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Abstract: For non-contact bioelectrical acquisition, a new interference suppression method, named
‘noise neutralization method’, is proposed in this paper. Compared with the traditional capacitive
driven-right-leg method, the proposed method is characterized with that there is an optimal gain to
achieve the minimum interference output whatever for the electrode interface impedance mismatch
caused by body motion and is more effective for smaller reference electrode areas. The performance of
traditional capacitive driven-right-leg method is analyzed and the difficulty to suppress interference in
the case of the interface impedance mismatch is pointed out. Therefore, a noise neutralization method
is proposed by applying the reference electrode and a 50 Hz band-pass filter to obtain the interference
of the human body and adapting the gains to neutralize the interference inputs of two acquisition
electrodes and achieve the minimum interference output. The performance of the proposed method
is theoretically analyzed and verified by the experiment results, which shows that the proposed
method has similar performance to that of the traditional capacitive driven-right-leg method with
electrode interface impedance match, while has better interference suppression ability with electrode
interface impedance mismatch caused by body motion. It is suggested that the proposed method can
be preferred in the case of limited reference electrode area or interface impedance mismatch.

Keywords: interference suppression; non-contact electrode; impedance mismatch; driven-right-leg;
electrocardiogram; bioelectric acquisition

1. Introduction

It is well-known that, with the increasing demand for personal daily health monitoring, the study
of wearable bioelectrical acquisition equipment is becoming increasingly popular. The quality of
acquisition signals is the primary consideration, which is closely related to the condition of electrode
interface. Needle electrodes or skin abrasions are required in early bioelectrical acquisition techniques
in order to acquire high quality signals [1]. Nowadays, wet electrodes (i.e., Ag/AgCl electrodes) are
usually used to acquire high quality signals. However, wet electrodes may cause skin irritation and
allergic contact dermatitis [2–4], which leads to the difficulty for long-term bioelectricity acquisition.
Therefore, capacitive electrodes are often used in wearable bioelectrical acquisition equipment [5–12].
Sun et al. defined the capacitive electrode as three types, dry electrodes, insulated electrodes, and
non-contact electrodes [6]. Non-contact electrodes can measure surface potential through the clothes or
other dielectrics, which can overcome the limitation of traditional wet electrode. To acquire high quality
bioelectric signals by non-contact electrodes, various studies are carried out, involving electrode design
and the front-end design [1–3,5,6,11]. It is pointed out that non-contact electrodes are very susceptible
to power line common mode interference (CMI) due to the high impedance of electrodes [13–15], and
larger CMI will cause lower signal to noise ratio. Moreover, the body motion may lead to interface
impedance mismatch of the electrode, and part of CMI will be changed to pseudo difference mode
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components (PDMC) [6,16], this will degrade the signal quality further. Therefore, it is necessary to give
more attention to suppress CMI of wearable bioelectric devices to acquire high quality signal [17–20].

For CMI suppression, the driven-right-leg (DRL) method has been widely used to suppress CMI
by feeding back the reverse common mode signal from the front-end output to the driving electrode
on the subject (human body) [8,19,21–23]. Our group Ding et al. proposed an improved front-end
circuit with virtual DRL circuit and verified the design by three wearable ECG applications, portable
finger ECG measurement, palm ECG acquisition for cycling and chest ECG test under different motion
states [24]. Xu et al. proposed a front-end design to improve common mode rejection capability
by combining both the feed-forward method and the DRL method [25]. Sakuma et al. proposed a
circuit structure by connecting the driving electrode to the signal ground to suppress CMI [26]. For
non-contact bioelectrical acquisition, Lim et al. proposed a capacitive ECG recording system with
capacitive driven-right-leg (C-DRL) circuit integrated in the chair seat [15]. The C-DRL method is
a variant of DRL method and is often used to improve common mode rejection ratio (CMRR) of
non-contact bioelectrical acquisition, which is characterized with all electrodes contacting the body
with isolation or clothes [14,19]. For C-DRL or DRL method, large feedback gain is usually required
to obtain good suppression performance, this may destroy the stability of the front-end [21]. At the
same time, large area of driving electrodes is often used in C-DRL or DRL method, which presents a
difficulty of wearable device implementation [14,19,21].

On the other hand, PDMC is considered as part of motion artifacts. Serteyn et al. used an injection
signal to track the change of coupling capacitance, so as to estimate and reduce motion artifacts in ECG
measurement [27]. A three-axis accelerometer was used to record motion information for reducing
motion artifacts reduction [28]. Rodrigues et al. uses neural networks to reconstruct ECG signals
with severe motion artifacts [29]. The above methods are based on additional components or complex
algorithms, which are difficult to implement.

For non-contact bioelectrical acquisition of wearable devices, a new interference rejection method,
named noise neutralization method, is proposed in this paper. Compared with C-DRL or DRL method,
the proposed method can effectively reduce the area of the driving electrode, and has a stronger ability
to suppress interference CMI and PDMC with the electrode interface impedance mismatch caused by
body motion. Firstly, the performance of traditional capacitive driven-right-leg method is analyzed
and the difficulty to suppress interference in the case of the interface impedance mismatch is pointed
out. Secondly, the noise neutralization method is proposed to suppress interference CMI and PDMC
of non-contact electrodes and the performance is compared with that of C-DRL method. Finally, the
feasibility of the proposed method is further verified by wearable ECG acquisition device.

2. Methods and Models

2.1. Traditional Capacitive Driven-Right-Leg Model for Eliminating Common Mode Interference

Figure 1 is an equivalent circuit model of the dual-electrode bioelectric acquisition equipment for
CMI suppression with C-DRL method, where VP is the noise source of the power supply line, VCM

is the CMI of the organism relative to the earth, V’CM is the CMI of the organism relative to signal
ground, CP is the coupling capacitance between the power supply line and the organism, CB is the
coupling capacitance between the earth and the organism, CS is the coupling capacitance between the
earth and the signal ground, ZE1 and ZE2 are the interface impedances of the two acquisition electrodes,
ZE3 is the interface impedances of the driving electrode, ZA1 and ZA2 are the two equivalent input
impedances of the front-ends, VO1 and VO2 are the outputs of the front-ends, and k is the gain of the
inversion amplifier.
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Figure 1. Equivalent circuit model of the dual-electrode bioelectric acquisition equipment for CMI 
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ZA2ZB + ZE2ZB
, k < 0 (4)

when ZP, ZB, ZS, ZA1, ZA2, ZE1, and ZE2 are invariant, it can be concluded from (1) that V’CM can be
effectively decreased by reducing the interface impedance of the driving electrode (ZE3) and increasing
the gain of the inversion amplifier (|k|). However, too large a |k| may lead to the output saturation of
the inverted amplifier. When the value of |k| is greater than 100, the performance will not be improved
further [15]. Therefore, small ZE3 is usually used to reduce V’CM in practical applications. There are
several factors affecting the impedance of the coupling capacitance of the driving electrode. Generally,
increasing the coupling area of the driving electrode is the easiest way to reduce ZE3 and is widely
used [2,15,16,19]. However, large area of the driving electrode is not convenient to minimize the
wearable bioelectric acquisition equipment.

For the match of the electrode interface impedance, the output of differential amplifier ∆VO can
be written as

∆VO = |VO1 −VO2| = 0 (5)

Considering the existence of interface impedance mismatch coefficient α between two electrodes,
ZE1 and ZE2 can be expressed as

ZE = ZE1 , ZE2 = (1 + α)ZE1, (6)
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and for the mismatch of the electrode interface impedance, PDMC ∆VO can be written as

∆VO =

ZB+ZS
ZB

∣∣∣∣ ZA
ZA+ZE

−
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1
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If the area ratio of the acquisition electrode to the driving electrode is β, the interface impedance
of the driving electrode satisfies

ZE3 = βZE, (8)

The analysis can be further simplified by

ZA = ZA1 = ZA2, (9)

ZE = ZE1 = ZE2, (10)

For the non-contact electrode based on cotton material, the electrode interface impedance can be
assumed as (11) [10].

ZE = 305 MΩ‖34 pF (11)

Considering the power line with the amplitude 220 V and the frequency 50 Hz, the following
relationship is reasonable [16,22].

ZP = 100ZB = 100ZS = 1.6 GΩ (12)

Generally, different front-end equivalent input impedances are required for different electrode
interfaces in order to acquire high quality signals. According to American Standards [30], the
relationship between the electrode interface impedance, the equivalent input impedance and the
coupled capacitor impedance can be expressed by (13) and (14),

ZA = 6.7ZE, (13)

ZB = 0.05ZE. (14)

and PDMC ∆VO of non-contact electrodes can be derived from (9)–(14).
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Figure 2 shows PDMC ∆VO as function of the impedance mismatch coefficient of two acquisition
electrodes with different areas of the driving electrode for C-DRL method, where the value of |k| is
100 according to the setting in reference [16]. It can be seen that ∆VO increases with the increase of
impedance mismatch coefficient α for constant β, decreases with the decrease of β for constant α, which
means large area of the driving electrode is expected and this will limit the miniaturization of the
wearable acquisition equipment.

Figure 3 shows PDMC ∆VO as functions of the gain of the inversion amplifier and the impedance
mismatch coefficient of two acquisition electrodes for C-DRL method, where the blue surface represents
the case of β being 1/30, the red surface represents the case of β being 1 and the yellow surface represents
the case of β being 20. It can be seen that ∆VO increases with the increase of the impedance mismatch
coefficient α for constant β and |k|, decreases with the increase of |k| in a certain range and is almost
unchanged for |k| larger than a certain value. ∆VO can be further suppressed by the decrease of β for
constant |k|, which agrees on the performance shown in Figure 3. Therefore, it is difficult for C-DRL
method to suppress CMI with small area of the driving electrode, especially under the situation of
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the impedance mismatch of two acquisition electrodes. Therefore, a noise neutralization method is
proposed to solve above difficulties.
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Figure 2. PDMC ∆VO as function of the impedance mismatch coefficient of two acquisition electrodes
with different areas of the driving electrode for C-DRL method, where the value of |k| is 100 according
to the setting in [16]. It increases with the increase of the impedance mismatch coefficient α for constant
β and |k|. PDMC can be further suppressed by the decrease of β for constant |k|.
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Figure 3. PDMC ∆VO as functions of the gain of the inversion amplifier and the impedance mismatch
coefficient of two acquisition electrodes for C-DRL method. It increases with the increase of the
impedance mismatch coefficient α for constant β and |k|, decreases with the increase of |k| in a certain
range and is almost unchanged for |k| larger than a certain value. PDMC can also be further suppressed
by the decrease of β for constant |k|.

2.2. Noise Neutralization Method to Eliminate Common Mode Interference Model

Schematic diagram of the dual-electrode bioelectric acquisition equipment for CMI suppression
with the proposed noise neutralization method is shown in Figure 4, including two acquisition
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electrodes (ZE1 and ZE2 are the interface impedances) and corresponding front-ends A1 and A2 (ZA1

and ZA2 are the equivalent input impedances), a reference electrode (ZE3 is the interface impedance),
and corresponding front-end A3 (ZA3 is the equivalent input impedance) and processing circuits. The
processing circuits include a 50 Hz band-pass filter, two variable gain amplifiers (k1 and k2 are the
gains), a micro control unit (MCU), an analog to digital converter (ADC), and a differential amplifier.
In addition, the parameters explanations (VP, VCM, V’CM, CP, CB, and CS) are the same with that in
Figure 1. The dotted line area is the neutral part, which uses the reference electrode and a 50 Hz
band-pass filter to obtain the CMI of the human body and adapts the gains k1 and k2 to vary the
CMI amplitude to the input ends of the differential amplifier in order to neutralize the CMI from two
acquisition electrodes and achieve the minimum CMI output of the differential amplifier. It should be
noted that the signal from the acquisition electrode will be attenuated by two cascading resistors ZM

and ZN. Small attenuation requires large ratio of ZN to ZM. In the following analysis, the ratio of ZN to
ZM is set as 9.
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According to Kirchhoff’s current law, the CMI of the organism relative to signal ground V’CM,
and the outputs of the front-ends VOA and VOB can be expressed as

V′CM =

ZB+ZS
ZB

ZP

[
1

ZP
+ 1

ZB
+ 1−A

ZE1
+ 1−B

ZE2
+ 1−C

ZE3

]VP, (16)

VOA =

ZN1
ZM1+ZN1

(A +
ZS
ZB

) + ZM1
ZM1+ZN1

k1
(
C +

ZS
ZB

)
ZP

[
1

ZP
+ 1

ZB
+ 1−A

ZE1
+ 1−B

ZE2
+ 1−C

ZE3

] VP, (17)

VOB =

ZN2
ZM2+ZN2

(B +
ZS
ZB

) + ZM2
ZM2+ZN2

k2
(
C +

ZS
ZB

)
ZP

[
1

ZP
+ 1

ZB
+ 1−A

ZE1
+ 1−B

ZE2
+ 1−C

ZE3

] VP, (18)

A =
ZA1ZB −ZE1ZS

ZA1ZB + ZE1ZB
, B =

ZA2ZB −ZE2ZS

ZA2ZB + ZE2ZB
, C =

ZA3ZB −ZE3ZS

ZA3ZB + ZE3ZB
(19)

As can be seen from (17)–(19), the common component of VOA and VOB can be reduced to 0 by
adjusting the gains k1 and k2 to optimal values, and the CMI will be suppressed fully. The optimal k1

and k2 can be expressed as koptimal-1 and koptimal-2 by (20) and (21).

koptimal-1 = −
ZN1

ZM1

ZA1(ZA3 + ZE3)

ZA3(ZA1 + ZE1)
, (20)

koptimal-2 = −
ZN2

ZM2

ZA2(ZA3 + ZE3)

ZA3(ZA2 + ZE2)
, (21)

Under the situation that the neutralizing resistances ZN1, ZN2, ZM1, ZM2 and the equivalent input
impedances ZA1, ZA2, ZA3 are definite values, koptimal-1 and koptimal-2 are only related to ZE1, ZE2, and
ZE3 according to (20) and (21). The PDMC output of the differential amplifier can be expressed as (22),
which shows that ∆VO is related to the impedance mismatch coefficient α of the electrode interface, the
area ratio β of the acquisition electrode to the reference electrode, and the gain difference |∆k|. It should
be noted that there is an optimal ∆k, defined ∆koptimal, can still make ∆VO be equal to 0 even if k1 and
k2 cannot satisfy (20) and (21).

∆VO =

∣∣∣∣∣∣∣∣
ZN1

ZM1+ZN1
(A− B) + ZM1

ZM1+ZN1
∆k

(
C +

ZS
ZB

)
ZP

[
1

ZP
+ 1

ZB
+ 1−A

ZE1
+ 1−B

ZE2
+ 1−C

ZE3

]
∣∣∣∣∣∣∣∣VP, ∆k = k1 − k2 (22)

The performance comparison between C-DRL method and proposed noise neutralization method
is shown in Figure 6, where the blue surface represents C-DRL method with β being 1 (the area of
the acquisition electrode is the same to that of the driving electrode), and the red surface represents
the proposed method with β being 1, the violet surface represents C-DRL method with β being 1/30
(the area of driving electrode is 30 times of the area of acquisition electrode) and the yellow surface
represents the proposed method with β being 20 (the area of acquisition electrode is 20 times of the
area of reference electrode). Considering k less than 0, |k| and |∆k| have been replaced by −k and ∆k
respectively to unify the coordinate axes of the chart.

When the impedance mismatch coefficient α exists, ∆k in a certain range of the proposed method
can obtain a smaller PDMC than that of C-DRL method. Even at the case of β being 1/30 for C-DRL
method and β being 1 for proposed method, this conclusion can still be reached. Moreover, for the
proposed method, the range of ∆k can be larger for β being 20 than that for β being 1, which means the
proposed method is more effective than that of the C-DRL method, especially for small area of the
reference electrode.
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Figure 6. The performance comparison between C-DRL method and the proposed noise neutralization
method, where the red and yellow surfaces represent the proposed method with β being 1 and 20,
respectively. The blue and violet surfaces represent the C-DRL method with β being 1 and 1/30,
respectively. When the impedance mismatch coefficient α exists, ∆k in a certain range of the proposed
method can obtain a smaller PDMC than that of C-DRL method and there always exists a certain
smaller optimal gain to minimize PDMC. Theoretically, under the same conditions, the proposed
method has better PDMC suppression with a larger β (smaller reference electrode area) and a smaller
gain (compared with the typical driving gain of C-DRL method).

3. Experiments

The circuit system for the proposed neutralization method is implemented with two-board
components, as shown in Figure 7, where the left side is the acquisition motherboard and the right side
is the noise neutralization board. In the acquisition motherboard, the front-end is designed according
to the proposed structure in reference [31], the integrated analog to digital converter ADS1298 with
24-bit resolution is selected as the differential amplifier, and the microcontroller MSP430F5528 is used
to sample the data from ADS1298 and transform the data thorough the series port to the application
in the computer. In the noise neutralization board, the ratio of ZN to ZM is set as 2 (ZN being10 kΩ
and ZM being 5.1 kΩ) for easy resistance selection and the programmable resistor MAX5496 (10 kΩ,
1024 taps) is used to obtain high precision gain to meet the requirement of koptimal. It should be noted
that the method for searching the optimal value adopted in this paper is dichotomy, which has three
main steps. In the first step, the initial values of k1 and k2 are set respectively by controlling the taps
of variable programmable resistors and the initial amplitudes of VOA and VOB are measured by the
channel 2 and channel 3 of ADS1298, as shown in Figure 7. In the second step, the values of k1 and k2

are set to the median of the initial ranges and the amplitudes of VOA and VOB are measured again. In
the third step, the values of k1 and k2 are reset according to the amplitudes of VOA and VOB measured
in the previous two steps. These three steps will be repeated until the amplitudes of VOA and VOB

are minimized. Applying the method, koptimal can be approximated and the amplitude of ∆VO can be
reduced effectively.
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Figure 7. Circuit system for the proposed neutralization method, (a) the acquisition motherboard, (b)
the noise neutralization board.

Figure 8 is the comparison of the frequency response characteristics between the acquisition
system with C-DRL method and the acquisition system with the proposed method. They have similar
frequency response characteristics for using the same configuration of the acquisition front-end.
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and the acquisition system with proposed method.

CMRR performance comparison between C-DRL method and the proposed method under
different simulated impedance mismatch is shown in Table 1, where two input signals with same phase
and different amplitude are used to simulate the electrode interface impedance mismatch. For α being
0, CMRRs for two methods are both about 90 dB. For α being 20%, CMRR for the proposed method can
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also achieve 90 dB by adjusting the gains k1 and k2 to optimal values, which means that the proposed
method can suppress PDMC caused by the electrode mismatch effectively. However, for α being 20%,
CMRR for C-DRL method is only 14.4 dB with the lack of feedback and may be improved with the
closed-loop feedback. Therefore, the experiments with C-DRL method and the proposed neutralization
method for human body ECG acquisition are carried out for further performance comparison.

Table 1. CMRR comparison of circuits using proposed method and C-DRL method.

Simulation of Electrode
Mismatch

Input Signal Amplitude
of Electrode 1

CMRR

C-DRL Method Proposed Method

α = 0 P: 500 mV
N: 500 mV 91.45 dB 90.36 dB

α = 20% P: 500 mV
N: 400 mV 14.40 dB 2 90.22 dB

1 The frequency of all input signal is 50 Hz. For the proposed method, the input signal amplitude of the reference
electrode R is always 500 mV. 2 Due to the lack of negative feedback, this simulation value is lower than the actual
value of C-DRL method.

Figure 9 shows the devices and bandage electrodes for simultaneously human ECG acquisition
with the C-DRL method and the proposed method. The blue marks the device and the electrodes
with C-DRL method, and the red marks the device and the electrodes with the proposed method. The
driving electrode D of C-DRL method and the reference electrode R of the proposed method have
the same area and the dimensions are 3 × 4 cm. The areas of the acquisition electrodes P and N are
designed according to the experiment requirements.
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When two acquisition devices are used to acquire ECG signal from human body at the same time,
CMI coupled on human body may be reduced by C-DRL method, thus affecting the performance of the
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proposed method. Therefore, two devices are used to acquire ECG signal at the same chest position
independently. For C-DRL method, the value of k is −100. For the proposed method, the band-pass
filter is designed with the center frequency being 50 Hz, the gain at the center frequency being 0 dB,
and the quality factor being 5. The human test subject is the volunteer from our group, one male
student aged 25 without known cardiac pathology.

Under static condition, the independent measurement results of human chest ECG acquisition
with interface impedance match (α = 0, the areas of electrodes P and N are both 3 × 4 cm) are shown in
Figure 10 for two methods, where both the original signal and the ECG signal processed with 50 Hz
digital notch filter from the original signal are given, showing that both two methods can obtain high
quality ECG signals independently.
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match under static condition, (a) time-domain waveform of original signal, (b) ECG signal of C-DRL
method processed by software notch, (c) ECG signal of proposed method processed by software notch.

Subsequently, the independent measurement results of human chest ECG acquisition with interface
impedance mismatch are carried out by using the insulated plastic to stem and reduce the area of
electrode N artificially and simulate the impedance mismatch (α = 20%, the area of electrode P is 3 × 4
cm and the area of electrode N is about 3 × 3.2 cm), as shown in Figure 11, where the original signal
amplitude of the C-DRL method is about 406 mV, while that of the proposed method is about 276 mV.

According to the results of Figures 10 and 11, the proposed method has similar performance to
that of C-DRL method with electrode interface impedance match, while has better PDMC suppression
ability than that of C-DRL method with electrode interface impedance mismatch.

Furthermore, in order to compare the performance of two methods at the same time, two devices
are used to acquire ECG signal at the same time as shown in Figure 9. Similar to the steps of independent
measurement mentioned above, under static condition, the simultaneous measurement results of
human chest ECG acquisition with interface impedance match (α = 0, the areas of electrode P and
electrode N is are both 3 × 4 cm) are shown in Figure 12 and the simultaneous measurement results of
human chest ECG acquisition with interface impedance mismatch (α = 20%, simulated, the area of
electrode P is 3 × 4 cm and the area of electrode N is about 3 × 3.2 cm) are shown in Figure 13.
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Figure 13. Simultaneous measurement results of human chest ECG acquisition with interface impedance
mismatch under static condition, (a) time-domain waveform of original signal, (b) ECG signal processed
by software notch.

According to the results of Figure 12, it can be concluded that the proposed method has similar
performance to that of the C-DRL method with electrode interface impedance match. As shown in
Figure 13, the original signal amplitude of the C-DRL method is about 405 mV, while the original signal
amplitude of the proposed method is about 249 mV, which shows the proposed method has better
PDMC suppression performance in the case of electrode interface impedance mismatch.

When the areas of electrodes P and N are the same, ECG measurements of the two devices at the
same time with small amplitude swing of upper limb are shown in Figure 14, where the performances
of two methods are alike for similar amplitudes of two original signals.
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In order to clearly observe the electrode interface impedance mismatch caused by body motion,
the upper limb stays still first, then rotates to one side substantially, and then stays still again. The
simultaneous measurement results are shown in Figure 15, where two methods can both acquire clear
ECG signals for the upper limb being still and the performances of two methods are degraded by
the upper limb rotation. This can be explained in that the upper limb rotation leads to the electrode
interface impedance mismatch, which causes the increase of PDMC. For C-DRL method, the amplitude
of the original signal is about 157.5 mV before the upper limb rotation, and is about 838 mV after the
upper limb rotation. For the proposed method, the amplitude of the original signal is about 190.4 mV
before the upper limb rotation, and is about 530.1 mV after the upper limb rotation. The upper limb
rotation causes 12.7 dB interference increase for C-DRL method, and about 5.0 dB interference increase
for the proposed method, which also shows that the proposed method has better PDMC suppression
ability in the case of the electrode interface impedance mismatch.
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4. Discussion and Conclusions

For non-contact bioelectrical acquisition, a new interference suppression method, named ‘noise
neutralization method’, is proposed in this paper. Compared with C-DRL or DRL method, the
proposed method can effectively reduce the area of the driving electrode, and has a stronger ability to
suppress interference, especially for the situation of electrode interface impedance mismatch caused by
body motion.

Firstly, the performance of C-DRL method for non-contact acquisition is analyzed using the
equivalent circuit model, which shows that interference suppression degrades with the decrease of the
gain of the inversion amplifier and the area of driving electrode in the case of the interface impedance
mismatch of the acquisition electrode. Therefore, a noise neutralization method is proposed to suppress
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CMI and PDMC for non-contact bioelectrical acquisition by applying the reference electrode and a 50
Hz band-pass filter to obtain the CMI of the human body and adapting the gain k1 and k2 to neutralize
the CMI input of two acquisition electrodes and achieve the minimum CMI output. The proposed
method is characterized with that there is an optimal gain to achieve the minimum interference output
whatever for the electrode interface impedance mismatch and is more effective for the smaller reference
electrode area.

Subsequently, non-contact ECG acquisition devices based on C-DRL method and proposed
method are designed to verify the performance of the proposed method. From the experiment results,
it can be concluded that the proposed method has similar performance to that of the C-DRL method
with electrode interface impedance match, while it has better PDMC suppression ability using a smaller
reference electrode area and a smaller gain. This is the outstanding characterization of the proposed
method. In general, the proposed method is an effective method to suppress interference CMI and
PDMC under the situation of limited electrode area and unavoidable body motion.

It should be noted that the optimization method for adapting the gains k1 and k2 to optimal
values is dichotomous in this paper, it is an effective method but its adapting time is not enough
fast to suppress PDMC caused by strong body motion. Moreover, the variable gain amplifier with
high programmable precision is required to obtain the optimal k, which may create complexity of the
circuit structure.

In the future, a more effective adapting method will be studied to reduce the adapting time and
the circuit structure will be improved for wearable applications.
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ADC Analog to digital converter
Ag/AgCl Silver/silver chloride
C-DRL Capacitive driven-right-leg
CMI Common mode interference
CMRR Common mode rejection ratio
DRL Driven-right-leg
ECG Electrocardiography
MCU Micro control unit
PDMC Pseudo difference mode components
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