
electronics

Article

New RSA Encryption Mechanism Using One-Time
Encryption Keys and Unpredictable Bio-Signal for
Wireless Communication Devices

Hoyoung Yu 1 and Youngmin Kim 2,*
1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Korea; hoyung134@gmail.com
2 School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Korea
* Correspondence: youngmin@hongik.ac.kr; Tel.: +82-2-320-1665

Received: 6 December 2019; Accepted: 28 January 2020; Published: 2 Febuary 2020
����������
�������

Abstract: Applying the data encryption method used in conventional personal computers (PC) to
wireless communication devices such as IoT is not trivial. Because IoT equipment is extremely slow
in transferring data and has a small hardware area compared with PCs, it is difficult to transfer large
data and perform complicated operations. In particular, it is difficult to apply the RSA encryption
method to wireless communication devices because it guarantees the stability of data encryption
because it is difficult to factor extremely large prime numbers. Furthermore, it has become even
more difficult to apply the RSA encryption method to IoT devices as a paper recently published
indicated that it enables rapid fractional decomposition when using RSA encryption with a prime
number generated through several pseudo-random number generators. To compensate for the
disadvantages of RSA encryption, we propose a method that significantly reduces the encryption
key using a true prime random number generator (TPRNG), which generates a prime number that
cannot be predicted through bio-signals, and a disposable RSA encryption key. TPRNG has been
verified by the National Institute of Standards and Technology. The NIST test and an RSA algorithm
are implemented through Verilog.
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1. Introduction

The 4th Industrial Revolution is the convergence of information and communications.
Data resulting from the 3rd Industrial Revolution are shared among devices through wireless
communication and then used and processed for various purposes. A representative technology
of the 4th Industrial Revolution is the Internet of Things (IoT). IoT is an infrastructure that enables the
communication of objects by information exchange. It can control home devices in certain areas and
display all information pertaining to the present situation in real time through a video device such as a
camera. As such, human life has become more convenient; however, IoT devices do not guarantee
personal privacy when exchanging data through wireless communication. Therefore, data encryption
is required during data exchange.

Generally, the data encryption method is divided into symmetric and asymmetric key encryptions.
The symmetric key encryption method uses the same secret key for encryption and decryption between
the transmitting and receiving sides. To prevent the secret key from being leaked in advance, it must
be transmitted through a secure transmission method such as a secret communication network or a
direct transmission. The Advanced Encryption Standard (AES) [1] and Data Encryption Standard
(DES) [2] are typical symmetric key encryption methods. The symmetric key cryptosystem affords
fast encryption and decryption rates, but the data cannot be safely protected even if one of the two
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sides of the transmitter side is leaked. In addition, the symmetric key cryptosystem is inefficient in
many-to-many communication methods such as IoT because the key of each device must be separately
generated when a large number of devices is connected [3].

Asymmetric key cryptography or public key cryptography uses different keys for encryption
and decryption. The key for encryption is called the public key, and it can be easily used by anyone.
The secret key for decryption is kept in a safe place, accessible only by the receiving end that receives
the encrypted data. Even if encrypted data are acquired, it is extremely difficult to decrypt them if
the private key is not known. Typical asymmetric key cryptosystems are RSA [4] and ECC [5]. In an
embedded system such as IoT, power must be used efficiently. The RSA encryption method used in
conventional PCs cannot cope with the memory space and power consumption for calculation, as it
uses an extremely large key. Therefore, although the ECC encryption method has been developed,
the computation process is highly complicated, and it is limited to algorithm expansion because it is
developed to use only elliptic curves.

Generally, IoT primarily uses the ZigBee [6] or WiFi [7] communication method; similar
to most wireless communication methods, security problems exist in ZigBee communication.
High-performance wireless communication methods such as WiFi solve this problem through a
high-level encryption process; however, it is difficult to apply high-level encryption technology to
ZigBee because of the lack of performance of the terminal itself. The existing ZigBee communication
uses the AES-CCM [8] method for data encryption; however, the AES-CCM method does not guarantee
confidentiality if the key is leaked even if by only one device through the key transmission process or
various methods.

In the one-to-one communication method, the asymmetric key encryption method is primarily
used, and in the one-to-many or many-to-many communication method, the symmetric key encryption
method is effective. Therefore, the asymmetric key encryption method is effective in IoT equipment,
which is a communication method. However, it is difficult to apply RSA encryption to wireless
communication or small devices because it requires an extremely large encryption key for security.

Hence, the existing encryption methods used in PCs are not suitable to be used in devices that
exchange data in real time. Further, because information regarding temperature, time, etc., does not
require high security, it is inefficient to use the existing encryption method as it is. To secure the security
of the existing RSA encryption, a key size of 2048 bits is generally required. Transmission of 2048
bits through wireless communication such as ZigBee consumes considerable power, and arithmetic
computation with such a large bit number is expensive. Therefore, it is impossible to use the existing
RSA’s 2048 bit key. In addition, memory is required to store the 2048 bit private key, and preparation
for various side attacks is required because it has a memory to save the key.

We herein propose a feasible cryptosystem for situations where extremely high security is not
required but real-time encrypted data must be exchanged. It introduces a new encryption mechanism
based on the RSA algorithm with a small key and a true prime random number generator for discarding
and regenerating keys in real time.

2. RSA Overview

The RSA algorithm was first used to implement the concept of public key cryptography and has
been widely used because it is easier to understand and implement than other public key algorithms.
However, the RSA algorithm is computationally intensive with very large integer numbers. Strong
primes are required for RSA security. Thus, additional cost is indispensable for generating strong
primes in RSA [9]. The RSA key generation formula is defined as follows:
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Random prime number select = p, q (p 6= q)

n = p × q

ϕ(N) = (p− 1)(q− 1)

(ϕ(N), e) = 1 < e < ϕ(N)

Calculate d→ e× d mod ϕ(N) = 1

(1)

For encryption, e is made available to anyone. Furthermore, d for decryption is disclosed only to
users requiring decryption. Therefore, e may be leaked, but d should not be leaked. P is the original
message, and C is the encrypted message. The process of encrypting and decrypting data is defined
as follows:

C = Pe mod n

P = Cd mod n
(2)

The first step of the RSA algorithm is to generate two prime numbers, p and q, through a random
number generator. The values of p and q should be generated as unpredictable random numbers of
different values. The generated p and q are used to calculate ϕ(N) and n, respectively. Furthermore,
ϕ(N) is used to calculate e. e is used for text encryption, and d can be obtained via e. d is used to
decrypt the encrypted text and must be kept secure such that only the user can view it. If d is leaked,
the RSA algorithm is completely broken.

3. True Prime Random Number Generator

A prime number generator using a pseudo random number generator (PRNG) causes a fatal
defect in RSA security. Recently, a method for quickly obtaining the private key of the RSA algorithm
using PRNG has been reported [10]. Therefore, to maintain RSA security, an unpredictable true random
prime number generator (TRPNG) is required. A TRNG with high entropy is required to generate
random numbers that cannot be predicted. In this study, we use TRNG based on Linear-feedback
shift register (LFSR) using bio-signals [11]. Photoplethysmogram (PPG) sensors [12], which are built
into most wearable devices, measure values by capturing changes in the arterial perfusion rate of
light as the arterial blood flow varies with each heartbeat. The PPG sensor suffers from noise due to
physical and environmental factors such as light entering from the outside when moving a finger or
arm. However, this disadvantage is an advantage when implementing the TRNG. This is because
the value is changed every time according to the fine movement of the person or the surrounding
environment, which cannot be predicted.

We use the most representative 16 bit LFSR of the PRNG because PPG data alone cannot generate
the same ratio of zero and one, which are the most important factors in generating random numbers.
The fact that zero and one are equal implies that the maximum length sequence of the generated bits
is output, and the polynomial is set to x16 + x15 + x13 + x14 + 1 [13]. In this study, we use the initial
seed value as a physical source obtained from the PPG sensor because the LFSR requires an initial seed
value for random number generation. Because the physical sources that can be obtained from PPG
sensors are generally processed in wearable devices, no additional processing is required. When the 16
bit LFSR outputs the initial seed value and 65,535 random numbers, which is the maximum length
sequence of 16 bits, a problem arises in that the random number of the same pattern is repeated,
as shown in Figure 1. Hence, a new polynomial is added. An XOR gate is added, as shown in Figure 2,
to perform the XOR operation with the physical source value of the PPG sensor, in which the random
number generated in the LFSR cannot be predicted.
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Figure 1. Conventional LFSR random number pattern.

Figure 2. Proposed true prime number generator block diagram.

To use the random numbers generated by the TRNG as the p and q values of the RSA algorithm,
a discriminator is required to determine the prime number. Because a discriminator through the
factorial decomposition requires considerable time and hardware area to discriminate the prime
numbers, the random numbers generated from the TRNG are compared with the decimal values
stored as the parameter values to be determined as a prime number. If the random number generated
by the TRNG is equal to the decimal value stored in the parameter, it is determined to be a prime
number, and the output random prime is p, q in the RSA algorithm. The reason for using unpredictable
prime numbers as p and q values is that the prime factorization algorithm from a recently published
paper [10] cannot be applied.

4. Proposed RSA

The RSA algorithm requires a key of 2048 bits or more to guarantee security. The encryption
algorithm using such a large key size is not suitable for use in wireless communication devices, small
devices, or places requiring fast data processing. Therefore, the RSA algorithm is not used in IoT
devices or cell phones, which constantly exchange data and are being miniaturized increasingly.
AES encryption, a symmetric key encryption method, affords an extremely fast processing speed and a
small hardware area for encrypting and decrypting data; however, it is inefficient in one-to-many or
many-to-many communications. Further, even if one device key is leaked, the security of all devices
cannot be maintained. The use of symmetric keys is risky because IoT devices communicate with
many other devices. ECC exploits the idea that it takes a long time to find a discrete log of a random
elliptic curve for a particular known point [5]. As shown in Table 1 [14], ECC encryption can provide a
similar level of security while using a key with a much shorter length than that of the RSA. However,
the elliptic curve is complicated and expensive to operate.
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Table 1. Key size on equivalent strength between RSA and ECC.

Time to Break in MIPS Years RSA Key Size ECC KEY Size RSA Key Size Ratio

104 512 106 5:1

108 768 132 6:1

1011 1024 160 7:1

1020 2048 210 10:1

1078 21,000 600 35:1

As shown in Figure 3, the existing RSA encryption is primarily classified into three processing
modules. First, the key generator module receives a 1024 bit pseudo-random number and generates
both a private and public key. The second storage module is a memory that holds a 2048 bit private
key. It is highly vulnerable to side attacks because it stores a 2048 bit key in memory continuously.
If the side attack is successful, the security of the RSA encryption algorithm is lost regardless of the
encryption key size. Next, the security module uses 2048 bit private and public keys to encrypt
data. The algorithm for encrypting and decrypting through the 2048 bit key requires extremely large
hardware, which is virtually impossible to implement. In addition, it is difficult to exchange 2048 bit
private and public keys through wireless communication.

Figure 3. Conventional RSA block diagram.

To solve the problem of the conventional RSA, we herein propose a new RSA mechanism, as shown
in Figure 4. The proposed RSA mechanism obtains two 16 bit random prime numbers in the TPRNG
using unpredictable PPG data. The next two 16 bit prime numbers p and q are used to generate
32 bit public and private keys. When both a public and private key are generated, the public key
(e, n) is distributed to the device requiring encryption and the plain text is encrypted. Encrypted
cipher text is sent where data are required and decrypted via private key (d). When all the steps
from key generation to decryption are completed, the prime number, public key, and private key are
immediately destroyed and then regenerated. The RSA contains a key that is much smaller than the
key used by the RSA, which can be deciphered at a much faster rate than the existing 2048 bit key;
however, it can be estimated by constantly regenerating the key. In addition, real-time transmission is
possible when transmitting key and encrypted data through wireless communication because it has
extremely small keys. In terms of hardware design for encryption and decryption, the side attack does
not apply because of the destruction and regeneration through the process, rather than maintaining
the key in memory constantly.
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Figure 4. Proposed RSA encryption mechanism.

5. Implementation

For the proposed hardware design, we used the Verilog HDL, FPGA in Zynq UltraScale+,
xczu6cg-ffvb1156-2 device. This design was synthesized and implemented using the Vivado
design suite provided by Xilinx. NIST SP 800-22 was used to evaluate the randomness of the
implemented TRNG.

5.1. TPRNG

An unpredictable random number can be generated as shown in Figure 5 by performing an XOR
operation with the random number generated in the conventional LFSR and the physical source value
of the PPG sensor, as shown in Figure 1. The proposed random number generator is verified by all
passing the NIST test suite [15], as shown in Table 2. As explained in Section 3, to implement TPRNG,
the random numbers generated through the TRNG are compared with the numbers stored in the
parameters and then output as a decimal number. If the number of decimals stored as the parameter
value is extremely small, the decimal number is assessed whether it is real time. Thus, a decimal value
of 1000 or less is not stored as the parameter value. The TPRNG has an extremely small hardware area,
as shown in Table 3.
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Figure 5. Random number pattern generated in true random number generator.

Table 2. NIST test suite result. P: pass, F: fail.

Parameters Conventional Proposed

Frequency P P

Block Frequency P P

Cumulative Sums F P

Runs F P

Longest Run F P

Non-Overlapping Template F P

Overlapping Template F P

Approximate Entropy F P

Random Excursions F P

Random Excursions Variant F P

Serial F P

Linear Complexity P P

Table 3. True prime random number generator (TPRNG) resource usage.

Site Type Used Available

LUTs 188 214,604

Registers 86 429,208

BRAM 0 714

DSP 0 1973

5.2. RSA

We herein propose an RSA system architecture, as shown in Figure 4. The two prime numbers
generated by the TPRNG are p, q with the RSA. The private key (d) and public key (e) are computed
using the p and q values, respectively. Data are encrypted and decrypted through the generated e and
d, respectively. Once all the encryption and decryption processes have been completed through e and
d, the TPRNG is used to regenerate the key by inputting new p and q values. When the RSA algorithm
is implemented in hardware, the hardware area increases exponentially, as shown in Figure 6, as the
number of bits increases. The elements used for each bit are as shown in Table 4. Therefore, a 32 bit
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RSA encryption is suitable for IoT devices requiring small hardware area and low power. The RSA
encryption module implemented in hardware is shown in Figure 7 [16–18]. The p, q values and plain
text are input in the decryption module, and the keys (n, e, d) are generated according to the RSA
algorithm. The 1542 value of the plain text according to the RSA encryption formula C = Pe mod n
is encrypted to the 8,135,351 value cipher text. The decryption module implemented in hardware is
shown in Figure 8. Cipher text is transmitted to the input of the decryption module and decrypted to
the 1542 value plain text through the 3,849,029 value private key (d) according to the RSA decryption
formula P = Cd mod n. Once the decryption is completed, the encryption and decryption keys
are discarded.

Table 4. RSA implementation size by each bit.

32 bit 64 bit 128 bit 256 bit

LUTs 6367 25,139 100,375 412,391

Registers 301 741 2234 5310

DSP 13 44 148 964

Figure 6. RSA size by bit length.
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Figure 7. Encryption simulation results.

Figure 8. Decryption simulation results.

6. Conclusions

We herein proposed a new RSA mechanism applicable to small wireless communications devices
such as IoT. Conventional RSA algorithms use a very large key size, which requires large hardware
areas and expensive arithmetic calculations. For this reason, a traditional RSA encryption is not suitable
for devices used in IoT environments. The proposed RSA encryption mechanism has an extremely
small key, but compensates for the problem of small encryption keys by continuously changing the
key using an unexpected random number. Furthermore, side attack problems do not occur because the
key does not remain in memory continuously. The proposed method is highly suitable for IoT devices
that use many-to-many communications, as it does not suffer from problems in existing public key
encryptions, which hinder data encryption. Further, as the information exchanged between IoT devices
does not require high security, this method is feasible in that data are decrypted quickly with little
hardware. The RSA mechanism proposed in this paper exploits the randomness of the bio-signals with
a very small number of keys (e.g., 16 bits) for power and area efficiency in RSA encryption. For this
reason, the proposed method may not be sufficient for environments that require an extremely high
level of encryption. Future work will evolve into research that increases area and power efficiency
even with greater key size. This method is applicable to cases where data must be transmitted and
received quickly in real time, e.g., an unmanned vehicle.
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