of osmotic power plants [41],
optimal operation of batteries in transmissions and power systems [31,32], plastic limit analysis
problems [42], and so on.

It is worth mentioning that the GAMS software has a simple interface to implement any
optimization model in compact form [31]. In this interface intervenes five main steps described below:

I. Definition of the sets where variables are defined, i.e., nodes, batteries, and periods.
II. Definition of matrices, vectors, and tables, i.e., grid configuration, renewable energy information,

or greenhouse emissions’ rate, among others.
III. Definition of variables and their natures, i.e., binaries, continuous, or discrete.
IV. Definition of equations and their implementation using symbolic syntax as defined from (1)

to (11).
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V. Solution of the optimization model using an adequate optimization tool. The solver’s selection
depends on the nature of the optimization problem; in this paper, an MINLP method is selected.

To summarize the solution strategy proposed in this paper to the problem of the optimal
location and selection of BESS in the AC distribution network, the flow chart depicted in Figure 1
was implemented.

Begin: GAMS
implementationAC grid data Ren. forecasting

Define sets and maps

Define scalars,
parameters and tables

Define the nature
of the variables

and their bounds

Define the names
of the equations

Write the
equations using

symbolic structure

Solve the model
using a MINLP solver

End: Results’ analysis Report solution

Figure 1. Flow chart of the proposed optimization approach for optimal selection and location of
batteries in alternating current (AC) rural distribution networks.

For additional details about the implementation of optimization models in the GAMS software,
refers to [31].

It is worth mentioning that, in the literature to analyze batteries from the
optimization point of view, multi-objective methods have been proposed, such as ensemble
bio-geography-based optimization approach [28], nondominated sorting genetic algorithms [30],
and machine-learning-enabled data-driven models for battery capacity prediction [43,44], as well
as single-objective approaches, such as interior-point methods [32,45], second-order cone
programming [46], genetic algorithms [7], particle swarm optimization [47], and semidefinite
programming [48], among others. However, most of these approaches deal with nonlinear
optimization problems, which are more treatable than the MINLP model presented in this research,
which needs powerful methods for being solved efficiently, which justifies the usage of GAMS as a
solution technique.

4. Electric Distribution Network

To evaluate the proposed optimization model focused on reducing greenhouse gas emissions to
the atmosphere by diesel generators, we adopted a 33-node test feeder as an example of application.
This test feeder has 33 nodes and 32 lines (i.e., radial topology), which is operated with a rated
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voltage of 12.66 kV, and its total active and reactive power demand are 3715 kW and 2300 kVAr,
respectively. Figure 2 illustrates the topology of the 33-node test feeder and its electrical parameters,
i.e., resistances, reactances, and apparent power consumption, are reported in Table 1.

Observe that the information provided for the consumption in Table 1 is associated with the
maximum demand at the peak hour.

slack

1
2

3
456789101112131415161718

23

24

25

19

20

21

22

26
27282930313233

Figure 2. The 33-node test feeder topology.

Table 1. Parametric information of the 33-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW)

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20

10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40

19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50

23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25

26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40
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4.1. Demand and Renewable Energy Information

To validate the proposed MINLP model to determine the efficient operation of BESS in rural AC
distribution networks, we consider the daily renewable generation and demand information reported
in Table 2.

Table 2. Daily behavior of renewable generators and demand.

Time (s) PV1 (p.u) PV2 (p.u) WT1 (p.u) WT2 (p.u) Demand (p.u)

0.0 0 0 0.633118295 0.489955551 0.34
0.5 0 0 0.629764678 0.467954207 0.28
1.0 0 0 0.607259323 0.449443905 0.22
1.5 0 0 0.609254545 0.435019277 0.22
2.0 0 0 0.605557422 0.437220792 0.22
2.5 0 0 0.630055346 0.437621534 0.20
3.0 0 0 0.684246423 0.450949300 0.18
3.5 0 0 0.758357805 0.453259348 0.18
4.0 0 0 0.783719339 0.469610539 0.18
4.5 0 0 0.815243582 0.480546213 0.20
5.0 0 0 0.790557706 0.501783479 0.22
5.5 0 0 0.738679217 0.527600299 0.26
6.0 0 0 0.744958950 0.586555316 0.28
6.5 0 0 0.718989730 0.652552760 0.34
7.0 0.039123365 0.026135642 0.769603567 0.697699990 0.40
7.5 0.045414292 0.051715061 0.822376817 0.774442755 0.50
8.0 0.065587179 0.110148398 0.826492212 0.820205405 0.62
8.5 0.132615282 0.263094042 0.848620129 0.871057775 0.68
9.0 0.236870796 0.431175761 0.876523598 0.876973635 0.72
9.5 0.410356256 0.594273035 0.904128455 0.877065236 0.78

10.0 0.455017818 0.730402039 0.931213527 0.897955131 0.84
10.5 0.542364455 0.830347309 0.955557477 0.903245007 0.86
11.0 0.726440265 0.875407050 0.965504834 0.916903429 0.90
11.5 0.885104984 0.898815348 0.971037333 0.924757605 0.92
12.0 0.924486326 0.975683083 0.972218577 0.942224932 0.94
12.5 1 1 0.980049847 0.949956724 0.94
13.0 0.982041153 0.978264398 0.981135531 0.963773634 0.90
13.5 0.913674689 0.790055240 0.988644844 0.974977461 0.84
14.0 0.829407079 0.882557147 0.991393173 0.986750539 0.86
14.5 0.691912077 0.603658738 0.998815517 0.995058133 0.90
15.0 0.733063295 0.606324907 1 1 0.90
15.5 0.598435064 0.357393267 0.996070963 0.998107341 0.90
16.0 0.501133849 0.328035635 0.987258076 0.997690423 0.90
16.5 0.299821403 0.142423488 0.976519817 0.993076899 0.90
17.0 0.177117518 0.142023463 0.929542167 0.982629597 0.90
17.5 0.062736095 0.072956701 0.876413965 0.972084487 0.90
18.0 0 0.019081590 0.791155379 0.930225756 0.86
18.5 0 0.008339287 0.691292162 0.891253999 0.84
19.0 0.000333920 0 0.708839248 0.781950905 0.92
19.5 0 0 0.724074349 0.660094138 1.00
20.0 0 0 0.712881960 0.682715246 0.98
20.5 0 0 0.733954043 0.686617947 0.94
21.0 0 0 0.719897641 0.681865563 0.90
21.5 0 0 0.705502389 0.717315757 0.84
22.0 0 0 0.703007456 0.718080346 0.76
22.5 0 0 0.686551618 0.726890145 0.68
23.0 0 0 0.687238555 0.734452193 0.58
23.5 0 0 0.682569771 0.739699146 0.50

Regarding renewable generation, it is worth mentioning that:
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X The PV1 source is located at node 13 with a nominal generation of 450 kW, and the PV2 source is
located at node 25 with a nominal generation rate of 1500 kW.

X The WT1 source is located at node 13 with a nominal generation of 825 kW, and the PV2 is located
at node 30 with a nominal generation of 1200 kW.

The information regarding daily load behavior presented in Table 2 has been obtained by using
a forecasting method based on artificial neural networks as recommended in [49]. In addition,
the location of these renewable energy resources has been taken from [32], where these have been used
in economic dispatch analysis.

4.2. Battery Technologies

For the optimal operation of the 33-node test feeder, we consider three possible battery
technologies with the following characteristics:

X A battery-type A with an energy rate of 1000 kWh with a charging/discharging times of 4 h.
The nominal peak injection/consumption of 250 kW.

X A battery-type B with an energy rate of 1500 kWh with a charging/discharging times of 4 h.
The nominal peak injection/consumption of 375 kW.

X A battery-type C with an energy rate of 2000 kWh with a charging/discharging times of 5 h.
The nominal peak injection/consumption of 500 kW.

It is worth mentioning that in reference [32], the battery-type A was initially installed at node
14, the battery-type B in node 31, and the battery-type C at node 6, respectively. This information is
used for comparative purposes. Since we are interested in identifying if these nodes are effectively
the best possible location, three batteries are considered available for installations, each one with the
aforementioned technologies reported.

4.3. Greenhouse Gas Emissions

In the literature, the amount of greenhouse gas emissions for medium-voltage diesel generators
take the distribution reported in Table 3.

Table 3. Amount of main gasses emitted to the atmosphere by diesel generators.

Gas Emitted Chemical Symbol Amount (lb/MWh)

Carbon dioxide CO2 1000–1700
Sulfur dioxide SO2 0.4–3.0

Nitrogen oxides NOx 10–41
Carbon monoxide CO 0.4–9.0

Based on the information reported in Table 3, we conclude that the most important gas emitted
into the atmosphere is carbon dioxide. In this context, here we consider a middle value between both
extremes for this gas, i.e., TCO2

i = 1350 lb/MWh for simulation purposes.

5. Numerical Analysis and Discussion

This section presents the computational validation of the proposed MINLP model to address
the problem of the optimal selection and location of BESS in electrical AC distribution networks for
minimizing the amount of CO2 emissions to the atmosphere in the combustion of diesel for electricity
generation. We implement this MINLP model in the GAMS software using the nonlinear solver IPOPT
on a personal computer AMD Ryzen 7 3700U (AMD, Santa Clara, CA, USA), 2.3 GHz, 16 GB RAM
with 64-bits Windows 10 Home Single Language.
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5.1. Simulation Cases

To validate the proposed MINLP model to locate and select batteries for rural applications,
we propose the following simulation scenarios:

• Scenario 1 (S1): The operation of the 33-node test feeder considering renewable energy availability
without batteries.

• Scenario 2 (S2): The operation of the 33-node test feeder considering renewable energy availability
and the batteries optimal located with the proposed approach.

These scenarios allow for understanding the impact of the optimal placement and sizing of
distributed energy resources to minimize greenhouse gas emissions.

5.2. Computational Evaluation

Figure 3 reports the active power generation in the conventional source for the S1 and its
comparison with the power output in the same source after solving the S2.
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Figure 3. Power generation behavior in the slack source for both simulation scenarios.

From Figure 3, we can observe that if batteries are introduced in the operation of the AC
distribution network, the total amount of generation provided by the slack reduces significantly.
For example, in the period between 15 and 22, the generation in the slack node is zero for the S2

compared to values different from zero in the S1. Moreover, between the periods from 35 to 46
(peak load condition), these batteries reduce the total diesel generation to support the total power
consumption. This will significantly reduce the daily greenhouse gas emissions since, in the S1,
the amount of CO2 emissions is about 17,983.316 lb/day, and for the S2 this is about 14,541.066 lb/day.
This implies a reduction of about 19.14% after the selection and location of the batteries.

Regarding the optimal location of the batteries after solving the proposed MINLP model with
the BONMIN solver, batteries types A and C are located at node 25 and battery type-B at node 17. To
verify that the states of charge/discharge of these batteries fulfill the operative conditions assigned to
the Utility, Figure 4 reports the behavior of the SoC variable in each battery.

From the results presented in Figure 4 we can observe that:

X The behavior of the states of charge between periods from 1 to 28 for all the batteries show that
these constant charges and discharges to take advantage of the renewable generation availability
to provide power to the grid as well as to end this period with a full charge, i.e., 90%.

X Between the periods interval 28 to 36, all the batteries remain in a rest state, i.e., they do not provide
or absorb energy to (from) the grid. During this period, these periods occur since renewable
generation is enough to support all the demand guaranteeing voltage profiles in all the nodes.

X After 36 period, the batteries start to provide power to the electrical network in order to help to
reduce the amount of diesel generation require to attend the load under the peak load condition.



Electronics 2020, 9, 2097 11 of 15

Finally, in the last periods, these batteries take some energy from the grid to end the day with 50%
of the charge as defined in the operative conditions for these devices.
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Figure 4. Behavior of the state of charge/discharge of batteries after solving the S2.

5.3. Additional Simulation Results

To present the effectiveness and robustness of the proposed solution methodology to locate and
size batteries, we compare the locations reported by our approach with the locations provided in [32]
for these batteries. These simulations consider the possibility of locating multiple batteries in the same
node and the possibility of locating only one battery per node. In Table 4, these results are compared.

Table 4. Comparative results between literature and the proposed approach.

Method Nodes (Types) CO2 Emissions (lb/Day)

Heuristic [32] {6(C), 14(A), 31(B)} 14,559.045
Multiple nodes {17(B), 25(A), 25(C)} 14,541.066
Unique node {17(B), 23(A), 25(C)} 14,544.322

From Table 4, the following aspects are clear that the proposed MINLP model and its solution
in GAMS allows for improving the heuristic results at least by 15 lb/day of CO2 emissions to the
atmosphere. Figure 5 presents the results regarding the amount of CO2 emissions if the voltage profile
in the slack source and the angle is left free in the range of 0.90 and 1.1 p.u., considering the location
for the batteries provided in Table 4.
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Figure 5. Emissions of CO2 when the voltage in the slack node is left free.
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Note in Figure 5, the method allows us to prove that for optimal power flow analysis considering
high penetration of distributed energy resources, i.e., batteries and renewable sources, permit us
to reach better results regarding objective function where no impositions about slack voltage are
considered in the grid. It is worth mentioning that in this operative case, the proposed MINLP model
with the possibility of locating multiple battery technologies in the same node continues being the
optimal solution of the problem with a total amount of CO2 emissions of about 14,399.229 lb/day,
where this corresponds to a reduction about 19.08%, with respect to the base case, i.e., without the
presence of batteries.

6. Conclusions and Future Works

The problem of the optimal selection and location of battery energy storage systems in rural
AC distribution networks to minimize the amount of CO2 emissions into the atmosphere by diesel
power generation was studied in this research by proposing an MINLP model. The solution of this
MINLP model was reached with the large-scale nonlinear solver BONMIN in the GAMS environment.
Numerical results demonstrate that after locating and selecting batteries, the reduction of the CO2

emissions in the test feeder was about 19.14% compared to the base case, i.e., without penetration
of batteries.

When the proposed approach was compared with the current literature reports (heuristic
locations), the numerical results demonstrate that the MINLP model implemented in the GAMS
software allows for reducing CO2 emissions by about 17.979 lb/day when multiple batteries are
allowed per node and 17.979 lb/day when only one type of battery is permitted per node. In addition,
numerical results, when the condition of the slack node is left free, demonstrate that optimal power
flow applications are better when compared to the case where the voltage in the slack node is fixed,
since the 33-node test feeder additional reductions about 140 lb/day of CO2 emissions have been found.

As future works, we propose the following:

X The reformulation of the MINLP model into a mixed-integer convex model via second-order
programming to ensure the global optimum finding via branch and bound methods.

X To study the simultaneous location of batteries and renewable sources to identify the
best possible combination of these distributed energy resources regarding greenhouse gas
emissions minimization.

X To include hard constraints in the proposed optimization model thermal characteristics of the
batteries including aging features and the effect of the power electronic converter regarding
the efficiency of the complete system to improve the quality of the model in relation with real
behaviors in BESS.
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