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Abstract: There is a growing interest in chipless radio-frequency identification (RFID) technology
for a number of Internet of things (IoT) applications. This is due to its advantages of being of
low-cost, low-power, and fully printable. In addition, it enjoys ease of implementation. In this paper,
we present a novel, compact, chipless radio-frequency identification (RFID) tag that can be read
with either vertical or horizontal polarization within its frequency bandwidth. This increases the
sturdiness and detection ability of the RFID system. In addition, the difference between the vertical
and horizontal responses can be used for tag identification. The proposed tag uses strip length
variations to double the coding capacity and thereby reduce the overall size by almost 50%. It has
a coding capacity of 20 bits in the operating bandwidth 3 GHz–7.5 GHz, and its spatial density is
approximately 11 bits/cm2. The proposed tag has a 4.44 bits/GHz spectral capacity, 2.44 bits/cm2/GHz
encoding capacity, a spatial density at the center frequency of 358.33 bits/λ2, and an encoding capacity
at the center frequency of 79.63 bits/λ2/GHz. A prototype is fabricated and experimentally tested at a
distance of 10 cm from the RFID reader system. Then, we compare the measured results with the
simulations. The simulated results are in reasonable agreement with the simulated ones.

Keywords: strips-M; chipless RFID tags; high coding capacity; frequency-selective surface (FSS);
Internet of things (IoT)

1. Introduction

The Internet of things (IoT) allows objects and people to be connected at any place and time through
the Internet. However, this technology needs some important components to enable communication
among these objects. Radio-frequency identification (RFID) is a wireless technique that can be used for
sensing, identification, and tracking. Therefore, RFID tags and sensors have great potential for use
in IoT applications such as smart cites and industrial and tracking systems [1–4]. The RFID system
utilizes electromagnetic (EM) waves instead of the optical waves which are used with quick response
(QR) codes and barcodes. Furthermore, many materials are penetrated by the EM waves, and thus the
RFID tags could be read even when they are isolated by other low-loss materials [5,6]. Conventional
RFID tags utilize integrated circuit (IC) chips that limit their applicability due to their prohibitive
costs. Chipless RFID tags have been recently proposed to reduce the cost of the tags by removing the
expensive IC chips, thus producing fully printable tags [7,8]. Chipless RFID tags generally consist
of the following: (1) the chipless RFID tag, which contains a multi-resonance structure for object
identification, and (2) the RFID reader that is used to interrogate the tag and read the retransmitted or
backscattered response from a tag [9–12].
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In the literature, different approaches have been proposed for encoding RFID tags with data such
as time [13,14], frequency [12,15–17], phase [18], image [19], and hybrid domains [20,21]. In frequency
domain-based tags, the RFID reader uses radio signals to interrogate the tag, which then retransmits or
backscatters the frequency signature back to the reader. These tags exist in either retransmission mode
or backscattered mode varieties. Retransmission-based tags consist of multiple resonant structures
and one or more ultra-wideband antennas for transmission and reception of the data [22–24]. On the
other hand, in backscattering mode, no separate antennas are required [25–27].

To date, many different RFID structures have been demonstrated, including dual-polarized
I-slots [10,11], U-shaped strips [9], L-shaped strips [28], square loops [29], triangular loops [30],
circular loops [31], open loops [32], and inverted M-shapes [33]. High-impedance surface-based square
loop resonators were proposed by Filippo Costa et al. [34]. The authors used a frequency selective
surface (FSS) with an overall size of 4.5 cm2

× 4.5 cm2 and a coding capacity of 5 bits. Another work
that used a quarter wavelength slot resonator was reported in [31] to encode 24 bits within the size of
2.4 cm2

× 2.4 cm2. In [35], a 16-bit dual polarized chipless RFID tag was presented. Two rectangular
patches were placed in horizontal polarization, and two were placed in vertical polarization to double
the number of bits within the same frequency bandwidth.

There are two types of frequency-selective surface-based chipless RFID system configurations:
monostatic and bistatic systems. Bistatic systems use two applicators: one for interrogating and the
other for reading the RF signal. In contrast, monostatic systems use only one applicator for both
reading and interrogating. This type of system is generally considerably less expensive than a bistatic
system as it requires only one antenna and a less-complex setup. Figure 1 shows the setup for the
proposed tag intended for a monostatic RFID system.
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Figure 1. Monostatic setup for the proposed chipless radio-frequency identification (RFID) tag.

The main obstacle in deploying RFID systems remains the high cost of the tags. The cost has to
be extremely low to justify mass production. Therefore, the present study aims to develop low-cost,
chipless RFID tags by (1) reducing the overall size and the bandwidth-per-bit of chipless RFID tags
and (2) increasing the spectral capacity (bits/GHz), spatial density (bits/cm2), and spatial density at the
center frequency (bits/λ2).

In this paper, we present a novel chipless RFID tag consisting of overturned M-shaped strips.
This compact tag uses dual polarizations to make the reading procedure more robust and employs length
variation encoding to double the coding capacity from 10 to 20 bits. We have simulated the proposed
tag as an infinite structure, using a 3D full-wave electromagnetic (EM) simulator. The proposed tag has
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a 4.44 bits/GHz spectral capacity, 2.44 bits/cm2/GHz encoding capacity, a spatial density at the center
frequency of 358.33 bits/λ2, and an encoding capacity at the center frequency of 79.63 bits/λ2/GHz.
Note that processing multiple RFID tags may cause collision. In such cases, tag-to-tag anti-collision
can be implemented by one of the earlier presented techniques in [36–43].

The remainder of this paper is structured as follows. In Section 2, the tag design methodology
is presented. Section 3 involves the simulation results for some configurations. In Section 4,
one configuration of the proposed tag is experimentally validated. Finally, some concluding remarks
are presented in Section 5.

2. Tag Design

The geometry of the proposed tag is shown in Figure 2. It consisted of 10 inverted M-shaped strips
implemented on a Rogers RT5880 substrate, with a thickness of 0.256 mm and a dielectric constant
εr = 2.2. In Figure 2, w and l are the width and length of the proposed tag, respectively, sx is the
horizontal separation between two vertical elements, which was fixed for all strip resonators, sy is the
vertical separation between two slanted elements, which was different from one strip to another, and
wr is the width of each strip. Each inverted M-shaped strip structure could be utilized in either an
active or a passive mode of operation. The existence of a null in the frequency response denoted the
active mode (logic 1), while the nonexistence of the null denoted the passive mode (logic 0).
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Figure 2. Structure of the proposed M-strips tag.

Note that the proposed tag was different from the structure developed in [44]; it was based on the
inverted M-shaped strips implemented on the dielectric substrate, while that of [44] was based on
U-shaped slots etched in a metallic background.

Figure 3 shows 10 strips in both active and passive modes. The resonant frequency of each strip
could be removed from the operating band by adding some open circuits (cuts) at different portions of
the strip resonator or by removing the appropriate strip. In general, the 10 active resonators (Figure 3a)
could be used to logically represent 1111111111, while the 10 passive resonators (Figure 3b) logically
represent 0000000000.
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Figure 3. Structure of the proposed M-strips tag in (a) active mode (ID: 1111111111) and (b) passive
mode (ID: 0000000000).

We have optimized the proposed structure to obtain deep notches at suitable frequencies in the
operating frequency band from 3 GHz to 7.5 GHz. Essentially, each single-strip resonator was designed
to operate at one resonance frequency (one notch). Then, another strip resonator was added to obtain
two notches in the operating frequency band. In this way, the number of resonance frequencies could
be controlled by removing or adding resonators. Our structure utilized 10 optimized strips to obtain
10 resonance frequencies (notches). The fundamental and theoretical analysis of these types of tags
were discussed by F. Costa et al. in [25,34] and by N. Karmakar et al. in [9–12,30,45]. The total length
of each strip resonator was the sum of the lengths of the vertical and slanted elements:

li = 2(li′ + li′′ ) (i = 1, 2, . . . , 9, 10) (1)

Table 1 lists the total length of each strip resonator. The first strip, which was the longest, resonated
at the lowest resonant frequency and corresponded to the most significant bit. On the other hand,
the last strip, which had smallest length, gave the highest resonance frequency and corresponded to
the least significant bit.

Table 1. Physical lengths of the strip resonators.

Parameter Strip Length (mm)

l1
l1′ 14

41.72l1” 6.862215

l2
l2′ 13.31262

39.07l2” 6.221409

l3
l3′ 12.62523

36.41l3” 5.580922

l4
l4′ 11.93785

33.79l4” 4.958283

l5
l5′ 11.25046

31.1l5” 4.301478

l6
l6′ 10.56308

28.42l6” 3.644746

l7
l7′ 9.875692

25.73l7” 2.98813

l8
l8′ 9.188308

23.08l8” 2.351033

l9
l9′ 8.500923

20.44l9” 1.717732

l10
l10
′ 7.813538

17.72l10” 1.044021
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We analyzed the proposed tag as an infinite structure using Floquet boundary conditions. When an
exciting port sent an RF signal to the tag, a surface current was induced around each resonator at
its resonant frequency. The proposed structure therefore exhibited frequency-selective performance,
with deep notches at the desired resonant frequencies. Figure 4 shows the simulated response for all
10 strips (each shown separately).
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3. Simulation Results

We designed and simulated seven different passive tags with seven different codes to validate the
concept. Figure 3a shows the first code, where all 10 strips were in active mode, which corresponded to
the structure code 1111111111. Figure 3b shows the second code, where all strips were in passive mode,
representing the code 0000000000. The other five bit codes we chose were 1010101010, 0101010101,
1010000000, 1010001111, and 0000011111. The simulation reflection coefficients (S11) for these different
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The developed structure could be excited by either a horizontally or vertically polarized plane
wave. For each polarization, the response waveform had 10 notches in the given operating bandwidth.
Table 2 presents the frequency differences between the two responses obtained for excitation with
vertical and horizontal polarizations. The maximum variance in dBs between the resonant frequencies
for the two polarizations was around 140 MHz, while the minimum variance was almost 14 MHz.
A shift in resonant frequencies between the two polarizations was necessary to achieve sufficiently sharp
peaks for the two responses [25]. These sharp peaks could also be used for encoding data, because all the
sharp peaks were present in the all-ones code. For this state, there were thus 10 sharp peaks, as shown
in Figure 9. Figures 10 and 11 show the frequency responses and the differences in dBs between the
vertically and horizontally polarized S11 for the codes 1010001111 and 1010000000, respectively.

Table 2. Possible frequencies for the all-ones code with vertical and horizontal polarizations.

Resonance Frequency (GHz) Polarization Type Difference
(MHz)Description Parameter Vertical Horizontal

Resonance of 1st strip f 1 2.932 3.030 98
Resonance of 2nd strip f 2 3.254 3.268 14
Resonance of 3rd strip f 3 3.520 3.534 14
Resonance of 4th strip f 4 3.856 3.912 56
Resonance of 5th strip f 5 4.234 4.276 42
Resonance of 6th strip f 6 4.682 4.724 42
Resonance of 7th strip f 7 5.158 5.214 56
Resonance of 8th strip f 8 5.718 5.788 70
Resonance of 9th strip f 9 6.390 6.530 140

Resonance of 10th strip f 10 7.426 7.496 70
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Table 3. Possible states for a single overturned M-shaped resonator. 

Structure Strip 
Length 

State Resonant 
Frequency 

Binary 
Code 

Strip i with open circuits 𝑙  1st state 0 00 
The length of strip i (li) decreased by 

factor ∆𝐿  
𝑙 − ∆𝐿  2nd 

state 
𝑓  01 

The length of strip i (li) increased by 
factor ∆𝐿  

𝑙 + ∆𝐿  3rd 
state 

𝑓  10 

Original strip 𝑙  4th 
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For the all-ones configuration (ID: 1111111111), the simulated values of S11 for the last four cases 
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polarizations. (b) The amplitude difference in dBs between the two responses.

4. Strip Length Variation Method

The resonant frequency of each strip resonator was inversely proportional to its physical length.
Consequently, increasing the strip resonator length decreased its resonant frequency, and vice versa.
Hence, each M-strip was able to represent one of the four probable codes: 00, 01, 10, and 11. In the first
code, 00, the strip resonator i worked in passive mode (with open circuits). No resonance frequency
could be detected in the operating bandwidth. In the second code, 01, the length of strip i (li) decreased
by a small factor ∆L−, and the resonance frequency became f+i instead of fi . On the other hand,
the third code, 10, was achieved when the length of strip i (li) increased by a small factor ∆L+.
Therefore, the resonant frequency became f−i instead of fi . The last code, 11, came with the original
strip, which had a length li and corresponded to the resonant frequency fi . These four codes for the
single strip resonator are summarized in Table 3.

Table 3. Possible states for a single overturned M-shaped resonator.

Structure Strip
Length State Resonant

Frequency
Binary
Code

Strip i with open circuits li 1st state 0 00

The length of strip i (li)
decreased by factor ∆L− li − ∆L− 2nd state f+i 01

The length of strip i (li)
increased by factor ∆L+ li + ∆L+ 3rd state f−i 10

Original strip li 4th state fi 11

In this way, the number of bits per single strip resonator increased to two bits. Therefore, the coding
capacity (number of bits per tag) and coding density (number of bits per centimeter square) could be
doubled within the same frequency range. That means the coding capacity increased to 20 bits for the
same size when the method of variation length was used. This saved 50% of the overall size.

For the all-ones configuration (ID: 1111111111), the simulated values of S11 for the last four cases
listed in Table 3 are presented in Figure 12. Table 4 lists the corresponding frequencies for the M-strip
tag with the original length and increased and decreased strip lengths. The optimized value of ∆L
used in our structure was 0.33 mm. The tolerance value not affecting the tag performance was about
110 micrometers.
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Table 4. Corresponding frequencies for the M-strip resonators with length variations.

Extended Length Original Length Shortened Length

Parameter Value
(GHz)

Difference
(MHz) Parameter Value

(GHz) Parameter Value
(GHz)

Difference
(MHz)

f1− 2.862 168 f1 3.030 f1+ 3.072 42
f2− 3.156 112 f2 3.268 f2+ 3.310 42
f3− 3.478 56 f3 3.534 f3+ 3.562 28
f4− 3.800 112 f4 3.912 f4+ 3.954 42
f5− 4.206 70 f5 4.276 f5+ 4.388 112
f6− 4.598 126 f6 4.724 f6+ 4.822 98
f7− 5.032 182 f7 5.214 f7+ 5.312 98
f8− 5.592 196 f8 5.788 f8+ 5.914 126
f9− 6.306 224 f9 6.530 f9+ 6.642 112
f10
− 7.314 182 f10 7.496 f10

+ 7.636 140

5. Experimental Results

One of the designed tags was fabricated and experimentally tested to validate the idea.
This prototype had the all-ones bit code (1111111111). Although the simulated reflection coefficients
were the results for an infinite array of the proposed overturned M-strip tags, practically, we reduced
the fabricated tag to a finite 3 × 3 array of unit cells to decrease the tag size and the fabrication cost.
Figure 12 shows the fabricated code with a 3 × 3 array of unit cells.

We measured the response of the fabricated tag shown in Figure 12 using the measurement setup
described in Figure 13. We measured its frequency response using a two-port power network analyzer
PNA-X(N5242A) and a wideband horn antenna operating from 1 GHz to 18 GHz. The tag was placed at
a distance of 10 cm from the RFID reader system. The measured and simulated results for the all-ones
code are compared in Figure 14. The measured results were in suitable agreement with the simulation,
although there were slight shifts at some frequencies due to manufacture and testing mistakes.
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It is observed from Figure 15 that there were ten frequency nulls in the backscattered signal
from the fabricated tag. These ten resonance frequencies could be used to encode ten bits within the
frequency band of 3 GHz–7.5 GHz.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 16 

 

 
Figure 13. The fabricated code (ID: 1111111111). 

 
Figure 14. Monostatic measurement setup. 

It is observed from Figure 15 that there were ten frequency nulls in the backscattered signal from 
the fabricated tag. These ten resonance frequencies could be used to encode ten bits within the 
frequency band of 3 GHz–7.5 GHz. 

 
Figure 15. Simulated and measured values of S11 for the all-ones code at a 10 cm distance from the 
RFID reader. 

Figure 15. Simulated and measured values of S11 for the all-ones code at a 10 cm distance from the
RFID reader.



Electronics 2020, 9, 2116 11 of 16

The backscattered chipless RFID tags can be implemented in two forms: the strip-based structure
proposed in this paper and the slot-based form, as given in [33]. Within the same frequency band
and capacity, the proposed structure needs less copper material in its implantation; therefore, it is
cheaper when compared with the slot-based structure. However, the proposed structure needs more
optimization effort in order to reduce the mutual effect of adjacent lines, compared with the slot-based
structure. Moreover, the distance between the tag and reader for accurate detection (60 cm) of the
slot-base structure is greater than the distance between the tag and the reader of the proposed structure
(10 cm). Although the proposed structure is lower in cost, these drawbacks may limit the applications
of the proposed structure.

Table 5 compares the performance of the proposed tag with those of some existing chipless RFID
backscatter-based tags. The performance of a chipless RFID tag is defined not only by its encoding
capacity (bits/cm2 /GHz), but also by other metrics. These new metrics, defined in [23,46,47], include the
spectral-capacity (bits/GHz), spatial density (bits/cm2), spatial density at the center frequency (bits/λ2),
and the encoding capacity at the center frequency (bits/λ2/GHz).

In this table, the proposed tag exhibits high performance at the center frequency in terms of spatial
density and encoding capacity. The proposed tag can be used to encode 11 bits/cm2, and it has a
spectral capacity of 4.44 bits/GHz, a spatial density at the center frequency of 358.33 bits/λ2, an encoding
capacity of 2.44 bits/cm2/GHz, and an encoding capacity at the center frequency of 79.63 bits/λ2/GHz.
Other performance parameters of this device are listed in the last line of Table 5.
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Table 5. Comparison between the proposed tag and different backscatter-based chipless RFID tags.

Resonator Type Frequency Band
(GHz)

Capacity
(bits)

Spectral
Capacity

(bits/GHz)

Spatial Density
(bits/cm2)

Spatial Density
at the Center

Frequency
(bits/λ2)

Encoding
Capacity

(bits/cm2/GHz)

Encoding
Capacity

at the Center
Frequency

(bits/λ2/GHz)

Size (mm2)

Loaded dipoles [48] 1.8–3.6 20 11.11 0.66 81.51 0.37 45.28 55 × 55

Dipole array [46] 2.2–3.5 20 15.38 0.56 61.47 0.43 47.28 60 × 60

Log-periodic dipole [49] 2–12 7 0.7 0.09 1.68 0.01 0.17 87 × 87

Crossed dipoles [50] 2–5 4 1.33 0.2 14.49 0.07 4.83 45 × 45

Slotted-I [11] 6–12 18 3 4.08 45.29 0.68 7.55 21 × 21

Slotted-U [51] 2–4 20 10 0.77 76.82 0.39 38.41 50 × 52

Slotted-I [52] 3–7 6 1.5 0.38 13.48 0.1 3.37 40 × 40

Slotted-L [53] 3–6 8 2.67 2 88.76 0.67 29.59 20 × 20

Slotted-U [45] 7–12 8 1.6 3.13 31.13 0.63 6.23 16 × 16

Slotted-delta [30] 3–10 18 2.57 2.11 44.98 0.30 6.43 32 × 27

Square loop [34] 2–8 5 0.83 2.22 79.89 0.37 13.31 15 × 15

Plus loop [54] 3.8–8.8 20 4 1.25 28.31 0.25 5.66 40 × 40

Concentric ring [55] 3–13 4 0.4 2.04 28.65 0.20 2.87 14 × 14

Loaded ring [56] 3–9 23.7 3.96 2.63 49.97 0.44 8.33 30 × 30

Nested scatterers [57] 4–7.5 6 1.71 2.67 72.5 0.76 20.71 15 × 15

Stepped impedance
resonators [58] 3.1–10.6 6.36 0.85 1.06 20.3 0.14 2.71 30 × 20

C-strips [59] 2–4 20 10 1.14 114.13 0.57 57.07 70 × 25

C-strips [60] 2–4 20 10 1.10 109.74 0.55 54.87 70 × 26

C-strips [61] 2–5 5 1.67 0.33 25 0.11 8.33 50 × 30

U-strips [12] 7–12 16 3.2 16.67 165.96 1.75 17.47 16 × 6

L-strips [62] 3.1–10.6 6 0.8 0.3 5.79 0.04 0.77 62 × 32

L-strips [28] 5–10 9 1.8 6 95.87 0.8 12.78 15 × 10

The proposed tag 3–7.5 20 4.44 11 358.33 2.44 79.63 14 × 13
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6. Conclusions

We have presented a novel and compact tag consisting of overturned M-shaped strips in this paper.
We showed that the coding capacity of such a device could be doubled within the same frequency
range of 3 GHz–7.5 GHz for a given tag size. We fabricated an all-ones tag and tested it at a distance of
10 cm from the RFID reader, and we compared the measured results with a simulation. The proposed
tag can be used to encode 11 bits/cm2, and it has a spectral capacity of 4.44 bits/GHz, a spatial density
at the center frequency of 358.33 bits/λ2, an encoding capacity of 2.44 bits/cm2/GHz, and an encoding
capacity at the center frequency of 79.63 bits/λ2/GHz.
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