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Abstract: To reduce congestion, numerous routing solutions have been proposed for backbone
networks, but how to select paths that stay consistently optimal for a long time in extremely congested
situations, avoiding the unnecessary path reroutings, has not yet been investigated much. To solve
that issue, a model that can measure the consistency of path latency difference is needed. In this
paper, we make a humble step towards a consistent differential path latency model and by predicting
base on that model, a metric Path Swap Indicator (PSI) is proposed. By learning the history latency
of all optional paths, PSI is able to predict the onset of an obvious and steady channel deterioration
and make the decision to switch paths. The effect of PSI is evaluated from the following aspects:
(1) the consistency of the path selected, by measuring the time interval between PSI changes; (2) the
accuracy of the channel congestion situation prediction; and (3) the improvement of the congestion
situation. Experiments were carried out on a testbed using real-life Abilene traffic datasets collected
at different times and locations. Results show that the proposed PSI can stay consistent for over
1000 s on average, and more than 3000 s at the longest in our experiment, while at the same time
achieving a congestion situation improvement of more than 300% on average, and more than 200% at
the least. It is evident that the proposed PSI metric is able to provide a consistent channel congestion
prediction with satisfiable channel improvement at the same time. The results also demonstrate
how different parameter values impact the result, both in terms of prediction consistency and the
congestion improvement.

Keywords: consistent routing; network fluctuation; traffic engineering; latency prediction;
backbone networks

1. Introduction

The traffic in backbone networks has grown exponentially during the past two decades. With the
ever-growing data-intensive applications relying on the Internet, the growth will be accelerated and
the backbone networks will be increasingly overloaded. To adaptively select the optimal route for
backbone network has been the main goal of research over decades [1–7]. However, as current
routing strategies, such as OSPF, RIP, and EIGRP, use stationary channel measurement as criteria [8,9],
it is difficult to predict an optimized route that will stay optimal for a long time when the channel
congestion situation keeps oscillating, especially during peak hours [2,5,10–14]. Based on the criteria of
the current routing strategy, the optimal route selected often changes frequently in extremely congested
networks. When a path is congested due to large amount of traffic flows, the latency soars and the
router swaps to another path, and after that, the traffic redirected to the backup path makes the path
congested and its latency increase sharply, and now the original path seems to be the optimal one
again, etc. Such reroutings are a huge waste to computation resources and energy power, and the
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rerouting delay may affect the quality of service (QoS) and user experience ultimately. Being able to
reduce the number of reroutings by selecting a path that is consistently optimal over a relatively long
time is thus important. How to model that a path is optimal over a long period of time so that it can
work as a metric for the consistent optimal route is the question that we are trying to answer in this
paper. Numerous solutions have been proposed for adaptive routing in backbone networks, but this
question still exists in current telecommunication networks.

There are two main trends in the current adaptive routing for backbone networks, using
software defined networking (SDN) and/or artificial intelligence. Deemed as the next generation
networking, SDN was adopted by most of the recent work on adaptive routing, taking advantage of
the centralized control strategy [5,6,15–18]. These works involve one or more centralized controllers
in their design, collecting global knowledge of the network to achieve optimized QoS for the
entire network. Artificial intelligence technologies, like machine learning, and especially deep
learning and reinforcement learning, have been widely adopted in various aspects that need data to
predict [5,6,17–19].

In this paper, a metric of consistent adaptive routing is proposed to improve load balancing
and achieve consistent adaptive routing by analyzing real-life backbone traffic and predicting future
congestion situations. More specifically, the following contributions are made:

– A Differential Path Congestion Consistency Model is proposed to describe the latency variation
between two paths.

– Based on the model, a Path Swap Indicator (PSI) is proposed to predict the future latency changing
trend. Relying on learning the latest congestion situation and predicting the onset of a long-term
and consistent channel deterioration, the routing strategy is able to make a long-term effective
decision on the path switching, i.e., to switch the path if and only if the target path’s condition
will be better than the current one over a relatively long period of time.

– Experiments on a testbed built by the Docker network were carried out to evaluate the proposed
strategy. The results are presented and analyzed in detail.

2. State of Art

Traffic engineering has been intensively investigated as an indispensable solution for network
load balance by selecting routes. As a traditional traffic engineering strategy, Equal-Cost Multi-Path
(ECMP) is widely adopted by operators in all IGP protocols such as BGP, OSPF, and EIGRP, to spread
traffic loads across multiple equal-cost (or unequal-cost, if manually configured so in EIGRP, which is
the only protocol supporting unequal-cost multiple routes) routes available [20–22]. ECMP usually
selects a path using flow hashing, queries, and weights. Widely adopted as it is, ECMP has many
shortcomings that need to be addressed: (1) without a route congestion detection mechanism, ECMP
may deteriorate the channel situation by sending flows to already congested routes. Additionally,
hash collision may also increase the chances of channel congestion when using flow hash to select a
path. (2) Without a global view of network topology, ECMP fails to provide optimized load balancing
in unbalanced networks. (3) Unaware of flow sizes, ECMP is not able to recognize mouse flows and
elephant flows, and thus performs poorly in load balancing when mouse flows and elephants flows
co-exist (for example, it is not able to split the elephant flow into smaller ones and re-allocate).

Traditional traffic engineering strategies achieve optimal network performance by rerouting flows
as often as possible whenever necessary, without considering the negative impacts. The consequent
network instability, also referred to as route flapping, has been the interest of researchers in
telecommunication networks since decades ago. Traditionally there are two main approaches to
control route flapping: one is route dampening, which suppresses the flapped router by adding a
penalty to it, and the other is route aggregation, also known as route summarization, which take
multi-routes and clusters them into one inclusive route. These methodologies try to reduce route
flapping passively; in other words, they do not change the flapping route itself, but execute some
additional calculations and operations on these flapping routes instead. Thus, the effect of both
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methods are limited. In recent work, the necessity of global optimization and avoiding routing weight
changes as much as possible was first addressed in [4], debriefing several reasons why routing weight
changes are bad in networks, because: (1) even a single weight change can cause disruption in the
network environment, for it needs to be flooded to all the routers, and then all the routers will have
to recompute their optimal paths and communicate with each other to reach a global agreement.
The whole process takes several seconds usually [4]. (2) When more than one weight change happen
simultaneously, chaos will be caused throughout the network, and more time and bandwidth overhead
will be consumed. (3) Human network operators are prone to overlook weight configurations until a
concrete problem happens. In this paper, our proposed method takes the history latency of both the
path and a competing path into consideration, and achieves more stability (gets a stable route that
lasts for more than 3000 s at the longest and more than 1000 s on average) which is the main goal of
route flapping reduction research.

Traditional traffic engineering strategies are made based on observation of current networks
and configure routers to accommodate with the current situation only, which leaves the network
unable to adapt to future traffic changes. Prediction-based traffic engineering has drawn interest
in various domains by predicting future network traffic. The prediction time scale varies from
milliseconds to seconds, minutes, days, weeks, or even months [23,24]. Artificial intelligence
technologies, and especially machine learning, have drawn huge interest in prediction-based traffic
engineering [5,6,17–19]. The essence of machine learning is to try to find the hidden pattern beneath
history data, and use the pattern to predict the future. The models used to find the pattern can vary
vastly, and there are hundreds of novel models proposed every year. However, it does not mean that
the more complicated the model is the better; on the contrary, most of the time, less is more. It is the
model that works most efficiently that best suits the pattern underneath history data. Additionally,
current machine learning models require expensive hardware (like GPU) to run, and consume more
time and computing resources than our proposed methodology, as presented in the following section.

3. Consistent Path Congestion Model

In this section, we propose a probabilistic model to describe the consistency of differential path
congestion between two candidate route paths with the same source and destination nodes. Based on
this model, the metric to evaluate the path congestion consistency is outlined.

Almost all existing approaches perform static network latency prediction based on the history
values of round-trip times (RTTs), assuming the latencies are stable or unchanged, whereas in reality
latencies can vary dramatically over time due to changing network conditions. Thus, among the
state-of-art adaptive routing strategies using latency prediction, only a few could provide an approach
to avoid the oscillation of route selection during peak hours.

3.1. Consistent Path Congestion Model and Its Related Algebra

Let paths i (the current path) and j (the backup path) be the two available paths between the same
source and destination routers in a backbone network, and Li(t), Lj(t) are the latencies of the two
paths, respectively, at time t. In this paper, we measure congestion with latency.

3.1.1. Differential Path Congestion Indicator

The situation that “the congestion of the current path is worse than the backup path to a certain degree”
in continuous time is denoted by the Differential Path Congestion Indicator (DPCI) ωij(θ, t):

ωij(θ, t) =

{
1, if Li(t) > Lj(t) + θ at time t;

0, otherwise.
(1)

Whenever ωij(θ, t) is 1, it means that at time t the latency of path i Li(t) exceeds path j Lj(t) by
more than θ seconds, as shown in Equation (2). Here the congestion is measured by latencies; thus θ,
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which is the Latency Differential Sensitivity, denotes a certain amount of congestion with a certain
amount of latency.

Li(t) > Lj(t) + θ (2)

Then ωij(θ, t) is regarded as the output of a two-states continuous time random process. We name
this underline process the Continuous-Time Differential Path Congestion Model (CDPCM) for Path i and j.
It is worth mentioning that the ωij(θ, t) does not preserve commutativity, that is:

ωij(θ, t) 6= ωji(θ, t) (3)

For the convenience of analyzing, we need to transfer the continuous random process into
a discrete one by sampling. When sampling ωij(θ, t) at a sampling interval ∆t, we get a discrete
random series ωij(θ, ∆tn); n is integer and n ≥ 1, which can be deemed as the output of a two-states
discrete time random process. We name this process the Discrete Time Differential Path Congestion Model
(DDPCM) for Path i and j. Similarly, ωij(θ, ∆t) does not preserve commutativity either, in other words,

ωij(θ, ∆tn) 6= ωji(θ, ∆tn). (4)

3.1.2. Cumulative Differential Path Congestion Indicator

Based on the DPCI, the consistency of the relative path congestion situation can be modeled
with the cumulative differential path congestion indicator (CDPCI) Wij(θ, T, ∆tn). Wij(θ, T, ∆tn) is the
frequency when the latency of path i Li(∆tn) exceeds path j Lj(∆tn) by more than θ seconds during
the recent period of time T. It describes the fact that “during the recent time period T, the situation that the
congestion of the current path is worse than the backup path to a certain degree θ has happened Wij(θ, T, ∆tn)

times”. Wij(θ, T, ∆tn) is derived from the sum of ωij(θ, ∆tn) over the period of time T, based on the
definition of DPCI ωij(θ, ∆tn), as shown below:

Wij(θ, T, ∆tn) =
T/∆t

∑
n=0

ω(θ, ∆tn) (5)

where T is the cumulative window, which is the time period of the history that is taken into
consideration. Both θ and T are constant empirical values that are customer-configurable. In our
experiment, the sampling intervals were ∆t = 5 s, T = 100 s, and θ = 20 ms.

3.1.3. Cumulative Differential Path Congestion Consistency Indicator

To predict a stable high-volume traffic period, first we try to capture evidence that the CDPCI
Wij(θ, T, ∆tn) increases, which denotes “the situation that the congestion of the current path is worse than the
backup path to a certain degree happens more/less often.”

We use the indicator sW,+/−(∆tn) to denote the process that Wij(θ, T, ∆tn) increases/decreases
comparing to the last value Wij(θ, T, ∆tn−1).

sW,+(∆tn) =

{
1, if Wij(θ, T, ∆tn) > Wij(θ, T, ∆tn−1)

0, otherwise.
(6)

sW,−(∆tn) =

{
1, if Wij(θ, T, ∆tn) < Wij(θ, T, ∆tn−1)

0, otherwise.
(7)

The Cumulative Differential Path Congestion Consistency Indicator (CDPCCI)
S+/−(θs+/−, Ts+/−, ∆tn) is used to describe the situation that “the congestion of the current path
is worse than the backup path to a certain degree more/less often, and the trend of increase/decrease has continued
for more than a certain number of times during a recent time period”, denoted by “sW,+/−(∆tn) keeps
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increasing/decreasing for more than a certain number of times during a recent certain time period”, which in
turn can be described with Equations (8) and (9) as shown below, in which θs+/− is the Latency
Consistency Sensitivity, which represents the “number of times that sW,+/−(∆tn) has increased/decreased”,
and Ts+/− is the Consistency Cumulative Window, which is the time period that is taken into
consideration when measuring the CDPCCI.

SW,+(θs+, Ts+, ∆tn) =


1, if

Ts+/∆t

∑
n=0

sW,+(∆tn) > θs+

0, otherwise.

(8)

SW,−(θs−, Ts−, ∆tn) =


1, if

Ts−/∆t

∑
n=0

sW,−(∆tn) > θs−

0, otherwise.

(9)

The meanings of SW,+(θs+, Ts+, ∆tn) and SW,−(θs−, Ts−, ∆tn) are explained as follows.
When SW,+(θs+, Ts+, ∆tn) = 1, it means path j’s situation will be better than path i for the foreseeable
future, and this situation will last longer than the route switching time consumption, which is less
than 1 s in our experiment. The values of θs+ and θs− have a strong impact on the performance of
the indicator’s accuracy, and thus should not be too large or too small. If the θs+ value is too large,
it means that the indicator SW,+ stays equal to 0 (which means “stay in the current path”) even when
the current channel’s situation is worse than the backup one, thus causing unnecessary congestion,
delay, and further QoS deterioration. When θs+ is too small, by contrast, it may make the indicator
SW,+ too sensitive, jumping between the two paths with slight path latency jittering and causing
routing oscillations. Similarly, when the θs− value is set too high, the algorithm may fail to switch back
to the original path when the backup path’s situation deteriorates and becomes more congested than
the original one, causing QoS deterioration. When θs− is too small, indicators will be too sensitive
to the path’s latency changes and cause router flapping and network oscillation. The ideal threshold
values are empirical facts, and may not be constant values. They depend on the real-time traffic on the
paths in the network.

In our evaluation experiment, where the traffic data used were from real-life Abilene peak time
traffic data, we found that the ideal values θs+ = 6 and θs− = −7 or −6 best indicate the situation of
our experimental setup, as will be discussed in detail in Section 4.

3.2. Path Swap Indicator

The Path Swap Indicator (PSI) I∆tn is defined in Table 1 as the indicator for differential path
congestion consistency. In the following context, the parameters of CDPCCI are omitted where no
ambiguity occurs.

Table 1. Definition strategy of Path Swap Indicator I∆tn at time ∆tn.

SW ,+(θs+, Ts+, ∆tn) SW ,−(θs−, Ts−, ∆tn) I∆tn−1 I∆tn

0 1 – I∆tn−1

0 1 1 0
0 1 0 0
1 0 0 1
1 0 1 1
1 1 – I∆tn−1

Table 1 and the continuation of this section present in detail the derivation logic of the PSI ∆tn,
elaborating at each time t, how I∆tn is determined from CDPCSI SW,+/−. When I∆tn = 1, it implies
that it is necessary to switch the route to the backup path j, while I∆tn = 0 means the route should stay
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with the current path i. From Table 1 and Equation (6) and (7), we can see that when SW,+ is 1 and
SW,− is 0, it implies that the latency on the current channel has exceeded the backup one and is still
steeply increasing. This works as a sign that the current path’s situation will keep deteriorating in the
near future, and thus it is worth to switch to the backup one. On the contrary, when SW,+ is 0 and
SW,− is 1, it indicates that the backup channel’s situation has worsened and will keep deteriorating in
the near future, meaning we should stay with the current route. There is also a relatively rare case
when both SW,+ and SW,− are 1; it happens when both channels are experiencing serious turbulences.
In this case, we chose to have indicator stay unchanged until there is an obvious and steady difference
between the channels.

3.3. A Demo of the PSI Calculation Process

A step-by-step color-coded demonstration of how to get the proposed indicator PSI is given in
Figure 1. In this demo, there are 21 data records, which is a fragment of the real-life traffic dataset.
The parameters used in this demo are shown in Table 2. From Figure 1 it is obvious that the period
when PSI I∆tn = 1 (the red zone) starts as soon as the SW,+ is 1 (the yellow zone), and ends when the
SW,− first turns to 1 (the green zone).

Figure 1. A demo of the calculation process of each of the indicators proposed, on a sample of 21 data
records obtained from an experiment with real-life Abilene Backbone network traffic data.
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Table 2. Parameters used in Experiment 2.

Parameter Value

θ 0 ms

∆t 5 s

T 15 s

θs+ 2

Ts+ 3

θs− 2

Ts− 3

4. Evaluation

We evaluated the proposed strategy in a network constructed by the Docker network (https:
//www.docker.com), which has a topology that is the same as that of the Abilene network, as shown
in Figure 2. We created real Docker networks as subnets, and imported Docker containers from image
shtsai7/server as routers. Three different real-life Abilene backbone network traffic datasets were
used as input traffic data. The baseline routing protocol was OSPF, which is the dominant intra-domain
routing protocol. The network was simulated with Docker. Eleven Docker containers were created to
simulate the eleven routers in the Abilene network. For each of the Docker containers, one Docker
network was created for the Internet connection with the subnet name of 170.*.0.0/16. Fourteen Docker
networks were created to simulate the connections between routers in the Abilene network, and they
belonged to subnet 10.1.*.0/24. In each Docker container, Quagga https://www.quagga.net was used
to configure OSPF in each router in the network.

The goal of this evaluation experiment is to attempt answering the following questions:

Q1: Is the proposed PSI able to predict when one path’s situation is steadily better than the other (in terms of
latency), in different extreme situations? In other words, how often is path i’s congestion situation indeed
worse or better than path j (i.e., Li(∆tn) > / < Lj(∆tn)) when their indicators are 1 and 0, respectively,
and to what extent was the channel situation improved by the PSI indicator.

Q2: How consistent is the predication, or in other words, what is the frequency of path swaps, or in yet another
way to put it, how long does it last between the indicator swaps in extremely congested situations when the
latency difference between paths oscillate.

To answer these two questions, the following metrics were used:

– True/False rate, which means the rate when the PSI has correctly predicted the congestion
situation between the current path and the backup path, including, when the PSI is 1, the latency
of the current path is indeed larger than the backup one, and when PSI is 0, the latency of the
current path is smaller than the backup one.

– Latency difference, defined by the difference between the latency of the path selected by
OSPF and the latency of the backup path = Li(∆tn) − Lj(∆tn), used as an indicator of the
congestion comparison of the two paths. There are two main approaches to measure the latency:
RTT, which is the time overhead for a packet to travel from source node to the destination and
back, and Time for The First Byte (TTFB), which is the time overhead from the source to the
destination node. In this paper, RTT is used like in most other works. As the latency testing tool,
ping is used in this paper. Although there are some limitations of ping, (for example, ping works
on ICMP packets but not TCP/UDP packets, and the former might have lower priority than the
later in real-life backbone networks, and thus experience different latencies, which in turn results
in inaccurate measurement), but in our experiment that was run on a Docker network simulated
on one laptop, the ICMP and TCP/UDP packets shared the same priority; thus we argue that the
latency difference is not an issue for the results demonstrated.

https://www.docker.com
https://www.docker.com
https://www.quagga.net
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– Accuracy improvement, which denotes when the PSI turns to 1, the increment in percentage of
the times when the latency of the current path is indeed larger than that of the backup one.

– Time interval between path swaps TPSI , which is the average time interval between PSI I∆t
changes, as defined in Equation (10).

TPSI =
Total Time

Total Num. o f I∆t Swaps
× ∆t (10)

1

3

2

Path i

Path j

Path i

Path j

Path i

Path j

Figure 2. Topology of the network of the evaluation experiment generated by a Docker network,
which is the same as the real-life Abilene network.

4.1. Dataset

Real-life Abilene network traffic data were used in the experiments [25,26]. The data from [25]
are based on measurements of origin-destination flows taken continuously over a period of seven
days, starting from 22 December 2003 to 29 December 2003. These data represent aggregate flow
volumes for 12× 24× 7 = 2016 consecutive 5 min time intervals over the week, across 11× 11 = 121
origin-destination pairs (including self-loops) of the 11 nodes of the Abilene network. The dataset
from [26] is Abilene traffic measurements starting from 1 March 2004 to 10 September 2004 at 5 min
time intervals. The datasets were cleaned and three sub-datasets with a period of 7 d each were selected
randomly from them for the three experiments.

4.2. Experiment Setup

The software tools used in the experiment are listed below.

- iperf (https://iperf.fr) A tool that actively measures the maximum achievable bandwidth.
- ping (http://man7.org/linux/man-pages/man8/ping.8.html) A tool that uses the ICMP protocol

to test whether a host is up or down, measuring Round-Trip Time (RTT) and packet loss statistics
at the same time.

- tc (http://www.man7.org/linux/man-pages/man8/tc.8.html) A linux shell command to show
and manipulate traffic control settings.

- quagga (https://www.quagga.net) A network routing software suite providing implementations
of OSPF, Routing Information Protocol (RIP), Border Gateway Protocol (BGP), and IS-IS for
Unix-like platforms, particularly Linux, Solaris, FreeBSD, and NetBSD.

To reproduce the extreme scenarios of a busy backbone network when peak traffic exceeds
the channel bandwidth aggressively and thus deteriorates the channel QoS in terms of latency,

https://iperf.fr
http://man7.org/linux/man-pages/man8/ping.8.html
http://www.man7.org/linux/man-pages/man8/tc.8.html
https://www.quagga.net
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we configured the bandwidth of each channel with the linux traffic control tool tc so that the peak
traffic transmit rate was 7.5, 10, and 20 times the channel bandwidth. As tested by the Linux tool ping,
the maximum transmit rate of the network was found to be 200 Mbits/s. Thus three experiments were
carried out with the bandwidths configured to 10, 15, and 20 Mbits/s.

For the three experiments, we used three different parts of the Abilene network topology simulated
by Docker. From each part, two routers were chosen as source and destination nodes, between which
multiple possible paths are available (two paths are considered in this paper, for convenience), as shown
in Figure 2. In the first experiment, as shown in the orange lines and labels in Figure 2, R4 and R6 were
selected as source node and destination node, respectively. To simplify the problem, we considered
two paths between R4 and R6 only, namely R4-5-6, which passes by R4, R5, and R6, and R4-1-2-6,
passing by R4, R1, R2, and R6. The path R4-5-6 was the selected route by OSPF, and R4-1-2-6 was
the backup path. In the second experiment, as shown in the green lines and labels in Figure 2, R5 and
R10 were chosen as the source node and destination node, respectively, The path selected automatically
by OSPF was R5-6-8-10 which passes by R5, R6, R8, and R10, and the backup path was R5-7-8-10,
which passes by R5, R7, R8, and to R10. In the third experiment, as labeled with the color purple in
Figure 2, the source and destination nodes were R7 and R10. The path selected automatically by OSPF
was R7-8-10, and the backup path was thus R7-9-11-10.

Throughout each experiment, we had ping running on every hop (for example, in the first
experiment, ping ran on hops R1-R2, R2-R6, R6-R5, R5-R4, and R4-R1), measuring the latency on
every hop (In real-life telecommunication networks, the latency could not be directly represented
by the value measured by ping, but here these two values are deemed as equal for brevity). At the
beginning of the experiment, Quagga and OSPF were initiated on all of the nodes. From a randomly
chosen point of time, a traffic stream generated from the real-life Abilene network traffic dataset
was sent from the source node, through the path chosen by OSPF (for example, R4-5-6 in the first
experiment). Then, after a random-length time period, another traffic stream generated by our traffic
model was routed along the other path (e.g., R4-1-2-6 as in the first experiment). The latency of each
path was calculated by summing up all of the latencies on every hop.

4.3. Results

Experiment results are shown in Figures 3–8, and Tables 3–7. The parameters used in all the
experiments are listed in Table 3. The PSIs calculated by the proposed method and the corresponding
True/False rates are listed in Tables 4–7, and their summaries are provided in Tables 8 and 9. The effect
of different values for parameter θs+/− was also examined in the third experiment, as shown in Tables 6
and 7 and Figures 5 and 6.

Table 3. Parameters used in all experiments.

Parameter Exp. 1 Exp. 2 Exp. 3_1 Exp. 3_2

θ 20 ms 20 ms 20 ms 20 ms

∆t 5 s 5 s 5 s 5 s

T 20 steps 20 steps 20 steps 20 steps

θs+ 6 6 6 6

Ts+ 20 20 20 20

θs− 7 7 7 6

Ts− 20 10 20 20
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Table 4. Experiment 1’s evaluation result of proposed PSI between path R4-1-2-6 and path R4-5-6.

I∆t Data Range Li(∆t) > Lj(∆t) Li(∆t) < Lj(∆t) True Rate False Rate

0 2–125 9 115 92.8% 7.2%
1 126–197 25 47 34.7% 65.3%
0 198–210 7 6 47% 53%
1 211–213 1 2 33.3% 66.6%
0 214–218 2 3 60% 40%
1 219–249 9 22 29% 71%
0 250–583 35 299 89.6% 10.4%
1 584–979 160 236 43% 57%
0 980–1279 95 205 68.4% 31.6%
1 1280–1381 94 8 92.1% 7.9%
0 1382–1672 103 188 64.7% 35.3%
1 1673–1811 110 29 79.1% 20.9%
0 1812–2088 83 194 70.1% 29.9%
1 2089–2194 84 22 79.2% 20.8%
0 2195–2227 23 10 30.4% 69.6%
1 2228–2236 7 2 77.8% 22.2%
0 2237–2500 82 182 69.0% 31.0%
1 2501–2606 87 19 82.0% 18.0%
0 2607–2629 13 10 43.4% 56.5%
1 2630–2653 16 8 66.6% 33.3%
0 2654–3197 77 467 85.8% 12.3%

(a) The latency of R4-5-6 and R4-1-2-6 when the peak traffic rate is 10 times the channels’ bandwidth limit of every hop,
with the Indicator I∆t.

(b) The latency difference of R4-5-6 and R4-1-2-6 when the peak traffic rate is 10 times the channels’ bandwidth limit
of every hop, and the PSI I∆t.

Figure 3. The latency of OSPF chosen path and the backup path with the PSI I∆t under extreme cases
of our pressure experiments. The peak traffic transmit rate is 10 times the channels’ bandwidth limit.



Electronics 2020, 9, 2146 11 of 19

(a) The latency of R7-8-10 and R7-9-11-10 when the peak traffic rate is 7.5 times the channels’ bandwidth limit of every hop,
with the Indicator I∆t.

(b) The latency difference of R7-8-10 and R7-9-11-10 when the peak traffic rate is 7.5 times the channels’ bandwidth
limit of every hop, and the PSI I∆t.

Figure 4. The latency of the OSPF chosen path and the backup path with the PSI I∆t under extreme cases
of our pressure experiments. The peak traffic transmit rate is 7.5 times the channels’ bandwidth limit.

(a) The latency of R5-6-8-10 and R5-7-8-10 when the peak traffic rate is 20 times the channels’ bandwidth limit of every hop,
with the Indicator I∆t.

(b) The latency difference of R5-6-8-10 and R5-7-8-10 when the peak traffic rate is 20 times the channels’ bandwidth
limit of every hop, and the PSI I∆t.

Figure 5. The latency of the OSPF chosen path and the backup path with the PSI I∆t under extreme cases
of our pressure experiments. The peak traffic transmit rate is 20 times the channels’ bandwidth limit.
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(a) The latency of R5-6-8-10 and R5-7-8-10 when the peak traffic rate is 20 times the channels’ bandwidth limit of every hop,
with the Indicator I∆t.

(b) The latency difference between R5-6-8-10 and R5-7-8-10 when the peak traffic rate is 20 times the channels’ bandwidth
limit on every hop, and the PSI I∆t.

Figure 6. The latency of the OSPF chosen path and the backup path with the PSI I∆t under extreme cases
of our pressure experiments. The peak traffic transmit rate is 20 times the channels’ bandwidth limit.
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Figure 8. Summarization and comparison of the accuracy improvement of each experiment.

4.3.1. Results of Experiment 1

Experiment 1 was carried out on the network denoted by orange and labelled with 1 in Figure 2.
The source and destination routers were R4 and R6, respectively. The path chosen by OSPF was R4-5-6,
as labelled with “Path i”, and the backup path was R4-1-2-6, labelled with “Path j”. The evaluation
results are shown in Figure 3a,b and Table 4. In Figure 3a, the real-life latencies of both paths (R4-1-2-6
and R4-5-6) are presented with curves in orange (R4-5-6) and blue (R4-1-2-6) colors. As indicated
before, the current path chosen by OSPF was R4-5-6, the orange curve in Figure 3a, and the blue curve
is the latency of the backup path R4-1-2-6. The value of PSI I∆t at each time point is shown as a gray
spot, and a continuous 1 s of indicator I∆t forms a window in Figure 3a. Inside the window the PSI is
on, which means route should be switched to the backup path, and vice versa—outside the window
the PSI is off, during which the route should be switched back to the current path, because it indicates
that the current path has a better condition than the backup one according to our algorithm. The x-axis
in Figure 3a is the number of steps of each measurement; each step is defined by the sampling interval
∆t, which was 5 s in this experiment.

In the ideal situation, when PSI is 1, the latency of the current path should always exceed the
backup one, and vice visa. However, in the real-life backbone network, especially during busy hours
when the traffic peak is 10 times the bandwidth, as in this experiment, the channel situation is very
dynamic, and the congestion situation in terms of the latency difference will oscillate between two
paths, as shown with the green line in Figure 3b; if we simply swap the route to the one with less latency,
the router will be busy jumping back and forth between two paths, and the expense of rerouting will
cause more than the channel improvement the rerouting brings. Thus, a consistent routing selection
indicator is required. The metric to measure the consistency of the indicator selected in this paper is
the time interval between path swaps TPSI ; the time interval can stay unchanged once the value of the
indicator is set. As shown in Table 9, the indicator for route consistency is calculated as Equation (11).

TPSI =
Total Time

Total Num. o f I∆t Swaps × ∆t
3197
21 × ∆t = 152.23× 5 = 761.15s

(11)
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Equation (11) implies that it is evident that, on average, each time there is a PSI change, it can stay
consistent for 761.15 s. This is quite stable compared to the route change time expense, which is at the
scale of milliseconds.

4.3.2. Results of Experiment 2

Experiment 2 was carried out on the topology labelled with purple and “2” in Figure 2. The source
router was R7, and the destination router was R10. The path selected by OSPF was R7-8-10, and the
backup one was R7-9-11-10. The evaluation results are shown in Figure 4a,b and Tables 5, 8 and 9.
In Figure 4a, the real-life latencies of paths (R7-8-10 and R7-9-11-10) are presented with curves in
orange (R7-8-10) and blue (R7-9-11-10) colors. The latency of the current path chosen by OSPF
R7-8-10 is denoted by the orange curve in Figure 4a, and the blue curve is the latency of the backup
path R7-9-11-10. Same as in Experiment 1, the indicator I∆t at each time point is shown as a gray spot
in Figure 4a. When the PSI is on (or has a value of 1), it indicates that the route should be switched
to the backup path, because a steady increase of traffic load (or an elephant flow) in the current path
is expected, and vice versa, when the PSI is off, it indicates the route should be switched back to
the current path, because the current path has better conditions and will continue to stay better in
a foreseeable future. The x-axis in Figure 4a is the step of each measurement, and each step is 5 s.
The parameters chosen in the experiment are shown in Table 3.

TPSI =
Total Time

Total Num. o f I∆t Swaps × ∆t
= 3338

19 × ∆t = 175.736× 5 = 715s
(12)

TPSI in Experiment 2 is calculated in Equation (12), which means that on average, after a PSI
change, it can stay consistent for 761.15 s. This is quite stable compared to the route change time
expense, which is at the scale of milliseconds.

Table 5. Experiment 2’s evaluation results of the proposed PSI between path R7-8-10 and
path R7-9-11-10.

I∆t Data Range Li(∆t) > Lj(∆t) Li(∆t) < Lj(∆t) True Rate False Rate

0 2–1250 120 1129 91% 9%
1 1251–1380 114 16 87% 13%
0 1381–1649 77 192 72% 28%
1 1650–1676 15 12 55.5% 44.5%
0 1677–1689 4 9 69.3% 30.7%
1 1690–1779 75 15 89% 11%
0 1780–1799 14 6 30% 70%
1 1800–1813 4 10 28.5% 71.5%
0 1814–1858 27 18 40% 60%
1 1859–1875 8 9 47% 53%
0 1876–2095 57 163 75% 25%
1 2096–2180 60 25 70.5% 29.5%
0 2181–2200 13 7 35% 65%
1 2201–2223 12 11 52.1% 47.9%
0 2224–2476 68 185 73.2% 26.8%
1 2477–2532 40 16 71.4% 28.6%
0 2533–2584 21 31 59.7% 40.3%
1 2585–2976 143 249 36.4% 63.6%
0 2977–3339 75 288 79.5% 20.5%

4.3.3. Results of Experiment 3

The third experiment was carried out on the topology labelled in green and “3” in Figure 2.
The source and destination routers were R5 and R10, respectively. The evaluation result is shown in
Figure 5a,b and Tables 6, 8 and 9. In Figure 5a, the real-life latencies of paths (R5-7-8-10 and R5-6-8-10)
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are presented with curves in orange (R5-6-8-10) and blue (R5-7-8-10) colors. As indicated before,
the current path chosen by OSPF is R5-6-8-10, the orange curve in Figure 5b, and the blue curve is the
latency of the backup path R5-7-8-10. The indicator I∆t at each time point is shown as a gray spot in
Figure 5a. The parameters chosen in the experiment are shown in Table 3.

Table 6. Experiment 3_1’s evaluation result of the proposed PSI between path R5-6-8-10 and
path R5-7-8-10.

I∆t Data Range Li(∆t) > Lj(∆t) Li(∆t) < Lj(∆t) True Rate False Rate

0 2–928 107 820 88.5% 11.5%
1 929–1085 92 79 53.8% 46.2%
0 1086–1125 10 30 75% 25%
1 1126–2173 281 767 26.8% 73.2%
0 2174–3303 180 950 84.1% 15.9%

As shown in Figure 5a, the PSI seems unable to reflect the channel changes. According to
Table 8, when PSI = 1, only 30% of the latencies are really worse than the backup, and from Figure 7,
the accuracy improvement of Experiment 3_1 is the lowest, only around 200%. Thus we carried out
another experiment, Experiment 3_2, adjusting the latency consistency sensitivity θs− from 7 to 6,
as shown in Table 3. The precision of the indicator has significantly improved, with the accuracy
improvement raised to almost 360%, as shown intuitively in Figure 6a,b and in Figure 7. It is evident
that the experiment accuracy is very sensitive to the parameter latency consistency sensitivity θs+/−,
and thus customers should adjust it according to the real situation of their own network.

However, in Experiment 3_1, the time interval between path swaps TPSI was the highest of all
experiments, as shown in Equation (13), which means that, after a PSI change, it can stay stable for
3303 s on average.

TPSI =
Total Time

Total Num. o f I∆t Swaps × ∆t
= 3303

5 × ∆t = 660.6× 5 = 3303s
(13)

In Experiment 3_2, after the latency differential sensitivity θs− was changed from 7 to 6, the time
interval between path swaps TPSI decreased to 1500 s, as shown in Equation (14), but it was still
1500 times larger than the route change time, and thus it is evident that our proposed metric PSI is able
to provide a consistent path congestion prediction.

TPSI =
Total Time

Total Num. o f I∆t Swaps × ∆t
= 3303

11 × ∆t = 300.0× 5 = 1500s
(14)

Table 7. Experiment 3_2’s evaluation result of the proposed PSI between path R5-6-8-10 and
path R5-7-8-10.

I∆t Data Range Li(∆t) > Lj(∆t) Li(∆t) < Lj(∆t) True Rate False Rate

0 2–928 107 820 88.5% 11.5%
1 929–973 25 20 55.5% 44.5%
0 974–980 7 0 0% 100%
1 981–987 2 5 28.5% 71.5%
0 988–1352 102 263 72.1% 27.9%
1 1353–1391 20 19 51.2% 48.8%
0 1392–1750 85 274 76.4% 23.6%
1 1751–1815 38 27 58.4% 41.6%
0 1816–2144 67 262 79.7% 20.3%
1 2145–2173 23 6 79.3% 20.7%
0 2174–3303 180 950 84.1% 15.9%
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Table 8. The accuracy result of all experiments with corresponding PSI.

True False Accuracy
Improvement

Exp. 1 PSI = 1 60% 40% 251%PSI = 0 76.1% 23.9%

Exp. 2 PSI = 1 64.1% 35.9% 337.36%PSI = 0 81% 19%

Exp. 3_1 PSI = 1 30% 70% 212.76%PSI = 0 85.9% 14.1%

Exp. 3_2 PSI = 1 58.3% 41.7% 342.9%PSI = 0 83% 17%

Table 9. Time intervals between swaps TPSI in all experiments.

Experiment Time Interval between
Path Swaps TPSI

Variance of
Latency Difference

Exp. 1 761.5 s 31.983
Exp. 2 775 s 23.33

Exp. 3_1 3303 s 12.16
Exp. 3_2 1500 s 12.16

4.3.4. Summary

The accuracy improvement and time interval between PSI changes of all experiments are summarized
in Figures 7 and 8 and Tables 8 and 9. In Figure 8, each block represents the percentages of situations
when the congestion in the backup path is better or worse than the current path (light gray denotes
worse, and dark gray better). The red dashed arrow indicates the changing trend after the PWI turns
to 1, and it is obvious that the smallest accuracy improvement is 200%, while the largest improvement
is almost 360%, which evidences that the proposed PSI is able to relieve the congestion of the path
by at least two and up to nearly four times. From Equations (11)–(14) and intuitively in Figure 7, it is
also evident that each time the PSI changes its value, it can take effect for at least 760 s, and more than
3000 s at most. This is quite consistent compared to the route change time expense, which is less than
1 s according to technical reports of current vendors (https://docs.oracle.com/cd/E19934-01/html/
E21707/z40004761412103.html https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-
path-first-ospf/7039-1.html#t6.)

The efficiency and consistency of the PSI are further presented in Figures 3b–6b, by putting the
value of the PSI at each time step against the latency difference between the OSPF selected path and
the backup one. In Figures 3b–6b, the green dotted lines are the differences between the latency
of the chosen path and the backup path. The grey lines denote the values of the PSI at each time
step. When the green dot is above 0, the OSPF chosen path is more congested than the backup path;
when below 0, the backup path has a better channel situation. In these experiments, the peak traffic
rates have exceeded the bandwidth by far (up to 20 times the bandwidth); thus during busy hours,
the latency difference can be as large as ±60 milliseconds.

As suggested intuitively from Figures 3b–6b, the latency differences are dynamic and vibrating.
This deduction can also be proved by the variances of latency differences, according to Table 9, in these
experiments, the largest variance of latency difference reaches 31.983, while the consistency of the PSI
can still be as high as 761.5 s, with a channel improvement of 251%. As for the traffic with the smallest
variance 12.16, the PSI can stay unchanged for as long as 1500 s, while still achieving a congestion
improvement of 342.9%, as denoted in Table 8.

In summary, we argue that it is evident that the metric PSI proposed in this paper is able to
predict the path situation with acceptable precision and considerable consistency during extremely

https://docs.oracle.com/cd/E19934-01/html/E21707/z40004761412103.html
https://docs.oracle.com/cd/E19934-01/html/E21707/z40004761412103.html
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html#t6
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html#t6
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congested situations. Routing algorithms guided by this metric can achieve satisfiable improvement in
the path congestion. It is worth mentioning that the prediction result is very sensitive to the parameters,
especially Latency Consistency Sensitivity, that even small changes can affect the results significantly,
and that parameters are dependent on the real network. Thus users should carefully chose their
parameters according to their own network.

5. Conclusions

In this paper, an effort towards consistent adaptive routing in backbone networks under extreme
congested conditions was proposed, with the main goal to avoid unnecessary path rerouting and
reduce consequent network fluctuation and channel deterioration, by predicting the onset of an
obvious and steady relative channel deterioration compared to the backup path. First we proposed a
model to describe the differential channel congestion between the selected path and the backup one.
Then, a metric for consistent routing, PSI, was designed, which is a boolean indicator for rerouting
between the current path and the backup one. When the PSI is on, It = 1, it denotes that the backup
path has and will have steady superior performance compared to the current path; thus it works as a
sign to reroute traffic to the backup path. When the PSI is off, it denotes a steady inferior performance
compared to the backup path.

Evaluation experiments have been carried out on real networks virtualized with the Docker
network, using real-life Abilene network traffic datasets. Results were presented and analyzed in
detail. It is evident from the results that the PSI is able to predict the trend of channel congestion
consistently; once PSI changes, it will take effect for more than 1000 s on average and more than 3000 s
at most, while improving the congestion situation by more than 300% on average. The parameter
selection was also discussed: different parameter values were used and their effects were compared.
It turns out that the design of the PSI is flexible with configurable parameters. For future work,
the effect of the PSI will be further evaluated by implementing it in real-life backbone networks with
various, and its effects in terms of metrics like the call block probabilities will be studied to compare
with existing approaches.
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Abbreviations

The following abbreviations are used in this manuscript:

Li(t) Latency of the Path i at time t
Lj(t) Latency of the Path j at time t

θ

Latency Differential Sensitivity
represent a certain amount of congestion
by a certain amount of latency.
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∆t Sample Interval

T
Cumulative Window
the time period of the history in step of ∆t that is
taken into consideration when calculating ωij(θ, ∆t).

ωij(θ, t) Differential Path Congestion Indicator (DPCI)

ωij(θ, ∆t)
Discrete Time Differential Path Congestion Indicator
obtained from by sampling ωij(θ, t) at a sampling interval ∆t.

Wij(θ, T, ∆t)
Cumulative Differential Path Congestion Indicator (CDPCI)
obtained from from the sum of ωij(θ, ∆t) over the period of time T.

sW,+(∆t)
the process in which Wij(θ, T, ∆t) increases compared to the last value
Wij(θ, T, ∆t− 1)

sW,−(∆t)
the process in which Wij(θ, T, ∆t) decreases compared to the last value
Wij(θ, T, ∆t− 1)

θs+
Latency Consistency Sensitivity
the number of times that sW,+/−(∆t) has increased

θs−
Latency Consistency Sensitivity
the number of times that sW,+/−(∆t) has decreased

Ts+/−

Consistency Cumulative Window
the time period that is taken into consideration
when measuring path congestion consistency CDPCCI.

SW,+(θs+, Ts+, ∆t)

Cumulative differential path congestion consistency
indicator (CDPCCI)
represents the situation in which sW,+(∆t) keeps increasing for more than
a certain number of times during a recent Ts+ time period.

SW,−(θs−, Ts−, ∆t)

Cumulative differential path congestion consistency
indicator (CDPCCI)
represents the situation in which sW,−(∆t) keeps decreasing for more than
a certain number of times during a recent Ts− time period.

I∆t
PSI
derived from the CDPCCI indicators proposed.
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