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Abstract: In the automatic sorting process of express delivery, a three-segment code is used to
represent a specific area assigned by a specific delivery person. In the process of obtaining the courier
order information, the camera is affected by factors such as light, noise, and subject shake, which will
cause the information on the courier order to be blurred, and some information will be lost. Therefore,
this paper proposes an image text deblurring method based on a generative adversarial network. The
model of the algorithm consists of two generative adversarial networks, combined with Wasserstein
distance, using a combination of adversarial loss and perceptual loss on unpaired datasets to train the
network model to restore the captured blurred images into clear and natural image. Compared with
the traditional method, the advantage of this method is that the loss function between the input and
output images can be calculated indirectly through the positive and negative generative adversarial
networks. The Wasserstein distance can achieve a more stable training process and a more realistic
generation effect. The constraints of adversarial loss and perceptual loss make the model capable of
training on unpaired datasets. The experimental results on the GOPRO test dataset and the self-built
unpaired dataset showed that the two indicators, peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM), increased by 13.3% and 3%, respectively. The human perception test results
demonstrated that the algorithm proposed in this paper was better than the traditional blur algorithm
as the deblurring effect was better.

Keywords: image deblurring; generative adversarial network; Wasserstein distance; adversarial loss;
perceptual loss

1. Introduction

Image restoration [1] is an important research direction in image processing. It is a technique to
study the cause of degradation and establish a mathematical model to restore high-quality images in
response to the degradation in the image acquisition process. Image deblurring [2,3] is also a kind of
image restoration. It is mainly aimed at the blurring effect caused by the relative displacement between
the photographed object and the device due to camera shake or noise interference. The texture is
also clearer and more natural. With this technology, low-quality blurred images can be restored to
high-quality clear images. At present, there are many methods applied in the field of image deblurring.
However, due to the high-quality requirements of image deblurring, image deblurring is still a very
challenging research direction.

With the continuous development of human industrial technology, the application of characters
on workpieces in the industrial field is also very important. The on-site environment in an industrial
site is chaotic and complex. Factors such as camera shake, subject movement, light, and on-site noise
will cause the image captured by the camera to appear blurred. The integrity of the information is
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urgently required in industrial sites. Solving this problem also has practical significance and application
value. In the intelligent express sorting system, as long as the express code is obtained, you can know
the area where the express was sent by the courier. If these courier slips are missing, guessing the
information with the naked eye is not only cumbersome and heavy but also inefficient. If you can
use a computer to automatically recover the blurred image information and automatically restore
the blurred three-segment coding from the express order to a clear image, then you can reduce the
manpower and material resources for manual data processing. Therefore, it is very important to deblur
the fuzzy express image information in the automatic sorting system.

In recent years, with the rapid development of deep learning, a large number of scholars have
researched image deblurring methods based on machine learning, and all have achieved good results [4].
In many studies, the image deblurring method based on generative adversarial network (GAN) has
been widely recognized. This not only takes into account the rationality of image texture details
but also considers the uniformity of the overall image structure. Therefore, this paper proposes an
image deblurring method based on the generative adversarial network. Firstly, in order to eliminate
the difference between the real blurred image and the generated blurred image, we established an
unpaired dataset and solved the image deblurring problem based on this. Then, a GAN model was
established, which consisted of two generative adversarial networks. For the conversion of blurred
images to clear images and the conversion of clear images to blurred images, the loss function was
optimized by combining adversarial loss and perceptual loss. Finally, a stable network model was
obtained by iteratively training the GAN model on unpaired datasets. During each training process,
the model was updated to achieve a better deblurring effect.

The specific sections of the article are as follows. Section 2 briefly introduces the related work on
image deblurring. Section 3 presents the network model proposed in this paper and explains each
part of the model in detail. Section 4 gives the experimental demonstration, and Section 5 gives the
summary of this article and future expectations.

2. Related Works

With the popularization of handheld devices and multimedia communication technology, image
deblurring technology avoids further increasing the high cost of the device as well as noise interference
between redundant components. It has broad application scenarios and strong technical advantages.
If we can first use the deblurring method to restore the corresponding clear image and then use
the restored image as the input of the subsequent neural network, the accuracy of the output of the
algorithm will be greatly improved. Therefore, image deblurring technology, as an important part of
computer vision data preprocessing, has also become a research hotspot in the field of computer vision
and computer graphics.

At present, there are two main research methods for image deblurring. One is the nonblind
deblurring method, which uses a known blur kernel function that directly deconvolves the degraded
model of the blurred image to obtain a restored high-definition image. The other is the blind deblurring
method, which is used when the fuzzy process is unknown. A brief introduction of these two methods
is as follows.

The nonblind deblurring method is a more traditional image deblurring method. It first obtains
the blur kernel information through a certain technique and then deconvolves the blur image according
to the obtained blur kernel to restore a high-definition image. The classic deconvolution algorithms
include the Lucy–Richardson algorithm, the Wiener filter, and the Tikhonov filter.

In reality, in most cases, the fuzzy function is unknown. Therefore, it is necessary to make
assumptions on the fuzzy source and parameterize the fuzzy function. The most common assumption
is that the blur is uniformly distributed on the image. For example, the method proposed by
Fergus et al. [5] achieved groundbreaking results, and the literature [6–8] has been optimized based on
it. In addition, there are some methods for dealing with cases where the blur is unevenly distributed
on the image, but this type of algorithm also simplifies the problem from different angles. For example,
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Whyte et al. [9] used a parametric geometric model to model camera motion, and Gupta et al. [10]
assumed that blur was caused solely by 3D camera motion. These traditional methods have achieved
certain effects. However, because the model makes too many assumptions, they have a lot of limitations
in the application scene and cannot solve the problem of image blur caused by various complicated
factors in actual life.

With the development of deep learning in the field of computer vision, scholars everywhere
have begun to use deep learning to deal with image deblurring. Earlier works were still based on
the idea of nonblind deblurring, allowing neural networks to estimate fuzzy kernel information. For
example, Sun et al. [11] used a convolutional neural network (CNN) to estimate the fuzzy kernel and
then restored the image based on the estimated fuzzy kernel. Chakrabarti et al. [12] used de-CNN to
predict the Fourier coefficients of the fuzzy kernel and deblurred the image in the frequency domain.
Gong et al. [13] used a full convolutional network (FCN) to estimate the motion flow of the entire
image and restored a blurred image based on it. Due to the use of a nonblind deblurring algorithm,
the above methods need to obtain a clear image after obtaining the estimated fuzzy kernel through
CNN and then use a traditional deconvolution algorithm to deconvolve the blurred image. This leads
to slow running speed of the algorithm, and the restoration effect depends entirely on the estimation
results of the blur kernel.

In recent years, with the deep prospect of deep learning in the areas of image semantic repair and
image compression [14], more and more scholars have discovered that the work that neural networks
can cover is far more than just estimating fuzzy kernels. In 2017, Nah et al. [15] proposed the use
of multiscale convolutional neural networks to directly deblur images. They used an end-to-end
training method to allow the network to directly reproduce clear images without first estimating
the blur function. This type of method is called the blind deblurring method. Compared with the
previous method, this method greatly improves the model effect and running speed. Other similar
methods are those proposed by Noroozi et al. [16], Ramakrishnan et al. [17], and Yao et al. [18,19]. Later,
Kupyn et al. [20] proposed the use of conditional generative adversarial networks (CGAN) to deblur
images. They followed the basic structure of pix2pix, a general framework for image translation tasks
proposed by Isola et al. [21], and modified it to obtain the DeblurGAN image deblurring algorithm
model. This model obtained better image deblurring effect than the multiscale convolutional neural
network used by Nah et al. At the same time, the network structure was simpler and faster. To some
extent, this reflects the fact that the generative adversarial network really performs well on image
deblurring tasks.

In this paper, an image deblurring method based on GAN is proposed for unpaired datasets.
Because there is no blur–clear image pair in unpaired datasets, a single GAN cannot directly calculate
the loss function. Therefore, the proposed model uses two generations. Adversarial networks can
realize the mutual conversion between blur and clear images and indirectly calculate the loss function
between the input and output images. Therefore, the model has the ability to train and learn on
unpaired datasets. At the same time, a loss function that combines adversarial loss and perceptual loss
is used for training, making the image generated by the model clearer and more real.

3. Image Deblurring Model

In order to eliminate the difference between the real blurred image and the blurred image
synthesized by the algorithm, as well as to achieve a better image deblurring effect in the real industrial
scene, we used the CycleGAN structure [22] on the premise of having an unpaired dataset. An image
deblurring model based on a generative adversarial network was established. The overall structure of
the model is shown in Figure 1. This model consists of two generative adversarial networks A and B,
which are used to achieve the conversion from blurred images to clear images and from clear images
to blurred images. A and B networks are composed of their respective generators and discriminators.
The model also adds a loss function to the network that combines adversarial loss and perceptual loss.
Such a model just constitutes a cyclic structure consisting of clear-> blur-> clear and blur-> clear->
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blur, which better constrains the content of the generated sample. This article will introduce each part
of the model separately.Electronics 2020, 9, x FOR PEER REVIEW 4 of 14 
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the content is clear. In order to more accurately measure whether the samples are clear and natural, 
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PatchGAN pays more attention to the local information of the image, the generated image details are 
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3.1. Structure of GAN

3.1.1. Generator Model

In generative adversarial networks, generative networks are the key. In previous studies, some
classic network structures [23,24] have also achieved outstanding results. Among them, the deep
residual network structure has achieved better performance in generating high-definition image tasks
because it can greatly increase the number of layers in the network, as shown in [25,26]. The deep
residual network was proposed by He et al. [24] in 2016. It is composed of several residual block
(ResBlock) and other layers. After using the residual module, the number of layers of the network can
be greatly deepened without the phenomenon of difficult model convergence, model degradation, and
disappearance of gradients. Therefore, we used the deep residual network structure as the network
structure of the generator. In addition, we added global skip connection [27] to the generative network.
Global skip connection can directly connect the input of the entire network to the output. Therefore,
the intermediate network only learns the residual between the output and the input, thereby reducing
the amount of network learning and making the network converge faster and fit to improve the
generalization ability of the model.

On the specific network structure, combined with CycleGAN, deep residual network, and global
skip connection, the network contains 22 convolutional layers and two deconvolutional layers. A batch
normalization (BN) layer [28,29] is added after each convolutional layer. The activation function uses a
linear rectification (ReLU) function. The network structure of the generator is shown in Figure 2.
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3.1.2. Discriminator Model

Compared with the generator, the task of the discriminator is to learn the difference between the
generated sample and the real sample, including whether the structure in the picture is natural and
the content is clear. In order to more accurately measure whether the samples are clear and natural,
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we used PatchGAN, proposed by Isola et al. [21], as the discriminative network structure. Because
PatchGAN pays more attention to the local information of the image, the generated image details are
more abundant, and the visual effect is more realistic. Unlike the original PatchGAN, we removed
the last Sigmoid function activation layer of the original PatchGAN and used Wasserstein distance
instead of the original loss function. PatchGAN is unique in that it pays more attention to the local
information of the image, which makes the generated image richer with detailed information and the
visual effect more realistic.

Because the input of PatchGAN is an image block, we used a sliding window with a size of 70 × 70
to traverse the entire generated sample. Each image block can output a value through PatchGAN, and
the average value of all image blocks can then be obtained with the authenticity of the entire image.
The structure of the entire discrimination network is shown in Figure 3.
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3.2. Loss Function of Network

The loss function is the most basic and critical factor in deep learning. By rationally designing the
loss function and continuously optimizing it, the network can learn what they should learn without
a clear image, thereby achieving a deblurring effect. In this work, the loss function of the entire
network is a combination of adversarial loss [30] and perceptual loss. With these two loss functions, the
generator can produce clear and realistic images. For the convenience of description, in the following
content, Z is used to represent the samples in the clear image set, T is the samples in the blur image set,
and N is the number of samples.

3.2.1. Adversarial Loss

Adversarial loss refers to the loss function between two generative adversarial networks A and B.
For A, its role is to make the generated image as realistic and clear as possible, and for B, its role is to
make the generated sample have as realistic motion blur as possible. In the development of generative
adversarial networks, various adversarial loss functions have appeared, including cross-entropy loss
functions [31], squared loss functions [32], and Wasserstein distance loss functions [33]. Because
WGAN-GP [33,34] uses the Wasserstein distance loss function as the adversarial loss of the network
and increases the gradient penalty term for discriminating the network, it has achieved the most
stable training effect at present. Therefore, we used the Wasserstein distance loss function for the
confrontation loss. The calculation process of the adversarial loss is shown in Figure 4.
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The formulas of the two generative adversarial networks are shown in Equations (1) and (2).

LGAN(A) =
1
N

N∑
n=1

[DA(T) −DA(GA(Z))] (1)

LGAN(B) =
1
N

N∑
n=1

[DB(Z) −DB(GB(T))] (2)

In the above formula, GA(Z) represents the sample generated by the generator in network A on
the clear image set Z, and GB(T) represents the sample generated by the generator in network B on
the blurred image set T. DA(T) represents the probability that the discriminator in network A judges
whether the blurred image set T is a real image. DB(Z) represents the probability that the discriminator
in network B judges whether the clear image set Z is a real image.

3.2.2. Perceptual Loss

Perceptual loss has the ability of visual perception close to the human eye. Compared with other
pixel-level loss functions, it can make the generated image look more realistic and natural. Perceptual
loss was originally proposed by Johnson et al. [35], and it has achieved good results in multiple
application areas, such as image style transfer [35], image segmentation [36,37], image super-resolution
reconstruction [26,38], and image deblurring [20]. The calculation of the perceptual loss depends on
the visual geometric group (VGG) network [39]. The specific calculation steps are as follows. First,
input two images to be tested, namely, a real image and a generated image, into a pretrained VGG
network. Then, extract the feature map output by one or several convolutional layers from the VGG
network. Finally, calculate the mean square error (MSE) on the feature maps corresponding to the two
images to be tested. In this work, the feature map output from the eighth convolution layer in the
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VGG-16 network was selected to calculate the perceptual loss. The calculation process is shown in
Figure 5. The formula is shown in Equation (3).

Lper(GA, GB) =
1
N

N∑
n=1

[
1

shwϕ(GB(GA(Z))) −ϕ(Z)
2
2

+ 1
shwϕ(GA(GB(T))) −ϕ(T)

2
2

] (3)
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Here, ϕ represents the feature map output from the eighth convolutional layer of VGG-16, and s,
h, and w represent the number of channels, height, and width of the feature map, respectively.

In summary, the overall loss function of the network is the result of the weighted summation of
the above two loss functions, and the formula is shown in Equation (4).

L(A, B, Z, T) = LGAN(GA, DA, Z, T) + LGAN(GB, DB, T, Z) + µLper(GA, GB) (4)

In the above formula, µ represents the weight of the perceptual loss function. As with the
original generative adversarial network, the generator needs to minimize the loss function, and the
discriminator needs to maximize the loss function. Therefore, the result of the optimal generator is
as follows:

GA
′, GB

′ = arg min
GA,GB

max
DA,DB

L(A, B, Z, T) (5)

3.3. Algorithm Implementation

In the algorithm implementation process of the entire network model, the role of Discriminator1
and Discriminator2 is to provide gradients for Generator1 and Generator2 to guide its optimization
process. The role of generative network B is to realize the conversion from clear images to blurred
images and assist generative network A to complete the learning process so that A can generate
and input consistent samples. After Discriminator1, Generator2, and Discriminator2 complete their
respective auxiliary work, Generator1 is responsible for restoring the input blurred image into a clear
image as the output result of the entire algorithm model. In the model training process, we used the
buffer pool strategy proposed by Shrivastava et al. [40] to reduce model oscillation. When updating
the parameters of the discriminant network, the historical samples generated by the generator and the
new samples generated in this iteration were used as the input of the discriminative network, thereby
increasing the stability of the model. The size of the generated sample buffer pool was 50, the batch size
of all model training was 1, and the number of iterations was 300 epochs. The optimization algorithm
used the Adam algorithm [41], and the initial learning rate was 0.0002. The specific implementation
process was as Algorithm 1.
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Algorithm 1: The algorithm flow of this model.

1: Initialize the input shape, h = 256, w = 256, s = 3, and the output shape of PatchGAN, pa = h/2**4, and the
loss weight, µ = 10, and the optimizer, Adam(0.0002, 0.5)
2: Input (img_1,h,w,s), Input (img_2,h,w,s)
3: Combined model trains generator to discriminator
4: for epoch in range(300):
5: for batch_i, img_1, img_2 in enumerate (dataloader.loadbtach(1)):
6: fake_2 = generator(img_1), fake_1 = generator(img_2)
7: recon_1 = generator(fake_2), recon_2 = generator(fake_1)
8: vali_1 = discriminator(fake_1), vali_2 = discriminator(fake_2)
9: if loss is arg min

GA,GB
max
DA,DB

L(A, B, Z, T):

10: clear_image = concatenate (img_1, fake_2, recon_1, img_2, fake_1, recon_2)
11: return clear_image

4. Experiments and Results

The GAN model proposed in this paper is implemented based on the Python language and the
PyTorch deep learning framework, and it can run on an Intel Xeon computer with a 2.40 GHz CPU and
32 GB RAM. The model idea was established by looking at the references for one month. The model
training took 15 days, and the model finally reached a stable state.

4.1. Datasets

Because there are no large-scale unpaired image deblurring datasets yet to be disclosed, it is
meant for comparison with algorithms on paired datasets. Therefore, we still used paired datasets for
training but used unpaired training methods. We used two datasets: the GOPRO dataset and a small
unpaired dataset built in this work. All models were trained on the GOPRO dataset. The self-built
unpaired dataset was only used as a test dataset due to its small number. These two datasets are
described separately.

4.1.1. GOPRO Dataset

The GOPRO dataset is currently the largest and the highest-resolution open-paired dataset in the
field of image deblurring. It consists of 3214 pairs of blurred and clear images. In order to obtain a
more realistic blurred image, all the blurred images in this dataset are fused from multiple clear images
taken in the real scene rather than synthesized by means of clear image convolution blur kernel. For
this work, a simplified version of this dataset was downloaded from the internet. The dataset was
used as the training dataset, and the images in all datasets were cropped from the original GOPRO
dataset. The size was 256 × 256. An image of a partial dataset is shown in Figure 6.
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4.1.2. Unpaired Dataset

In order to eliminate the difference between the real blurred image and the blurred image
synthesized by the algorithm, as well as to achieve a better image deblurring effect in the real industrial
scene, we trained the network model by unpaired training. In order to test the effectiveness of the
model in real scenarios, a small unpaired test dataset was also established. The data contained only 70
blurred images, which were collected or photographed by the author from different sources, and they
all originated from real scenes. An image of a partial dataset is shown in Figure 7.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 14 

of the model in real scenarios, a small unpaired test dataset was also established. The data contained 
only 70 blurred images, which were collected or photographed by the author from different sources, 
and they all originated from real scenes. An image of a partial dataset is shown in Figure 7. 

    
Figure 7. Partial unpaired dataset. 

4.2. Experimental Results and Comparison 

Based on the CycleGAN, we established an image deblurring algorithm model based on a 
generative adversarial network. First, the model was trained on the GOPRO dataset, and the number 
of iterations was 300 epochs. Then, in order to verify the validity of this model, the CycleGAN and 
DeblurGAN methods were selected to make comparisons with the algorithm used in this work, and 
they were tested on GOPRO test dataset and self-built unpaired dataset. In order to objectively and 
comprehensively analyze the deblurring effect of the algorithm, we used two quantitative evaluation 
indicators of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as well as 
human perception test methods for evaluation. PSNR evaluates the quality of an image by measuring 
the error between corresponding pixels in two images, while SSIM measures the degree of image 
distortion from brightness, contrast, and structural information. The human perception test refers to 
evaluation of the test results of the model with the human eye. The test subject needs to choose the 
one that is considered better from the two given images or indicate whether the choice is uncertain. 
The two images given were reconstructed from two randomly selected models among the three 
contrasting models. After the subjects completed the test, we combined the pass rate and the TrueSkill 
evaluation system to measure the deblurring ability of the three models. 

First, this paper will show the test results of each model on the GOPRO test dataset. Table 1 
shows the quantitative evaluation results, Figure 8 shows the perceptual test results of each model 
on the GOPRO test set, and Figure 9 shows the deblurring results of each model on the GOPRO test 
set. 

Table 1. Quantitative evaluation results on GOPRO dataset. 

Parameters 
Models PSNR SSIM 

CycleGAN 22.6 0.902 
Ours 25.6 0.929 

DeblurGAN 26.8 0.943 

As can be seen from Table 1, the results of the method used in this paper were significantly 
improved compared to CycleGAN, and the PSNR and SSIM indicators increased by 13.3% and 3%, 
respectively. Compared with DeblurGAN, our method achieved similar results. 

Figure 7. Partial unpaired dataset.

4.2. Experimental Results and Comparison

Based on the CycleGAN, we established an image deblurring algorithm model based on a
generative adversarial network. First, the model was trained on the GOPRO dataset, and the number
of iterations was 300 epochs. Then, in order to verify the validity of this model, the CycleGAN and
DeblurGAN methods were selected to make comparisons with the algorithm used in this work, and
they were tested on GOPRO test dataset and self-built unpaired dataset. In order to objectively and
comprehensively analyze the deblurring effect of the algorithm, we used two quantitative evaluation
indicators of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as well as human
perception test methods for evaluation. PSNR evaluates the quality of an image by measuring the error
between corresponding pixels in two images, while SSIM measures the degree of image distortion
from brightness, contrast, and structural information. The human perception test refers to evaluation
of the test results of the model with the human eye. The test subject needs to choose the one that is
considered better from the two given images or indicate whether the choice is uncertain. The two
images given were reconstructed from two randomly selected models among the three contrasting
models. After the subjects completed the test, we combined the pass rate and the TrueSkill evaluation
system to measure the deblurring ability of the three models.

First, this paper will show the test results of each model on the GOPRO test dataset. Table 1 shows
the quantitative evaluation results, Figure 8 shows the perceptual test results of each model on the
GOPRO test set, and Figure 9 shows the deblurring results of each model on the GOPRO test set.

Table 1. Quantitative evaluation results on GOPRO dataset.

Models
Parameters PSNR SSIM

CycleGAN 22.6 0.902
Ours 25.6 0.929

DeblurGAN 26.8 0.943
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As can be seen from Table 1, the results of the method used in this paper were significantly
improved compared to CycleGAN, and the PSNR and SSIM indicators increased by 13.3% and 3%,
respectively. Compared with DeblurGAN, our method achieved similar results.

In Figure 8, the results of each model are represented by a Gaussian curve. The mean µ of the
curve represents the average deblurring ability of the model, and the variance σ represents the stability
of the model. The higher the average value of the curve and the smaller the variance, the better
the model. Therefore, it can be seen from the above figure that the model in this paper had better
deblurring effect compared to CycleGAN, but it was slightly worse than DeblurGAN.

From the results in Figure 9, it can be seen that, compared with CycleGAN, the effect of the
proposed model was significantly improved. Not only was the deblurring ability enhanced, but the
disadvantages of chromatic aberration, edge distortion, and unnatural sharpness were also eliminated,
making the repair. The resulting image looked more real and natural. Compared with DeblurGAN,
the method used in this paper obtained similar results on images with low blurring degree, and the
images after deblurring were all natural and clear. However, on the images with a high degree of
blurring, the deblurring effect of the method used in this paper was not thorough enough, and it was
not as good as DeblurGAN.
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Next, this paper will show the test results of each model on a self-built unpaired dataset. Figure 10
shows the perceptual test results of each model on the unpaired dataset, and Figure 11 shows the
deblurring results of each model on the unpaired dataset.Electronics 2020, 9, x FOR PEER REVIEW 11 of 14 
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From the results in Figures 10 and 11, we can see that, on the unpaired dataset, the proposed
model had better deblurring effect than CycleGAN, and the repaired image looked more realistic and
natural. However, its performance was slightly worse than DeblurGAN.

Combining the experimental results on the above two datasets, it can be seen that the loss function,
which combines the adversarial loss and perceptual loss, can play a certain role in constraining the
content of the generated image. However, because the generated image was not directly constrained,
the image was generated by the constraint. The reconstructed image was used to indirectly constrain
the generated image, so the effect was limited, and the effect achieved was not as good as that on the
paired dataset. However, in general, the method achieved certain results on highly difficult unpaired
datasets. Compared to traditional CycleGAN, the deblurring effect was significantly improved. If a
large-scale image dataset in a real scene can be obtained, the effect will be better.

In order to show the importance of the combination of various parts of the model to the deblurring
effect, ablation research was also performed in this work. The ablation of the model was achieved by
reducing the number of convolution layers of the generator network to 16 layers and removing one
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of the perceptual loss functions. Finally, through model training, the evaluation index results on the
GOPRO paired dataset are shown in Table 2.

Table 2. Quantitative evaluation results after ablation.

Models
Parameters PSNR SSIM

Ours 25.6 0.929
Ablation 18.5 0.767

As can be seen from the above table, after reducing the generator convolutional layer and removing
the perceptual loss, the PSNR and SSIM evaluation indexes were reduced too much, by 27% and 17%,
respectively, resulting in poor model performance. Therefore, the various components of the model
proposed in this work are particularly important in the field of image deblurring.

5. Conclusions and Future Works

With the widespread use of handheld devices and digital images on multimedia communication
networks, image deblurring technology has more and more application value. In particular, in
an intelligent express sorting system, using a computer to restore the fuzzy three-segment coded
information on the courier slip to a clear image can improve the recognition effect of the subsequent
three-segment code. Therefore, this paper proposes an image deblurring method based on generative
adversarial networks. First, in view of the shortcomings of the existing algorithms, we dealt with
image deblurring on unpaired datasets to solve motion deblurring in actual scenes. Then, based on
CycleGAN, an image deblurring model based on a generative adversarial network was established
to realize the conversion of blurred images to clear images and the conversion of clear images to
blurred images. The process of network learning was also constrained by combining adversarial
loss and perceived loss so that the network could better learn the motion-blurred data distribution
characteristics in the actual scene. Finally, an evaluation was performed on the GOPRO dataset and
the self-built unpaired dataset. The experimental results showed that the proposed method could
obtain good deblurring effect on both datasets and that it was better than CycleGAN. However, some
improvements are still required. For example, in future work, we may try to introduce a multiscale
network structure into the model and deepen the network layers at the same time to improve the
capacity of the model. There are also loss functions of other structures designed to strengthen their
constraints on the generated sample content, which can be used to achieve a complete deblurring effect.
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