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Abstract: Many Internet of Things (IoT) services are currently tracked and regulated via mobile
devices, making them vulnerable to privacy attacks and exploitation by various malicious applications.
Current solutions are unable to keep pace with the rapid growth of malware and are limited by low
detection accuracy, long discovery time, complex implementation, and high computational costs
associated with the processor speed, power, and memory. Therefore, an automated intelligence
technique is necessary for detecting apps containing malware and effectively predicting cyberattacks
in mobile marketplaces. In this study, a system for classifying mobile marketplaces applications using
real-world datasets is proposed, which analyzes the source code to identify malicious apps. A rich
feature set of application programming interface (API) calls is proposed to capture the regularities in
apps containing malicious content. Two feature-selection methods—Chi-Square and ANOVA—were
examined in conjunction with ten supervised machine-learning algorithms. The detection accuracy
of each classifier was evaluated to identify the most reliable classifier for malware detection using
various feature sets. Chi-Square was found to have a higher detection accuracy as compared to
ANOVA. The proposed system achieved a detection accuracy of 98.1% with a classification time of
1.22 s. Furthermore, the proposed system required a reduced number of API calls (500 instead of
9000) to be incorporated as features.

Keywords: mobile devices; malware; mobile forensics; feature weighting; feature selection; artificial
intelligence; ANOVA; chi-square; classification algorithm

1. Introduction

The Internet of Things (IoT) is an attractive system that connects many physical devices and logical
objects with networks to expand their communication capabilities. In recent years, the IoT has gained
popularity owing to technological advancements in areas such as artificial intelligence, smart home
devices, application systems, and cloud computing. According to the statistics on IoT usage published
in 2018 [1], the number of connected IoT devices has exceeded 17 billion globally. Mobile devices are
the most prominent products in demand among physical IoT devices, with approximately 10 billion
active mobile devices in use [2]. Mobile users can nowadays purchase items that generally require a
physical card to, for example, pay their bills using a connected mobile device. Such portable devices
have been increasingly targeted by hackers given the rapid development of the mobile market [3,4].

Malware refers to any malicious code that harms user confidentiality, integrity, or availability.
A malicious app appears like a clean application but hides malicious activity in the background [5,6].
Some examples of Android malware include stealing user information (e.g., login credentials and
bank account numbers), sending premium short message service (SMS) messages that cost more than
the standard ones, making calls, tracking user locations, hijacking microphones, streaming videos
from users’ cameras, installing adware, and encrypting personal data (e.g., images, SMS, videos,
and contacts).
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The majority of these malicious applications can be found in third-party markets (e.g., AppChina
and Anzhi) that are managed and regulated by individuals and are neither authorized nor checked by
Google. However, there have been several indications of Google’s official market, formally known as
the Google Play Store, containing malicious apps that exploit the confidentiality, integrity, or availability
of mobile users [7]. Allix et al. [8] demonstrated that 22% of the apps on the Play Store had been
flagged as malware by at least one antivirus product, whereas 50% of the apps on AppChina had been
similarly flagged. One main limitation of the marketplace is that even reputed firms such as Google are
unable to thoroughly check millions of mobile applications [7]. Thus, it is imperative that malicious
apps are detected before they are downloaded onto portable devices.

Innumerable applications containing a large amount of information are available in the marketplace.
Therefore, it is critical to employ automated techniques such as artificial intelligence and machine
learning to identify relevant patterns in the available information. Machine learning-based detection
involves categorizing applications into one or more predefined groups (clean or malicious) based on
their contents. The ability of a machine-learning technique to detect malware is affected by the six
factors listed below:

1) Dataset
2) Type of features
3) Feature-weighting scheme
4) Feature-selection algorithm used to select the most prominent features
5) Classification algorithm used to categorize apps as malicious or clean
6) Classifier’s parameter values

First, samples of current real-world malware were collected to understand their full capabilities.
Second, the proposed system relies on the information derived from the source code to recognize
malicious applications by retrieving the prominent application programming interface (API) calls
requested by the malware. Numerous studies [9–16] have suggested that API calls can indicate
malicious behavior and provide a detailed evaluation of the applications under investigation. Third,
Term Frequency–Inverse Document Frequency (TF–IDF) was employed as a feature-weighting
technique to reduce the importance of commonly requested features and increase the importance
of rarely requested features. Fourth, as selecting a subset of all the features is an important
goal [17], two powerful feature-selection algorithms were used—Chi-Square and analysis of variance
(ANOVA)—to choose from sets of 10 to 9000 features that contribute to malware detection. Various
feature subsets were employed to compare the differences between the investigated algorithms. Fifth,
identifying the classification algorithm that has the most reliable detection accuracy and speed is a
key aspect. Therefore, the detection accuracy and effectiveness of each of the ten machine-learning
algorithms were evaluated to identify the most powerful classifiers. Finally, a classifier’s accuracy
and efficiency can be improved by adjusting the default input values. However, in this study, the ten
classifiers were implemented with their default input values to enable equivalent comparisons between
the classifiers.

Contributions of This Study

The main contributions of this study are:

I. Robust system: A fully automated tool for classifying mobile applications as clean or malicious
is presented.

II. Lightweight analysis: The proposed system does not drain smartphone resources and analyzes
a large set of real-world data in a reasonable time.

III. Feature selection: The proposed system compares different feature-selection algorithms to
reduce the feature-vector dimensions.
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IV. Relevant features: Different numbers of features are investigated to identify the lowest number
of features that can obtain optimal results, evaluated based on the detection accuracy and
speed of training and testing.

V. Detection rate: An empirical study of ten supervised machine algorithms indicates that the
proposed tool is effective on real-world data.

The rest of this paper is organized as follows: Related/previous literature is discussed in Section 2.
In Section 3, a new mobile malware-detection method is presented, including app collection, feature
extraction, and feature selection. The employed classification algorithms are discussed in Section 4.
Section 5 details the experimental evaluation, while Section 6 describes the detection results. The results
from this study are compared to recent works in Section 7. Finally, conclusions are drawn in Section 8.

2. Related Work

Several research papers in the field of malware detection have been published over the past
few years [18–22]. Initial research studies focused on permission-based detection, signature-based
detection, system call-based detection, and sensitive API-based detection. Feature-selection algorithms
such as information gain (IG), principal component analysis (PCA), Chi-Square (χ2), and analysis
of variance (ANOVA) were suggested to improve the detection performance [23]. Machine-learning
techniques have also been applied to automate malware detection strategies [24].

Hussein et al. [25] collected a dataset of 500 clean applications and 5774 malicious applications by
applying classification algorithms to the information retrieved from static (intents and permissions) and
dynamic (cryptographic API calls, data leakages, and network manipulation) analyses. Each application
was executed in Droidbox, and the generated log files were collected using the emulator’s logcat.
The authors applied two feature selection approaches, namely IG and PCA, to the given features to
identify the features likely to produce high detection accuracies.

To test the proposed methodology, Hussein et al. combined each feature-selection algorithm (IG
and PCA) with four classifiers, namely Decision Tree, Gradient Boosting, Random Forest, and Naïve
Bayes, which delivered average accuracies of 95%, 95%, 94%, and 94%, respectively, following testing.
The detection accuracy of the IG algorithm was found to be better than that of PCA. Similarly, in this
study, two feature-selection algorithms were used—Chi-Square and ANOVA—to extract the top
features (i.e., packages, classes, constructors, and methods) from various feature subsets that contribute
to malware detection.

In a similar study [26], Aminordin et al. developed a framework to classify clean and malicious
applications using the requested permission, sensitive API calls, and metadata. A dataset consisting
of 8177 Android apps was collected from the Play Store and AndroZoo, with dex2jar and JD-GUI
used to extract the source code. The framework employed IG to select the most relevant features,
which required approximately 62 permissions and 20 sensitive API calls. The applications were
subsequently categorized using the following machine-learning algorithms: Naïve Bayes, Support
Vector Machine (SVM), Decision Tree-J48, and Random Forest. The Random Forest algorithm with
a 10-fold cross-validation resulted in the best detection accuracy of 95.1%. Aminordin et al. stated
(Section 5) that “This study only focuses [on] and is limited to Android apps from API [levels] 16 to
24 due to the dataset provided by AndroZoo. Furthermore, this study can be enhanced by including
more threat patterns created by the malware.”

Chavan et al. [27] performed a comparative analysis of clean and malicious applications, wherein
230 permissions were extracted using Androguard from a dataset of 989 clean applications and 2657
malicious applications. It was found that 118 distinct permissions occurred in the malware samples;
thus, 118-entry feature vectors were constructed, which were later reduced to 74 based on the IG
algorithm. Six machine-learning algorithms were investigated, namely Decision Tree, Random Forest,
Support Vector Machine, logistic model trees, AdaBoost, and an artificial neural network. The highest
detection accuracy (95%) was achieved using Random Forest. The analysis of applications based only
on the requested permissions can bias the analysis results, as discussed in [28–30]. Applications without



Electronics 2020, 9, 435 4 of 20

any permissions can still access the operating system and conduct covert operations, e.g., taking
pictures in the background and recording key strokes. Thus, in this study, the source code of the
applications was analyzed as opposed to focusing on the permissions.

Milosevic et al. [31] focused on extracting the permissions and source code to detect malicious
applications targeting the Android operating system. The authors collected an M0Droid dataset that
contained 200 clean applications and 200 malicious applications. The dex2jar package was applied to
the collected Dalvik executable files to obtain the Java source code. The following four experiments
were performed: Permission-based clustering, permission-based classification, source code-based
clustering, and source code-based classification. To test their methodology, the classification algorithms
were applied to each group, resulting in a detection accuracy of 89% when the permission features were
applied to the full dataset. A detection accuracy of 95.1% was achieved using the source code-based
classification on 10 clean apps and 22 malicious apps. It was found that the detection accuracies of the
classification algorithms were better than those of the clustering algorithms. The features obtained from
the source code provided better detection accuracies compared to those obtained from the permission
features. Therefore, the focus of this study was to apply various classification algorithms to identify
the relevant patterns in the information derived from the source code.

In a similar study [32], a tool called PIndroid was developed to detect malicious applications.
Idrees et al. examined a combination of permissions and intents to construct their detection mechanism.
A dataset was collected, consisting of 445 clean applications from the Play Store, AppBrain, F-Droid,
Getjar, Aptoid, and Mobango, while 1300 malicious applications were obtained from Genome,
VirusTotal, The Zoo, MalShare, and VirusShare. The study focused on the top 24 of the 145 total
permissions, with the permissions split into two groups—normal and dangerous. The authors extracted
135 intents from the entire dataset and found that each malicious application used two to eight intents.
The Pearson correlation coefficient was used to measure the strength of the association between the
permissions and intents.

Idrees et al. investigated six machine-learning algorithms—Multilayer Perceptron (MLP), Decision
Table, Decision Tree, Naïve Bayesian, Random Forest, and Sequential Minimal Optimization (SMO),
and obtained average detection accuracies of 99.5%, 99.6%, 99.2%, 98.8%, 98.5%, and 95.6%, respectively.
Although their dataset contained only 445 clean applications and 1300 malicious applications,
the majority class (1300 malicious applications) dominated the minority class (445 clean applications).

Yerima et al. [33] presented an automated approach that employed both static analyses and
machine-learning algorithms to detect malevolent applications. The study found static analyses
to be more advantageous than dynamic analyses; for example, static analysis can handle several
evasion techniques without affecting smartphone resources. Static analyses were used to extract API
calls, Linux system commands, and permissions from a dataset of 1000 malicious applications and
1000 clean applications. The authors found 25 features used by the malware samples that did not
appear in the clean samples. A Bayesian classifier was applied to the extracted features, resulting in
detection accuracies ranging from 89.3% to 92.1%. Yerima et al. stated (Section VI) that “We observe
increasing accuracy and decreasing error rates when a larger number of features [is] used to train the
classifier.” Therefore, in this study, sets of 10 to 9000 features that contribute to malware detection
were investigated.

3. Experimental Design

The proposed system consists of several steps, as shown in Algorithm 1. The architecture of
this system can be summarized in the following steps, which can be applied to both clean and
malicious samples.

3.1. App Collection

In this section, the dataset that was used to train and evaluate the proposed system is presented.
Both clean and malicious applications were required to test the proposed system. Currently, the Play
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Store is the main Android market available to users for downloading their applications. This market
is administered by Google [34], which often checks the applications to ensure they do not contain
malicious apps. Each application in the Play Store must contain a trusted digital signature for safe
download by the users.

Algorithm 1

Require: D*, a set of features
Require: A*, a set of Android applications
Require: D*, a set of features
Require: C*, a set of classifiers ∈ {Naïve Bayes, Random Forest, k-NN, SMO, etc.}
Require: TD*, a set of training datasets
Require: VD*, a set of validation datasets
Require: PF, a set of variables for normalization
Require: S*, Boolean score for the respective zones: q occurs/0 does not occur
Require Labels: L = {Malicious, Clean}
For each application Ai in A*:

Generate MD5, SHA1, SHA256, and SHA512 for Ai.
Decompile Ai using Androguard
Extract features D*
For each feature Di in D∗

Count_freq Di ();
Freq [Di] + = Freq [Di ]
PF← Pf/|A∗| // normalize frequencies

End for
End for
While p1 , Nil and p2 , Nil // weighting with TF-IDF
Do if AppID(p1) == AppID(p2)

Then scores
[
App(IDp1)] ←weighted zone

∑
i=1..I(gi, si)

p1 ← next(p1)

p2 ← next(p2)

Else if App(IDp1) < AppID(p2)
Then p1 ← next(p1)

Else p2 ← next(p2)

Return scores
For each PF : // Feature selection

Select top selected features D* using ANOVA

K∑
i=1

ni
(
Yi − Y

)2
/ (K − 1)

Select top selected features D* using Chi-Square

K∑
i=1

ni
(
Yi − Y

)2
/ (K − 1)

End for
For each classifier Ci in C*:

Train classifier (Ci, tdi) // train classifier ci with the training samples tdi
End for
For each classifier Ci in C*:

ri = classify (Ci, VDi) // evaluate classifier ci with the validation samples VDi

applicationlabel. Add (labeli)
End for
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In the proposed system, the first step involved the download of clean applications from the Play
Store, which was performed using AndroZoo [8]. The AndroZoo project contains millions of Android
applications collected from several sources (e.g., Play Store, PlayDrone, Anzhi, and AppChina). At the
time of writing, 7,819,669 apps were available for download from the Play Store market using the
AndroZoo project [35]. Using the az script, 19,000 clean applications were collected from the Play Store.
Furthermore, 17,915 malware samples were collected from VirusTotal, AndroZoo, the Zoo, MalShare,
and Contagio mobile.

Allix et al. [36] reported that the Play Store market might contain malware applications. Hence,
VirusTotal was used to scan the entire dataset of malware and clean applications used in this study,
wherein 70 anti-virus tools scrutinized each application to classify it as clean or malicious. Only those
malware samples that were identified as being malware by at least ten anti-virus companies were
selected. If any one of the 70 engine outputs identified an application as ‘malicious,’ it was marked as
malware and removed from the dataset. The samples were then divided into two sets, namely the
training and validation sets. The training set assists in building a new scheme based on the patterns
and structures learned from a large proportion of the data, while the validation set tests the resulting
scheme on data never seen by the classifier.

3.2. Feature Extraction

The next step involved extracting information from the entire dataset via static analysis using
Androguard [37]. Androguard parses the byte codes of Dalvik executable files and then transforms
the contents into a human-readable format. Various items, namely packages, classes, constructors,
methods, and fields, were extracted from the source code. The resulting data were stored in log files
so that scikit-learn could be used to generate the feature vectors for each application based on its
API calls [38]. Thus, each feature vector had 27,253 distinct features. The Term Frequency calculates
the number of occurrences of each feature in an application and subsequently divides it by the total
number of features.

The next step involved reducing the weights corresponding to the features that occur in many
applications. The TF–IDF method, which is a well-known weighting method [39], was applied to
normalize the entries in the value vectors. TF means term-frequency, which calculates the number of
occurrences of each feature in an application and divides it by the total number of features. Inverse
Document Frequency (IDF) measures the importance of a feature by comparing its frequency of
occurrence to those in other applications. TF–IDF is one of the best-known measures for specifying
the weights [40]. The main objective of employing TF–IDF, as opposed to measuring the number of
appearances, is to reduce the weight of features that appear frequently in many samples and increase
the weight of features that appear less frequently in a small part of the training corpus. TF–IDF can be
computed as

t f ∗ id f =

√
ni j∑
k nkj

∗ ln
[

|D|
d j : ti d j + 1

]
(1)

where ni j is the number of appearances of feature ti in application d j, and the denominator is the
number of appearances of all the features in application d j. |D| is the total number of applications in
the dataset, and d j : ti d j + 1 is the application frequency, i.e., the number of applications in which
feature ti appears.

3.3. Feature Selection Metrics

Some features might provide limited information on the actual contents of malicious applications to
the classifier [41,42]. The imperative goals of any malware-detection system include the identification of
a subset of features from the entire feature set, with subsequent reduction in the high data dimensionality.
In practice, the main purpose of feature selection is the selection of valuable features from the total
number of features, leading to improved detection performance and reduced computation time.
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Therefore, in this study, the focus was on reducing the number of features to identify the most valuable
information for classification algorithms, while simultaneously discarding any irrelevant, redundant,
or noisy features.

In this study, two feature selection methods, namely Chi-Square and ANOVA, were used to
evaluate the performance of the proposed system. Chen et al. [43] reported that ANOVA solved the
problem of imbalanced data and improved the stability and reliability of their proposed training model.
ANOVA searches for the existence of important variances in the dependent variable values, whereas
Chi-Square searches for relevant features among the malware class.

3.3.1. Analysis of Variance (F-Value)

The analysis of variance (F-value) was applied to the sets of 10 to 9000 features to select the
features with the highest scores. This metric measures similarities between the relevant features and
reduces the scale of the feature vector between the two groups (malware and clean apps). Calvert
and Khoshgoftaar [44] reported ANOVA to be an efficient algorithm for measuring the similarity
of relevant features, reducing the high dimensionality of the features, and improving the detection
accuracy. The mathematical definition of ANOVA can be expressed as

K∑
i=1

ni
(
Yi − Y

)2
/ (K − 1), (2)

where Yi denotes the sample mean in the ith group, ni is the number of observations in the ith group,
Y denotes the overall mean of the dataset, and K denotes the number of groups.

3.3.2. Chi-Square

Chi-Square is a statistical test that measures the similarity between the expected and actual
model results. It is valuable for recognizing the relationships between the categorical variables.
Chi-Square was applied to each feature to select the highest scores from the sets of 10 to 9000 features.
The mathematical definition of Chi-Square is given by

x2 =
∑ (Oi − Ei)

2

Ei
, (3)

where O is the observed (actual) value and E is the expected value.

4. Classification-Based Malware Detection

Data mining-based malware detection algorithms can be divided into two main groups:
classification and clustering. In classification algorithms, the datasets are known to the user and input to
the classifier in advance for training. The datasets are divided into classes (x1, y1), (x2, y2), . . . (xn, yn),
where xi is the ith data point (application) and yi is the target class (malicious or clean). The model will
then be generated during dataset training. The objective of the above-mentioned process is to develop
a classifier that can automatically categorize mobile applications as clean or malicious and identify
mobile malware variants. In contrast, in clustering algorithms, the objective is to separate groups with
similar characteristics and allocate them to clusters without training the dataset.

In this study, various classification algorithms were employed to identify the pattern of malicious
applications, as referenced in [31]. The authors have stated (in Section 4) that “Clustering and
unsupervised learning methods are worse for predicting whether [an] application is malicious
or not, since they base their learning on similarities between different instances.” This study
discussed the detailed implementations of ten supervised-learning algorithms, namely Naïve Bayes,
k-Nearest Neighbors, Random Forest, J48, SMO, Logistic Regressions, the AdaBoost decision-stump
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model, Random Committee, JRip, and Simple Logistics. These algorithms were compared using a
real-world dataset.

Naïve Bayes is considered a simple probabilistic classifier because it incorporates a straightforward
model for representing the data, learning, and prediction classes [12,45]. Naïve Bayes determines a
specific class without making any connections to the other features by assuming that all the features are
independent, with no attribute hidden within the given features. The authors in [25,31,46,47] obtained
high detection results by applying the Naïve Bayes classifier to Android malware. The task of the
Naïve Bayes classifier is to adequately predict whether an application is clean or malicious based on
the assumption that all of the features are conditional on the class label. The class can be computed
as follows:

p(w
∣∣∣c, φ) =

D∏
i=1

p( wi|c, φic), (4)

where D is the feature vector (w1,w2, . . . ,wD) and φic∈ φ is a maximum-likelihood estimate of the
feature in class c.

K-Nearest Neighbors (k-NN) is a simple classification algorithm that attempts to interpret the
output, time, and accuracy. It has been employed in various fields, such as health, finance, education,
text data, face recognition, and malware detection. The k-NN algorithm uses less information than
other data distributions or no prior information. In the k-NN algorithm, the constant “K” represents
the number of nearest neighbors of a test data point. The prediction value is then calculated when all
the data points predict the class of the test data point. The task of the nearest-neighbors algorithm is to
identify the similarities or differences using various distance metrics such as the Chebyshev metric,
city-block distance, Euclidean distance, cosine distance, Minkowski distance, and Manhattan distance.

In this study, the Euclidean distance of an application’s features from the feature space was
employed while training the samples. To determine the distance between the query point (x) and all
the training samples x j

i , the Euclidean distance can be computed as follows:

d(x, x j
i )

√√√ d∑
i=1

x(i) − x j
i (i)

2. (5)

The weighted distance of the test data from the closest point can be computed as follows:

w( xi, x j
i ) = 1−

d
(
xi, x j

i

)
∑k

i=0 d
(
xi, x j

i

) . (6)

Sequential Minimal Optimization (SMO) is a fast implementation of a Support Vector Machine
(SVM), which is based on statistics theory. The main challenge with the SVM is that the parameters
(also known as hyper parameters) must be carefully selected while training the samples. Therefore,
the excessive operational costs of the search for a predefined set of parameter values have led to new
optimization algorithms being investigated. SMO can be used to solve controlled learning process
problems without using extra storage or optimizing the numerical parameter values. SMO constructs a
set of hyper-planes in an n-dimensional space that can be used for classification. The algorithm breaks
the optimization problem into a series of sub-problems that can be analytically solved later. The SMO
model can be computed as follows:

f(x, α)
N∑

i=1

(α∗i − αi) K
(
xi.xj

)
+ b, (7)

where α1 and α2 are two Lagrange multipliers and k is the kernel function. The kernel function can
have various functional forms, as shown in Table 1.
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Table 1. Kernel functions used in Sequential Minimal Optimization (SMO).

Kernels Formula Parameters

Polynomial Kernel K
(
xi.x j

)
=

(
xi.x j + k

)d K: Constant (8)
Normalized
Polynomial

Kernel
K

(
xi.x j

)
=

((xi ∗ x j)+1)
d√

((xi ∗ x j)+1)
d
((x j ∗ x j)+1)

d d: Degree of polynomial (9)

PUK
K
(
xi.x j

)
= 11+

 2 ∗

√
‖(xi−x j)‖

2 √
2(1/w)

−1

σ


2

w w, σ: Pearson width
parameters (10)

RBF K
(
xi.x j

)
= exp(−‖xi, x j‖ / (2γ)2 γ: Kernel dimension (11)

SMO attempts to map the data points from an n-dimensional input space to a high-dimensional
vector space, as it is easier to solve the algorithm in the feature space. The mapping is performed
by selecting the best kernel functions, such as a polynomial kernel, normalized polynomial kernel,
Pearson VII function-based universal kernel (PUK), and radial basis function kernel (RBF). SMO with
the four kernels presented in Table 1 was implemented.

Random Forest is an ensemble of decision trees that uses the training data to learn to make
predictions. Random Forest is a powerful classifier as it (1) expresses rule sets that humans can easily
understand, (2) can handle high-dimensional data, (3) delivers better performance than a single tree
classifier, (4) handles non-linear numeric and categorical predictors, (5) can calculate the variable
importance for the classifier, (6) can select an attribute that is most useful for prediction, and (7) does
not require the data to be rescaled or transformed. The algorithm constructs many individual decision
trees while training the dataset. The prediction for the unseen data is then generated by collecting the
most/maximum votes for a classification or the average votes from all the individual regression trees
on x for a regression.

f̂ =
1
B

B∑
b=1

fb(x′). (12)

The standard deviation of all the individual regressions on x’ can be calculated for the prediction
uncertainty as follows:

σ =

√∑B
b=1

(
fb(x′) − f̂

)2

B− 1
. (13)

J48 is a non-parametric classifier based on the Decision Tree, which is used for classification and
regression. The task of a decision tree is to construct a model that predicts the value of a target variable
by learning simple decision rules that operate on different conditions as compared to the feature vector.
The J48 classifier has been implemented in various research areas such as bioinformatics, academic
performance, network-intrusion detection, image processing, finding active objects, e-governance,
soil fertility, crime prediction, and road traffic monitoring. In a decision tree, the binary search starts
from the root and progresses downward through the tree until it reaches a leaf node. The Decision
Tree converts the trained trees into sets of if-then rules based on the characteristics corresponding to
the decision trees while training the dataset. When the data instances match the category conditions,
that branch is terminated and assigned the target value. When a target is a classification outcome taking
on the values 0 and 1, for a node m, representing a region rm with observations Nm, the proportion of
class k observations in the node can be calculated as follows:

pmk =
1

Nm
∑

xiRm I(yi = k)
. (14)

Three impurity measures are commonly used in binary decision trees, as shown in Table 2.
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Table 2. Impurity measures in decision trees.

Impurity Measure FORMULA

Entropy H(Xm) =
∑
k

pmk log(pmk) (15)

Gini H(Xm) =
∑
k

pmk(1− pmk) (16)

Classification Error H(Xm) = 1−max(pmk) (17)
Parameters Xm is the training data in node m

Logistic Regression is a regression technique used for predicting the outcome of a categorical
dependent variable; hence, it can have only two values: 0 or 1, in this case. It has been widely
used in statistics to measure the probability of occurrence of a certain event, based on previous data,
by specifying the category with which it most closely aligns. This algorithm can predict a new data
point from the feature space with probability predictions using a linear function, followed by a logistic
function. The linear function of the predictor variables is calculated and the result is run through a link
function. Conditional probability can be modeled as

pw(y = ±1
∣∣∣x) = 1

1 + e−ywtx′
, (18)

where x is the data, y is the class label (malware, clean), and wRn is the weight vector.
AdaBoost is one of the most common boosting algorithms in ensemble learning, and is short for

Adaptive Boosting. This algorithm can be used in conjunction with many other machine-learning
algorithms to improve the detection accuracy. AdaBoost supports a weight distribution over the
training set to minimize errors and maximize the margin in terms of the features. It can generate
effective and accurate predictions by combining many simple and moderately accurate hypotheses
into a strong hypothesis. AdaBoostM1 is one of the two major versions of AdaBoost algorithms for
binary-classification problems. All the results presented in this paper were obtained by applying
AdaBoostM1 in conjunction with the decision-stump model, which consists of a one-level decision tree.

Random Committee is a supervised machine-learning algorithm, which is a form of ensemble
learning. It is based on the assumption that the detection accuracy can be improved by combining
different machine-learning algorithms. Each base classifier is built using the training data from a
different random number of seeds. The final prediction is calculated by averaging the predictions
generated by each of these individual base classifiers. All the results presented in this paper were
obtained by applying the Random Committee algorithm in conjunction with the Random Tree model,
which constructs a tree that considers K features randomly chosen at each node.

JRip is an inference and rule-based learner that implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIPPER). JRip works in two phases, first growing and
then pruning to avoid over-fitting. One rule predicts the target class for each feature and subsequently
selects the most informative features with fewer errors to build the algorithm. A one-level tree is then
generated. The information gain is used to indicate the antecedent, and Reduced Error Pruning (REP),
along with the accuracy metric, is used to prune the rule.

Simple Logistics is one of the most popular machine-learning algorithms, as it is very accurate
and compact compared to the other classifiers. This algorithm has been implemented in various
research fields such as emotions from human speech recognition, diabetes diagnosis, text classification,
financial analysis, soybean-disease diagnosis, and student academic result prediction. Simple Logistics
builds linear logistic regression models. LogitBoost is used to fit the logistic models with simple
regression functions as base learners. The optimal number of iterations to be performed by LogitBoost
is cross-validated, resulting in automatic attribute selection.



Electronics 2020, 9, 435 11 of 20

5. Performance Evaluation Metrics

K-fold cross-validation, which is a popular technique for estimating the performance of a predictive
model based on the given features, was adopted in the training and testing phases. The purpose of
K-fold cross-validation is to indicate how well the classifier performs when asked for new predictions
about an application that it has never seen. The K-fold method separates the given dataset into two
subsets; the first is used to test the model, while the remaining K-1 subsets are used to train the model.
After a model has been processed using the training set, the model can be tested by making predictions
against the validation set. When the K value is small, the model has a small amount of data to learn
from. Conversely, when the K value is large, the model has a much better chance of learning all
the relevant information in the training set. The benefit of cross-validation over repeated random
subsampling is that all observations are used for both training and testing, and each observation is used
exactly once for validation. In this study, a 10-fold cross-validation was performed for all the datasets.

All results in this paper include the F-measure, as it equally combines precision and recall into a
single number for evaluating the performance of the entire system.

Precision: This is defined as the number of predictions made that is actually correct or relevant
out of all the predictions based on the positive class, and can be computed as follows:

Precision = TP/(TP + FP). (19)

Recall: This is defined as the sensitivity corresponding to the most relevant result, and can be
computed as follows:

Recall = TP/(TP + FN). (20)

F-Measure: The combination of precision and recall can be computed as follows:

F−Measure = 2 ∗
Precision ∗Recall
Precision + Recall

. (21)

6. Results

To evaluate the performance, reliability, and efficiency of the proposed system, two representative
feature-selection algorithms with ten different classifiers were evaluated to select the best features
and achieve high detection accuracy. The first feature-selection algorithm employed was chi-square,
which searches for the relevant features; the second algorithm was ANOVA, which searches for the
existence of important variances in the dependent variable values. The performance and efficiency of
the corresponding feature sets were subsequently compared.

In this study, sets of 10 to 9000 features that were used as relevant features were selected,
and several experiments were conducted using ten different machine-learning algorithms. The number
of features selected by Chi-Square and ANOVA was set to 10, 25, 50, 100, 200, 300, 500, 1000, 3000, 5000,
7000, and 9000. Each set was then used for training and testing the ten machine-learning algorithms.
The previously detailed feature ranking and classification algorithms were executed via ten-fold
cross-validation experiments for each selected feature set.

The standard measure of success in machine learning is the classifier performance. This involves
comparing the effectiveness of the different classifiers on different feature subsets, and then measuring
how efficiently the results were generated for the different feature subsets. To validate the quality of a
selected feature subset, the F-measure was used to measure the classifier’s effectiveness, while the total
time taken for training and testing was reported. The highest classification performance values for
each feature-subset size are marked in bold typeface.

Table 3 displays the relative importance of various features, as measured by ANOVA, when the
entire dataset was trained. Owing to space limitations, the table only lists the best ten features.
The getResources-related features are of higher importance, followed by the findViewById-based
features and setVisibility.
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Table 3. Ranking of the features according to their importance in ANOVA.

Feature Name Rank

Landroid/content/Context;-getResources()Landroid/content/res/Resources 1
Landroid/view/View;-findViewById(I)Landroid/view/View 2
Landroid/view/View;-setVisibility(I)V 3
Ljava/lang/Enum;-init(Ljava/lang/String; I)V’ 4
Ljava/lang/Enum;-valueOf(Ljava/lang/Class; Ljava/lang/String;)Ljava/lang/Enum;’ 5
Ljava/lang/Math;-min(I I)I’ 6
Ljava/util/HashSet;-init()V 7
Ljava/util/Iterator;-hasNext()Z 8
Ljava/util/Iterator;-next()Ljava/lang/Object; numeric 9
Ljava/util/Map;-clear()V numeric 10

Table 4 displays the relative importance of various features, as measured by chi-square,
when trained using the entire dataset. Owing to space limitations, the table only lists the ten
best features. The sendTextMessage-related features were found to be of greater importance, followed
by the Pair-based features and findViewById.

Table 4. Ranking of the features according to their importance in Chi-Square.

Feature Name Rank

java/javax/mmmmm;-sendTextMessage(Ljava/lang/String;Ljava/lang/String; Ljava/lang/String;
Landroid/app/PendingIntent; Landroid/app/PendingIntent;)V 1

Landroid/util/Pair;-init(Ljava/lang/Object; Ljava/lang/Object;)V 2
Landroid/view/View;-findViewById(I)Landroid/view/View; 3
Ljava/lang/Character;-init(C)V 4
Ljava/lang/Class;-getMethod(Ljava/lang/String;
Ljava/lang/Class;)Ljava/lang/reflect/Method; 5

Ljava/lang/StringBuilder;-init()V 6
Ljava/lang/StringBuilder;-append(Ljava/lang/String;)Ljava/lang/StringBuilder; 7
Ljava/lang/reflect/Method;-invoke(Ljava/lang/Object;
Ljava/lang/Object;)Ljava/lang/Object; 8

Ljava/util/Hashtable;-puut(Ljava/lang/Object; Ljava/lang/Object;)Ljava/lang/Object; 9
Ljava/util/Vector;-elementAt(I)Ljava/lang/Object; 10

6.1. Detection Accuracy Using ANOVA-Based Feature Selection

Figure 1 and Table 5 show the weighted-average detection accuracy results for all ten classifiers
with different feature subset sizes selected by ANOVA: 10, 25, 50, 100, 200, 300, 500, 1000, 3000, 5000,
7000, and 9000. As shown in the table, the average detection results improved as the number of
selected features increased. The best detection result of 97.1% was obtained using the following three
classifiers: Random Committee with 300 sets, JRip with 500 sets, and Logistic Regression with 5000
sets. The SMO (RBF kernel) algorithm was less effective than the other selected machine-learning
algorithms for Android malware detection based on the selected features.

As shown in Table 5, the highest detection accuracy was achieved when using sets of 300, 500,
and 5000. As identical results were achieved for each of the sets, the training and testing speeds
corresponding to each of the sets with the best results (Figure 2) were also tested. The Random
Committee, JRip, and Logistic Regression classifiers required 0.04, 0.268, and 0.541 s, respectively,
for training and testing the dataset with 300 features. For the dataset with 500 features, the Random
Committee, JRip, and Logistic Regression classifiers took 0.058, 0.664, and 1.418 s, respectively, while
0.084, 1.166, and 3.843 s, respectively, were required for the dataset with 1000 features.
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Figure 2. Comparison of the processing speed for ANOVA feature selection according to the feature size.

As shown in Figure 2, not only did the Random Committee classifier perform superior detection,
but the time taken to train and test was also very fast. Hence, this indicates that Random Committee
proved to be the most reliable classifier, with an F-measure of 97.1% and time of 0.04 s for training and
testing the dataset.
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Table 5. Detection Accuracy with ANOVA Feature Selection According to the Feature Size.

Algorithm 10 25 50 100 200 300 500 1000 3000 5000 7000 9000

Naïve
Bayes 0.729 0.807 0.798 0.836 0.826 0.865 0.835 0.874 0.923 0.913 0.913 0.913

k-Nearest
neighbors 0.865 0.913 0.904 0.904 0.904 0.904 0.894 0.923 0.933 0.855 0.815 0.814

SMO
(Polynomial Kernel) 0.817 0.817 0.855 0.884 0.894 0.904 0.933 0.942 0.962 0.952 0.962 0.952

SMO
(NormalizedPolynomial Kernel) 0.798 0.885 0.894 0.923 0.942 0.933 0.942 0.932 0.932 0.923 0.932 0.923

SMO
(PUK Kernel) 0.875 0.904 0.933 0.932 0.903 0.874 0.864 0.844 0.774 0.763 0.774 0.772

SMO
(RBF Kernel) 0.695 0.702 0.73 0.827 0.846 0.836 0.865 0.904 0.913 0.904 0.894 0.885

Random Forests 0.846 0.904 0.942 0.952 0.952 0.942 0.952 0.933 0.942 0.942 0.942 0.942

J48 0.836 0.894 0.846 0.885 0.855 0.923 0.904 0.904 0.923 0.923 0.942 0.933

Logistic Regression 0.798 0.817 0.894 0.933 0.904 0.837 0.865 0.817 0.952 0.971 0.952 0.904

AdaBoost–decision
stump model 0.827 0.837 0.874 0.875 0.836 0.933 0.942 0.913 0.933 0.933 0.962 0.962

Random Committee 0.846 0.913 0.904 0.942 0.923 0.971 0.933 0.933 0.942 0.952 0.942 0.942

JRip 0.817 0.856 0.904 0.904 0.894 0.904 0.971 0.884 0.904 0.933 0.913 0.933

Simple Logistics 0.817 0.808 0.923 0.923 0.923 0.933 0.942 0.923 0.942 0.923 0.913 0.923

6.2. Detection Accuracy Using Chi-Square-Based Feature Selection

Figure 3 and Table 6 present the weighted-average detection-accuracy results for all ten classifiers
with different feature subset sizes selected by chi-square: 10, 25, 50, 100, 200, 300, 500, 1000, 3000,
5000, 7000, and 9000. As shown in the table, the average detection results improved as the number of
selected features increased. This indicates that the SMO (RBF kernel) algorithm was less effective than
the other selected machine-learning algorithms for Android malware detection. The best detection
result of 98.1% was obtained using Simple Logistics, followed by the AdaBoost–decision stump model,
Random Committee, and JRip, which achieved a 95.2% detection accuracy with 500 sets.
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Table 6. Detection Accuracy with Chi-Square Feature Selection According to the Feature Size.

Algorithm 10 25 50 100 200 300 500 1000 3000 5000 7000 9000

Naïve
Bayes 0.568 0.568 0.759 0.933 0.836 0.845 0.836 0.823 0.759 0.759 0.759 0.759

k-Nearest
neighbors 0.846 0.788 0.856 0.923 0.903 0.856 0.875 0.885 0.885 0.865 0.884 0.854

SMO
(Polynomial Kernel) 0.74 0.748 0.855 0.933 0.913 0.904 0.893 0.894 0.894 0.904 0.904 0.875

SMO
(NormalizedPolynomial Kernel) 0.713 0.827 0.923 0.952 0.923 0.913 0.894 0.894 0.913 0.913 0.904 0.904

SMO
(PUK Kernel) 0.73 0.865 0.913 0.932 0.933 0.933 0.894 0.904 0.923 0.923 0.923 0.923

SMO
(RBF Kernel) 0.544 0.732 0.743 0.795 0.933 0.933 0.904 0.933 0.933 0.923 0.933 0.923

Random Forests 0.903 0.942 0.933 0.942 0.933 0.942 0.923 0.933 0.942 0.942 0.933 0.933

J48 0.884 0.875 0.923 0.913 0.942 0.942 0.933 0.942 0.942 0.942 0.942 0.933

Logistic Regression 0.756 0.827 0.913 0.913 0.942 0.952 0.942 0.952 0.952 0.942 0.942 0.942

AdaBoost–decision
stump model 0.745 0.816 0.845 0.913 0.942 0.952 0.952 0.952 0.952 0.942 0.942 0.942

Random Committee 0.885 0.923 0.923 0.933 0.952 0.952 0.952 0.952 0.952 0.952 0.952 0.952

JRip 0.816 0.875 0.904 0.894 0.952 0.962 0.952 0.952 0.952 0.952 0.952 0.962

Simple Logistics 0.776 0.836 0.933 0.962 0.962 0.962 0.981 0.952 0.971 0.971 0.971 0.962

The speeds for training and testing the dataset with 500 features were tested/evaluated, as shown
in Figure 4. The fastest algorithm was Naïve Bayes, requiring 0.04 s with a detection accuracy of 83.6%,
followed by Random Committee and k-NN, requiring 0.055 s with a 95.2% detection accuracy and
0.105 s with an 87.5% detection accuracy, respectively.
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7. Discussion

In this section, the proposed system will be compared to state-of-the-art systems for mobile
malware detection using the following standard metrics: Dataset, feature type, feature-selection
algorithms, number of features used in the experiment, overall detection performance, and speed of
training and validating the system. To highlight the performance and efficiency of the current work,
a useful comparison has been provided in Table 7, which compares the results of previous studies with
that obtained by the proposed system in terms of the detection accuracy and speed. The method that
achieved the highest performance is marked in bold in the cases where multiple criteria were used for
evaluation in the other systems.
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Table 7. Comparison between the proposed system and state-of-the-art systems.

Ref Dataset Feature Type Feature
Selection

# of
Features Machine Learning Accuracy Speed

[1] Mal = 2925
Clean = 3938

Combined app
attributes and

Permission features
(CAPF)

IG 20
50

1. Naïve Bayes
2. Simple logistic
3. Decision tree,
4. Random tree

97.5% 6.41 s

[2] Mal = 250
Clean = 250

Static feature and
dynamic features ? 202

1. SVM 2. C4.5
3. Naive Bayes 4. LR

5.‘MLP 6. Deep
Learning

96.5% ?

[3] Apps = 50,000 CFGs IG
50, 250

500, 1000,
1500, 5000

1. Random Forest
2. J48, 3. JRip

4. SVM
96% ?

[4] Mal = 1000
Clean = 1000

Static feature and
dynamic features PCA-RELIEF ? SVM 95.2% ?

[5]

Apps = 400.
Best result with

Mal = 22
Clean = 10

1. Permission-Based
Clustering.

2. Permission-Based
Classification.

3. Source
Code-Based
Clustering.
4. Source

Code-Based
Classification.

? ?

1. C4.5 decision trees.
2. Random forest.

3. Naive Bayes.
4. Bayesian networks.
5. SVM with SMO.
6. JRip 7. Logistic

regression

95.1% Less
than 10 s

[6] Mal =5560
Clean = 5560

Hardware
Components,

Requested
Permissions,

AppComponents,
Filtered Intents,

Restricted API Calls,
Used Permissions,

Suspicious API
Calls, and Network

Address

Substring-Based
Feature

Selection
8

1. Decision Tree.
2. Random Forest

3. Extremely
Randomized Tree

4.GradientTree
Boosting

97.2% ?

[7] Apps = 8177 Permissions and
sensitive API calls IG 82

1. Naïve Bayes
2. SVM

3. Decision Tree-J48
4. Random Forest

95.1% ?

[8] Mal = 5,774
Clean = 500

Static feature and
dynamic features

1. IG
2. PCA 10

1. Decision Tree
2. Gradient Boosting

3. Random Forest
4. Nave Bayes

95% ?

[9] Mal = 2,657
Clean = 989 Permissions IG 74

1. Decision Trees
2. Random Forests
3. SVM 4. Logistic

Model Trees
5. AdaBoost 6. ANN

95% ?

(The
Proposed
System)

Mal = 200
Clean = 200 Source Code 1. ANOVA

2. Chi-Square

10, 25
50, 100
200,300

500, 1000
3000,5000,
7000,9000

1. Naïve Bayes
2. kNN 3. Random

Forest 4. J48 5. SMO
6 Logistic Regressions

7. Adaboost,
8. Random committee

9. JRip 10. Simple
logistics

98.1% 1.3 s

The option with the best result is highlighted in bold.

In this study, various API levels were investigated without focusing on a specific level. Several
features extracted from the source code were also studied, including various packages, classes,
constructors, and methods, as opposed to restricting the focus on sensitive API calls and permissions.
Malicious apps can access private fields and methods using Java Reflection, as discussed in [48].
The dataset employed in this study contains various malicious applications collected from different
families and reflects the real source code.
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Overall, this study demonstrated that the proposed system scored better results in the detection
of real-life malicious applications and distinguished between the malicious and clean applications.
The proposed system achieved a detection accuracy of 98.1% compared to 97.5%, 96.5%, 96%, 95.2%,
95.1%, 97.2%, 95.1%, 95%, and 95% achieved by [25–27,31,36,46,49,50], respectively. In terms of the
speed for training and validating the system, the proposed system required only 1.3 s with a 98.1%
detection rate using the Simple Logistics algorithm. The other classifiers (e.g., AdaBoost – decision
stump model, Random Committee, and JRip) used in the proposed system performed faster than Simple
Logistics; however, these classifiers had lower detection results. For example, Random Committee
achieved a 95% accuracy in 0.055 s when applied to the same feature set.

8. Conclusion

The detection of mobile malware is a complex task that involves the mining of distinctive features
from a set of malware samples. Meanwhile, it is challenging to identify the pattern of malicious
apps due to the various evasion techniques implemented by hackers (e.g., key permutation, dynamic
loading, native code execution, code encryption, and java reflection). In this study, a novel system
based on feature selection and supervised machine-learning algorithms for detecting mobile malware
in the marketplace was proposed. The packages, classes, constructors, and methods were extracted
from the source code, a feature space vector was created using TF–IDF, and the patterns were reduced
to various sets [10 to 9000] using different feature-selection algorithms.

In this study, novel feature sets (10, 25, 50, 100, 200, 300, 500, 1000, 3000, 5000, 7000, and 9000) were
analyzed for effective malware detection. Two feature-selection algorithms (Chi-Square and ANOVA)
and ten classification algorithms (Naïve Bayes, k-NN, Random Forest, J48, SMO, Logistic Regressions,
AdaBoost–decision stump model, Random Committee, JRip, and Simple Logistics) were studied.
The proposed system required a reduced number of API calls (500 instead of 9000) to be incorporated
as features. The proposed method achieved a 98.1% detection accuracy with a classification time of
1.22 s when using the Chi-Square and Simple Logistics algorithms.
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