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Abstract: A time-based matrix multiply-and-accumulate (MAC) operation for a neural computing
system is described. A simple and compact time-based matrix MAC structure is proposed that can
perform multiplication and accumulation simultaneously in a single multiplier structure, and the
hardware complexity is not affected by the matrix input size. To enhance the linearity of the weight
factor, an offset-free pulse-width modulator is introduced. The proposed MAC architecture operates
at a low supply voltage of 0.5 V while it consumes MAC energy of 0.38 pJ with a 32 nm low-power
(LP) predictive technology model (PTM) CMOS process. In addition, the near-subthreshold operation
can remove the level shifter to interface between the MAC operator and digital circuits such as
static random-access-memory (SRAM) because both can utilize the same level of the supply voltage.
The proposed MAC is based on a digital intensive pulse-width modulation, and thus it can further
improve its performance and area with more advanced technologies.

Keywords: MAC; matrix multiplier; neural computing; near-subthreshold; neural network; time-
based analog matrix multiplier

1. Introduction

Over several decades since 1950s, scientific communities strived to realize artificial intelligence
based on the neural network and this classical topic recently gained the popularity with a gigantic
surge of machine learning applications [1–3]. Relevant applications include computer vision [4–12],
speech recognition [13,14], and medical applications [15–18], where the machine learning lies at the
core of the technology and extracts meaningful data.

The matrix multiply-and-accumulate (MAC) is an essential operation for scientific computing,
real-time signal processing, and machine learning. Several integrated circuit designs have demonstrated
neural networks based on the MAC operation. An image recognition chip using neural networks
has been demonstrated in [7]. To mimic neural networks, 256 neurons are used to compute the
signal originating from synapses and 256 × 256 binary synapses to save the weight factors. A neuron
comprises a digital type 16-bit adder and comparator. A static random-access-memory (SRAM) is
used for 256 × 256 synapses. The operating frequency and supply voltage are 1 MHz and 0.55 V,
respectively. The total chip size is 4.2 mm2 with 45-nm CMOS technology, and 2500 µm2 of the
total area is occupied by 256 neurons. Compared with the work in [7], Merolla et al. proposed an
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enhanced image recognition chip using a larger number of neurons and synapses [8]. One million
neurons and 256 million synapses were used. Consequently, the total area of the chip was 4.3 cm2 with
28-nm CMOS technology and the power consumption reached 72 mW at 0.775 V operating voltage.
These representative works proved the benefits of neural network implementation on the integrated
circuit but two major concerns on the area and power consumption arose due to the large number of
neurons and synapses. To minimize these problems, a memristor was used [19]. Two characteristics
of memristor, i.e., the small memristor size with respect to their functionality and ability to connect
to the memristors using crossbars, can decrease the area and power overhead attributed to a large
number of neurons and synapses. However, this approach has not been implemented to demonstrate
neural networks.

Analog signal processing can be an alternative solution to alleviate the limitations of area and
power consumption of digital implementations for neuromorphic computing. Using an analog MAC
operator for a neuron instead of the digital approach can significantly improve the area and power
consumption performances, since the number of transistors required for the analog adder and multiplier
is substantially less. An analog MAC operator may exhibit the in-accuracy in its calculation, however it
is not a problem because of the approximation characteristics of the neural network.

As an important application of neuromorphic computing, a self-calibrating GPS accelerator [20]
requires four-dimensional data acquisition and processing (X, Y, Z, and time) for correlation
calculation. The correlation calculation is performed by adding the multiplication result of the
received signal with the time-shifted correlation pattern requiring large numbers of addition operations.
Unlike conventional digital processing, correlating calculation can be performed in the analog domain
using a current-mode summation with a current digital-to-analog converter (DAC). Thus, the addition
of one more adder, instead of a larger adder tree, into the system enables the design to possess a single
current control cell. In addition to the area and design complexity, the correlation result can exhibit a
narrow dynamic range using a matched filter that allows a high resolution. Authors in [20] reported
that the efficiency of the accelerator increased by 65 times while maintaining similar performance.

Multiplication is another significant burden on hardware, leading to a large area and processing
time in digital VLSI circuits. A passive multiplication method using a capacitive DAC array is
proposed [21,22]. This utilizes the advantages of charge conservation and redistribution which can be
used in an energy-efficient computing system. Moreover, the offset problem in analog systems did not
affect performance in the approximate computing applications. Similarly, a successive approximation
(SAR) analog-to-digital converter (ADC), which comprises a conventional capacitor DAC array in series
with another capacitor array to create a feedback divider, was used as a digitally controlled analog
multiplier [9]. An electrocardiogram (ECG) based cardiac-arrhythmia detector and image-pixel-based
gender detector were demonstrated using this system. A switched-capacitor MAC approach was
reported in [10] such that the MAC operation was performed in three phases: (1) sampling and charge
multiplication, (2) charge accumulation, and (3) SAR ADC digitization. The multiplying coefficients
are determined by the capacitor ratio in the switched-capacitor network, and they can be adjusted
based on the optimization results from the classifier-training kernel. An image classifier front end and
an analog accelerator for classifier training were demonstrated.

Although power and area saving are the major advantages of the analog MAC approach, the analog
implementation requires a higher supply voltage than digital circuits since the transistor in saturation
requires higher voltage headroom and more transistor stacking is required in the analog circuit.
Co-existence with the analog MAC and the other digital circuits needs to be considered as well. Because
the digital circuit typically operates at the near-subthreshold region to save power [7,8], the analog
MAC also desires to operate in the same supply voltage level used in the digital circuit.

In this work, a time-based matrix MAC operator for neural computing is proposed. In the
conventional time-based MAC operation, a weighted multiplication is implemented by varying the
time-delay or pulse-width, and the accumulation is achieved by adding multiple delay-based multiplier
units [23,24]. Therefore, it requires as many multiplier units as the number of inputs to accumulate
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each time-delay. In the proposed design, the input data is converted into the analog signal by input
current DAC, and a time-based multiplication is implemented by the pulse-width modulator and the
sample-and-hold circuit. The accumulation is performed simultaneously in the multiplication circuit
such that the proposed MAC does not require multiple multiplier units.

The proposed design can easily increase the number of inputs without the burden of hardware
complexity. Due to the time-based operation, it can operate in the near-threshold region for energy
saving. Moreover, the near-subthreshold operation can remove the level shifter to interface between
the matrix multiplier and the digital circuits, because both can utilize the same supply voltage.

This paper is organized as follows. Section 2 introduces the principle of the time-based MAC
operation. Section 3 describes the circuit implementation of the matrix MAC operator. Section 4
provides the simulated results and the conclusion remarks are given in Section 5.

2. Time-Based Analog Multiplier

2.1. Conventional Analog Implementation

Generally, the characteristics of charge conservation and Kirchhoff’s current law (KCL) are used to
implement the analog MAC operation as shown in Figure 1. Based on the charge conservation, VOUT
in Figure 1a can be written as

VOUT =
C1

C1 + C2
VIN (1)
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Figure 1. Conventional analog operators: (a) analog multiplication using charge conservation,
(b) analog summation using Kirchhoff’s current law (KCL) and (c) analog multiplication and summation
using an operational transconductance amplifier (OTA).

Equation (1) has a multiplication form, and the multiplier can be easily adjusted by changing the
ratio of the capacitances. However, this approach has a disadvantage in terms of area because many
capacitor arrays are required for the matrix multiplier. To reduce area overhead, establishing a small
unit capacitance is desired. For example, a fringe capacitor of 300 aF was used in [10], albeit this small
capacitance makes the circuit sensitive to a process mismatch.

Figure 1b shows the analog summation using KCL. IOUT is the summation of the currents flowing
into the node (VX). Then, it can be expressed as

IOUT = I1 + I2 + · · ·+ In (2)

This approach has a significant disadvantage in the aspect of power consumption because many
current sources are needed.

An operational transconductance amplifier (OTA) was used to incorporate both multiplication
and summation in the voltage domain, as shown in Figure 1c. The output can be expressed as

VOUT =
C1

CS
V1 +

C2

CS
V2 + · · ·+

Cn

CS
VN (3)
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However, this implementation suffers from the problem of excessive noise arising from the OTA.
Moreover, the bandwidth of the OTA should be wider than the input rate, which is difficult to design
with the limited supply voltage and power consumption.

2.2. Proposed Time-Based Implementation

To resolve the problems of the conventional voltage-domain analog implementation, a time-based
operation can be utilized. In the conventional time-based MAC structure, the weighted multiplication
is implemented by the variable time-delay unit and the accumulation is done by sequentially adding
the multiplier units [23,24]. Therefore, it requires as many multiplier units as the number of inputs
such that it may cause high complexity for a large matrix input.

A simple and compact time-based MAC operator is proposed which can perform the multiplication
and accumulation simultaneously. Figure 2 shows the proposed time-based multiplier that consists of
a sample-and-hold circuit with a current input signal (IIN). A switch in the sample-and-hold circuit is
controlled by the pulse-width-modulated (PWM) signal. Hence, the output voltage can be expressed as

VOUT =
tpw

CS
IIN (4)

where, tpw is the time of PWM signal and CS is the sampling capacitor in the sample-and-hold circuit.
The output voltage is shown as a multiplication form and the coefficient of the multiplier can be easily
adjusted by varying the pulse-width.
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Figure 2. Proposed time-based analog multiplier.

Figure 3 shows the vector-by-matrix multiplication. The input data (XIN) such as images or any
user-generated signals are multiplied with a programmable weighted matrix (WIN) and generate
accumulated digital output (YOUT). Applying the input data information and weighted factor by
varying the IIN and tpw, respectively, at every sampling cycle, both the multiplication and accumulation
are obtained simultaneously in the proposed time-based multiplier (Figure 2). The output of the
sample-and-hold circuit including the MAC operation can be expressed as

VOUT =
tpw,1

CS
IIN,1 +

tpw,2

CS
IIN,2 + · · ·+

tpw,n

CS
IIN,n (5)

Although conventional time-based MAC operators require multiple time-based multiplier units
in proportion to the input matrix size, the proposed time-based MAC operation is achieved only by a
single-multiplier unit, regardless of the input matrix size.

The time-based multiplier has significant benefits in terms of area and power consumption.
The pulse-width control circuit can be implemented by digital logic, hence, a large capacitor array
is not required. Moreover, the lower supply voltage limitation due to an OTA does not exist in the
proposed structure. Furthermore, digital gates can be easily operated in the near-threshold region,
implying high power efficiency.
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Figure 3. Vector-by-matrix multiplication.

3. Circuit Implementation

The time-based matrix MAC operator comprises the input current DAC, a sample-and-hold,
SAR ADC, and a pulse-width modulator as shown in Figure 4a. The input data is converted into
the analog signal by the input current DAC and then time-based multiplication is performed by the
pulse-width modulator and the sample-and-hold circuit. The accumulation is performed by adding the
charge of each multiplication cycle into the same sampling capacitor, CS. Figure 4b shows the timing
diagram of the proposed time-based MAC operation. A complete computation involves 64 cycles
(n = 64), indicating that the number of required current DACs and ADCs is decreased by 64×. The ADC
operation is simultaneously executed for previous accumulated output data to increase the operating
frequency of the matrix multiplier. After the computation, the ADC samples the output again and then
the sampling capacitor is initiated for the next computation.
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Figure 4. Proposed time-based matrix multiply-and-accumulate (MAC): (a) system architecture and
(b) timing diagram.

3.1. Proposed Offset-Free Pulse-Width Modulator

The pulse-width modulator has a 3-bit weighted input such that it can generate 8 different
pulse-widths. Figure 5 shows the proposed offset-free digital intensive pulse-width modulator and
its timing diagram. To generate different pulse-widths, the delay line comprising 10 delay units is
used. Each delay unit comprises 7 cross-coupled inverters for differential pulse output. To isolate the
pulse-width variation from the effect of input slope and loading capacitance, two additional buffers
are added to the first and last stage of the delay line. Achieving a good linearity of the delay without
offset delay is crucial. If the offset delay is added to the multiplier, the result of the multiplier can be
inaccurate. The offset delay is caused by the additional multiplexer which selects the delay line from
the weighted control code (WIN). To remove the offset delay, the first stage output also uses the dummy
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multiplexers to match the propagation delay. After that, the first stage output and the delayed signal
output are both fed into the XOR gate to generate two pulses for every one input signal. Hence, (4) can
be modified as follows

VOUT =
2× tpw

CS
IIN (6)
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The supply voltage of 0.5 V is used for the near-threshold operation. Consequently, the delay
resolution of the delay line is 15 ns and its delay variation shows a very linear characteristic with the
control code, as shown in Figure 6.Electronics 2020, 9, x FOR PEER REVIEW 7 of 13 
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3.2. SAR ADC

A fully differential SAR ADC is designed to convert the analog voltage back to the digital domain.
A SAR ADC has an advantage of a small area such that it is good for applications requiring a large
number of ADCs in an array. A 6-bit ADC is designed in this application, as shown in Figure 7.
To reduce the number of capacitors in the capacitive DAC array with the unit cap of 4 fF, the bidirectional
single-sided switching algorithm is used in the design. A 98% power saving can be achieved and the
size of the MSB capacitor can be reduced by 4 times. Thus, the area of the capacitor requiring most of
the area in the system is saved by 75% compared with the conventional switching scheme.
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Figure 7. Successive approximation (SAR) analog-to-digital converter (ADC) architecture.

The charge in the storing capacitor is redistributed with the capacitor array of the SAR ADC,
which can limit the swing of data. However, in this design, the error and limitation of the swing is less
than 0.16% because the total capacitance of the array is 16 fF, which is negligible compared with that of
the storage capacitor.

The ADC performs a 6-bit resolution with power less than 2.38 nW at 27.8 kS/s with a 0.5 V supply
voltage. SNDR shows 34.7 dB that corresponds to an ENOB of 5.5 bits. Since the tested input is not full
swing, a 3-dB drop is expected in the SNDR.

3.3. Input Current DAC

Although it is difficult to operate the MOSFET in the saturation region with a 0.5 V power supply,
a current mirror can be implemented in the subthreshold region [25,26]. The MOSFET drain current in
the subthreshold region can be expressed as

iD = (n− 1)µCox
W
L

VT
2e

VGS−VTH
nVT

(
1− e−

VDS
VT

)
(7)

where n is the subthreshold ideality factor, µ is the mobility, COX is the oxide capacitance per unit
area, VTH is the threshold of the transistor and VT = kT/q is the thermal voltage, which is 26 mV at
room temperature. If VDS is significantly larger than VT, Equation (7) can be approximately written
as follows:

iD ≈ (n− 1)µCox
W
L

VT
2e

VGS−VTH
nVT = IS0

W
L

e
VGS−VTH

nVT (8)
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Applying IREF and iu for the case of the PMOS current mirror (Figure 8a) into Equation (8), IREF
and iu can be expressed as

IREF = IS0
WP1

LP1
e

VBIAS.P−VTH
nVT (9)

iu = IS0
WP2

LP2
e

VBIAS.P−VTH
nVT (10)
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Figure 8. Input current DAC: (a) current source unit, (b) current sink unit, (c) half-circuit of the
differential DAC.

Hence, the relationship between the two currents IREF and iu can be expressed as

iu =
LP1

LP2

WP2

WP1
IREF (11)

Equation (11) shows that the current can be mirrored using the ratio of widths and lengths. Based on
these equations, the current unit for a source and sink is configured as shown in Figure 8a,b, respectively.

The input current DAC is fully differential and subsequently drives the SAR ADC. Figure 8c
shows the single-ended half-circuit for illustration. The input current of the DAC comprises the current
mirrors for the current source and sink and resistors for the reset operation. The input of the current
DAC is 6 bits with the MSB as a sign-bit. In our design, the 1’s complement signed number is adopted
due to its simplicity while sacrificing only 3% for negative number representation. To achieve a good
matching property, each current mirror consists of the same current unit size with a different number
of units. Moreover, a long channel is used for the current mirror to increase the output impedance,
minimize the leakage current, and mitigate the mismatch from the process variation. The unit transistor
size for the current source/sink unit (Figure 8a,b) is set to W = 2 µm and L = 4 µm. Consequently,
sufficient linearity of the 6-bit input current DAC is achieved, as shown in Figure 9.
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4. Simulation Results

The proposed time-based matrix multiplier is implemented using a 32 nm low-power (LP)
predictive technology model (PTM) CMOS process with a 0.5 V supply voltage. An important fact
for the matrix MAC with an ADC is that the output is not the true value, but a scaled value. This is
because the transitions from the digital input to the analog input and from the analog output to the
digital output during the computation involve a scaling process. In particular, the analog output must
be converted by an ADC and thus the output of the operator is scaled by the number of output bits of
the ADC. To extract the exact scaling factor, the output values of the ADC are measured for minimum
and maximum inputs. After translating the ADC output from the [0:63] range to the [−32:31] range,
since the input has both a negative and a positive range, the ADC output shows −24 when the input is
minimum while it shows 23 when the input is maximum. The full range of the expected output is
31,744 because the minimum and maximum expected outputs are −15,872 (−31 × 8 × 64 cycles) and
15,872 (31 × 8 × 64 cycles), respectively. Hence, the scaling factor is 675 (=31,744/47).

To verify the MAC operation, the expected output value for the applied input values and output
of the proposed matrix MAC are compared, as shown in Figure 10. Figure 10a shows the accumulated
multiplier value during 64 cycles for four different cases, and Figure 10b shows the simulated differential
output, which is the input voltage of the ADC. The actual time domain for the case from 1 to 4 is
shifted to the same time domain for a clear view. Both the expected MAC output and simulated
output show similar shape and the error of the ADC output is summarized in Table 1. Table 1 shows
the computation results of the analog matrix multiplier with the various input vectors for all cases,
as depicted in Figure 10a. For example, the expected final output of case 1 is 262. Considering the
scaling factor of 675 and the limitation of the expression of the fractional part of the number in binary
numbers, the final output of the analog matrix multiplier should be 0 (262/675 = 0.39). The simulated
result shows that the ADC output after 64 cycles is 0 (6′b100000 − 2′d32), which matches well with the
expected output. Most of calculation error is caused by the mismatch of the current mirror due to the
channel length modulation by the different drain voltage, vDS, and the quantization error of the ADC.
The result shows that the calculation error is around 1.

Table 1. Output error for different input vectors.

Expected Scaled Output ADC Output Error

Case 1 0.39 0 +0.39
Case 2 5.94 7 −1.06
Case 3 13.74 15 −1.26
Case 4 20.16 21 −0.84
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The proposed architecture consumes 1.5 µW and shows MAC energy (EMAC) of 0.38 pJ at a 2 MHz
MAC rate in the simulation. The energy efficiency includes ADC, MAC, and DAC operation. Table 2
compares the architecture with prior works. It is difficult to lower the supply voltage for conventional
analog-based structures due to the voltage headroom of analog circuits. Furthermore, the work in [10]
used a switched-capacitor that required many analog switches. The size of the switches significantly
increases with near-subthreshold operation under low supply voltage, which decreases the accuracy of
the calculation and increases dynamic power consumption. Although the conventional time-based
structures can avoid the headroom of the supply voltage, it requires many time-based multiplier
units in proportion to the input matrix size [23,24]. The proposed structure can implement the MAC
operation with a single multiplier regardless of the input matrix size.

Table 2. Architecture comparison.

Process Domain Supply Voltage Weighted Multiplier Accumulator

[10] 40 nm Analog 1.1 V Switched-capacitor multiplier with variable
capacitor ratio Charge accumulation

[9] 130 nm Analog 1.2 V Multiplying ADC with variable capacitor ratio Digital adder by S/W

[22] 65 nm Analog 1.2 V Multiplying DAC with variable capacitor ratio Digitally controlled VGA

[23] 65 nm Time 1 V Variable delay cell Sequentially added
multiplier units

[24] 65 nm Time 0.7–1.4 V Variable delay cell with calibration Sequentially added
multiplier units

This work 32 nm Time 0.5 V Variable delay cell with offset-free structure Charge accumulation
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5. Conclusions

The analog matrix MAC resolves the limits of chip area and power consumption from the digital
arithmetic implementation although low supply voltage in the scaled CMOS process does not favor
the conventional analog matrix MAC. In this work, we proposed the simple and compact time-based
matrix MAC operator that can perform multiplication and accumulation simultaneously in a single
multiplier structure. The proposed architecture avoids hardware complexity, even from the large matrix
input, and also can operate at a 0.5 V supply voltage with an EMAC of 0.38 pJ. The near-subthreshold
operation can avoid an interfacing circuit such as a level shifter when the analog and digital circuits
utilize different supply levels. The pulse-width modulation for the proposed analog matrix MAC can
further benefit in its performance and chip area through the use of more advanced technologies.
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