
electronics

Article

A Hybrid Tabu Search and 2-opt Path Programming
for Mission Route Planning of Multiple Robots
under Range Limitations

Meng-Tse Lee 1,*, Bo-Yu Chen 1 and Ying-Chih Lai 2,*
1 Department of Automation Engineering, National Formosa University, Yunlin 632, Taiwan;

40127227@gm.nfu.edu.tw
2 Department of Aeronautics and Astronautics Engineering, National Cheng-Kung University,

Tainan 701, Taiwan
* Correspondence: mtlee@nfu.edu.tw (M.-T.L.); yingclai@mail.ncku.edu.tw (Y.-C.L.);

Tel.: +886-5-631-5388 (M.-T.L.); +886-6-2757575 (ext. 63648) (Y.-C.L.)

Received: 28 February 2020; Accepted: 23 March 2020; Published: 24 March 2020
����������
�������

Abstract: The application of an unmanned vehicle system allows for accelerating the performance
of various tasks. Due to limited capacities, such as battery power, it is almost impossible for a
single unmanned vehicle to complete a large-scale mission area. An unmanned vehicle swarm has
the potential to distribute tasks and coordinate the operations of many robots/drones with very
little operator intervention. Therefore, multiple unmanned vehicles are required to execute a set
of well-planned mission routes, in order to minimize time and energy consumption. A two-phase
heuristic algorithm was used to pursue this goal. In the first phase, a tabu search and the 2-opt node
exchange method were used to generate a single optimal path for all target nodes; the solution was
then split into multiple clusters according to vehicle numbers as an initial solution for each. In the
second phase, a tabu algorithm combined with a 2-opt path exchange was used to further improve the
in-route and cross-route solutions for each route. This diversification strategy allowed for approaching
the global optimal solution, rather than a regional one with less CPU time. After these algorithms
were coded, a group of three robot cars was used to validate this hybrid path programming algorithm.

Keywords: multi-robots; path programming; tabu search

1. Introduction

Mainstream applications are currently focused on unmanned vehicle robots used in manufacturing;
unmanned air vehicles (UAVs) in monitoring the earth’s surface; emergency aid and disaster control
and prevention efforts; commercial aerial photography; logistics; and unmanned combat air vehicle
operations (UCAVs) [1,2]. When the scope of tasks and the areas involved are expanding, a system
consisting of multiple unmanned vehicles agents is required to complete a mission with a very wide
area. To complete the tasks more efficiently, well-planned path programming is a must, so as to
minimize time and energy consumption by shortening the overall distances of the routes.

Facing this problem of a large area multi-waypoints mission dealing with a multi-agent system,
we designed a hybrid dynamic path programming algorithm to help us achieve the goals of saving time
and energy, with shorter and more efficient routes so that the robot cars were not running redundant
paths. The maximum travelable distance (limited by the battery energy capacity) was used as one of
the constraints during the algorithm iterations.

Unlike other path-programming works, this study contributes to the field with a hybrid path
programming algorithm involving a combined tabu search and a 2-opt swap under the maximum

Electronics 2020, 9, 534; doi:10.3390/electronics9030534 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3471-3290
http://www.mdpi.com/2079-9292/9/3/534?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9030534
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 534 2 of 18

travelable range consideration. A set of multiple robot cars was built to validate the tasks’ completeness
in the final phase.

2. Related Work

The idea of using a multi-agent robot system has been gradually adapted for wide-area searching
in large-scale missions. This includes the use of multi-robot Simultaneous Localization and Mapping
(SLAM), as explained by Atanasov et al. [3], along with hitchhiking robots as part of a collaborative
approach for efficient multi-robot navigation, as explored by Ravankar et al. [4]. However, neither
of these studies were focused on including an optimized mission path for each robot of the system.
In fact, many scholars have been conducting research on path programming, as well as various factors
regarding the number of vehicles dispatched. Most research is focused on solving the Vehicle Routing
Problem (VRP) and the multiple traveling salesman problem (mTSP). This mTSP involves m salesmen
who must visit a set of n cities, with each salesman starting and ending at the same place (city). Each city
must be visited exactly once by one salesman, with the objective of finding the shortest total distance
traveled by all of the salesmen. It could happen that we have one of the salesmen travel to all of the
cities, while others visit only one. However, in practice, every salesman has similar abilities and limits.
So the mTSP with ability constraints is more appropriate for real-world problems. Suppose the number
of cities traveled to by each salesman is limited [5]. The multi-robot, multi-target exploration problem
further extends the traveling salesman problem (TSP). This problem is called the Multiple Traveling
Robot Problem (MTRP), and it involves a team of robots visiting target points at least once (ideally,
no more than once). The overall solution quality is dependent upon both the quality of the solution
constructed by the paths of the robots, and the efficient allocation of the targets to those robots [6].

The mTSP is a generalization of the well-known TSP [7], which is an obviously non-deterministic
polynomial-time hardness (NP-hard) problem [8,9]. With NP-hard problems, the complexity of the
solution increases as the number of target points expands. Since it is almost impossible to go through all
of the feasible paths, and produce the best solution within an acceptable timeline, a heuristic algorithm
was adopted to obtain an approximate solution.

Dorigo et al. [10] suggested a new computational paradigm called ant system (AS) for solving the
TSP problem. This innovative contribution formed the foundation of today’s Ant Colony Optimization
(ACO) algorithm.

Yousefikhoshbakht et al. [11] used the New Modified Ant Colony Optimization (NMACO) that
mixed the insert, swap and 2-opt algorithms, as well as an efficient Candidate List to improve the
efficiency of the ACO. It is quite competitive with other meta-heuristic algorithms that solve a library of
sample instances for the TSP (TSPLIB) instances. But the solution it yielded still has room to improve.

Necula et al. [12] used five modified Ant Colony Optimization (ACO) algorithms to solve mTSP.
With this method, the maximum number l and the minimum number k of the city that each salesman
should visit are defined and limited. The mTSP is then solved with TSPLIB instances.

Xu et al. [13] used a hybrid Genetic Algorithm (GA) and Simulated Annealing (SA) to solve mTSP.
This enhanced the local search ability so as to achieve a better global optimal solution than general GA.
But the solution it solved is not the best. In the previously mentioned literature, the authors used ACO
and GA to solve the mTSP problem, but it does not produce the same solution with every execution,
and must be tested continuously to ensure the best solution.

Côté et al. [14] used Tabu Search (TS) to solve the VRP, which they tested with benchmark instances.
They not only achieved convergence in a reasonable time, but also surpassed many of the best solutions
in benchmark instances.

Huang and Liao [15] used a two-phased method to solve the Dynamic Vehicle Routing Problem
(DVRP). Different from mTSP, it limits its vehicle capacity. Fuzzy c-mean techniques were used to
divide existing customers, while cost function was adopted to figure out the initial solution in the
first phase. Then, in the second phase, a tabu search was combined with 2-opt and or-opt to improve
cross-route and in-route respectively, aiming to solve the problem of multi-vehicle paths programming.

Electronics 2020, 9, 534 3 of 18

In fact, the tabu search algorithm not only adapted in path programming, but also in many other fields,
such as those involving the economic dispatch of electric generators [16].

Sariel-Talay et al. [6] studied MTRP. They mentioned that their system was able to obtain real-time,
optimal paths for traveling among multiple target points on their own platform with a robot swarm,
and the assignment was completed successfully. However, a single robot car’s maximum traveling
capacity was not considered.

There are many published articles on multi-vehicle path programming, but only a few involve
on-site experiments with cars to verify the effectiveness of the programming. In mTSP, the maximum
and minimum number of cities that each salesman should visit are defined and limited, but the tasks
may not get completed due to the limited energy capacity of one car. Therefore, we focused on the
“maximum travelable distance” for this study, and also adopted a two-phased module as our solving
module. In the first phase, a tabu search combined with a 2-opt swap method was used to program a
single optimal path, and then to get the initial solution by splitting the path into multiple sub-paths.
In the second phase, Huang and Liao’s solving module was adopted—a tabu search combined with a
2-opt swap method to improve the initial paths, and to determine whether the result exceeded the
maximum distance limit.

Additionally, a diversification strategy similar to GA was implemented for in-route path
improvements. The use of this strategy resulted in the recording and selection of the optimal
solution or second-best solution as the initial solution for the in-route path improvement later on,
so that an unwanted regional optimal solution could be avoided. In this research, the 2-opt swap
method was adopted to improve in-route paths. Once it finished, the calculation continued to improve
cross-route paths until the conditions of termination were reached. In the last stage, this solution was
verified by our experiments with real robot cars running the programmed paths. From the experiment,
we looked into the distance designed for the path programming, and the trajectory difference between
the actual paths and theoretical ones.

Research Highlights

The objective of the path programming problem of this research was to assign several series of
target points to multi-robots to maximally reduce total energy consumption. The robots had limited
onboard (fuel or battery) energy, so a maximum travelable distance constraint was expected to be
satisfied. Highlights of this research speak to these issues:

1. We developed an optimal route planning algorithm for multi-robots’ application by using an
innovative, hybrid, two-phase tabu and 2-opt search.

2. In previous research involving salesman problems, constraints in VRP, mTSP and MTRP were
mainly located on maximum reachable target points for single vehicle problems, or on maximum
cargo capacity for multiple vehicles problems. In our study, we made this problem closer to an
unmanned system’s reality by building a new model with maximum range constraint.

3. Unlike most previous research in VRP and mTSP, in which problems end with a computational
result, outdoor field tests were conducted to validate the algorithm developed in this project.

3. Design of the Two-Phase Path Programming

This research was focused on the dynamic path programming of multi-robots for achieving
missions that lowered the energy costs in each group. The problem defined in this research is similar
to the mTSP problems of visiting n targets with a shortest total route-distance by using m vehicles,
with every target being visited only once.

However, the service range of unmanned robot vehicle systems is strictly limited by its onboard
energy capacity (such as fuel or battery); hence the major difference in this research, as compared
to traditional mTSP projects, is consideration of the range-limitation as a constraint during the

Electronics 2020, 9, 534 4 of 18

programming loops. According to the previous statement, the problem definition for this research was
modified from a standard module of SD-mTSP [17]. The object and subject were as follows:

xi jk =

{
1
0

the k path goes from city i to city j
otherwise

(1)

∀(i, j) ∈ A, k = 1, . . .m (2)

Object:

min
m∑

k=1

∑
(i, j)∈A

ci jxi jk (3)

Subject to: ∑
(i, j)∈A

ci jxi jk ≤ Dlmt, k = 1, . . .m (4)

m∑
k=1

n∑
j=2

x1 jk = m (5)

m∑
k=1

n∑
j=2

x j1k = m (6)

m∑
k=1

n∑
i=1

xi jk = 1 , j = 2, . . . , n (7)

m∑
k=1

n∑
j=1

xi jk = 1 , i = 2, . . . , n (8)

m∑
k=1

xi1k + x1ik ≤ 1 , i = 2, . . . , n (9)

ui ≥ 1, i = 2, . . . , n (10)

where ci j is the distance array of A; m is the number of robot cars; Dlmt is the value of maximum
distance limit; n is the number of target points; and ui is the number of target points visited on a car’s
path from the original point to target I. Equation (1) is variable integer, determining whether target
i to j has been traveled by k car; with Equation (2), A in the formula is the set of all specified paths;
Equation (3) is the object function of this problem; in Equation (4) the value of subject Dlmt should
not be exceeded by all of the cars; Equations (5) and (6) ensure that cars start at the original point and
come back to the same point; Equations (7) and (8) ensure that all of the targets have been entered and
exited by the car; Equation (9) indicates that each car must visit at least one target; and Equation (10)
prevents the problem of the sub-path not including the original point.

There are many kinds of heuristic algorithms to solve this problem, including ACO, Particle
Swarm Optimization (PSO), GA and tabu search. In this research we mainly adopted the tabu search
of a heuristic algorithm that can imitate human beings’ memory, which keeps experiences in the past
to prevent roundabout searches and to create a tabu list. It can learn from past solutions to avoid
any regional optimal solution being seen as a global optimal solution. Tabu search is known for its
ability to quickly converge iterations. In addition, its optimal solution and the number of iterations of
convergence are more stable than what GA can achieve.

As GA randomly generates paths by mating, the solution could have turned out to be a suboptimal
rather than an optimal solution, so we needed to repeatedly verify the result for the ultimate optimal
solution. We knew that as long as the initial solution and tabu list for tabu search were well set,

Electronics 2020, 9, 534 5 of 18

we could quickly complete a convergence and get the more stable, optimal solution; that being the
main reason we adopted it for this study [2].

With tabu search as the core technology and involving the 2-opt swap method, a two-phase path
programming algorithm model was established for this research. As shown in Figure 1, the initial
solution established in the first phase was processed in two steps.

In the second phase, we needed to obtain the global optimal solution by improving the initial one
we realized in the first phase. As in the first phase, three steps were used. Our first was the cross-route
improvement by tabu search combined with 2-opt to exchange different target points within different
paths. Then, a diversification strategy that recorded the optimal and suboptimal solutions from last
computation was implemented to avoid the result falling into a regional optional solution. Step 3 was
to improve each in-route path with tabu search combined with 2-opt. In other words, it was a refined
solution exchanged from the first step, and we needed to repeat the process we carried out in step 2
until a termination condition was reached.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 18

were well set, we could quickly complete a convergence and get the more stable, optimal solution;

that being the main reason we adopted it for this study [2].

With tabu search as the core technology and involving the 2-opt swap method, a two-phase path

programming algorithm model was established for this research. As shown in Figure 1, the initial

solution established in the first phase was processed in two steps.

In the second phase, we needed to obtain the global optimal solution by improving the initial

one we realized in the first phase. As in the first phase, three steps were used. Our first was the cross-

route improvement by tabu search combined with 2-opt to exchange different target points within

different paths. Then, a diversification strategy that recorded the optimal and suboptimal solutions

from last computation was implemented to avoid the result falling into a regional optional solution.

Step 3 was to improve each in-route path with tabu search combined with 2-opt. In other words, it

was a refined solution exchanged from the first step, and we needed to repeat the process we carried

out in step 2 until a termination condition was reached.

Figure 1. Main flow chart.

3.1. Tabu Search

Tabu search is a global search method. First, it establishes an initial solution, and then finds the

neighborhood optimal solution, or accords the solution of aspiration criterion as the base for moving.

That means, searching for solutions in the neighborhood domain of the current solution. Among

them, the tabu list memory mechanism is noticeably important. It records the solutions which have

been searched already to prevent any useless or redundant searching. Once the search on all

neighborhood domains is completed, the optimal solution is selected. If any solution that be selected

is found to be better than the current optimal solution, the optimal solution is updated until the

termination condition is reached [18].

3.2. 2-opt Swap Method

The tabu search combined with the 2-opt nodal line swap method that was proposed by Lin

(1965) [19] was adopted in this research. It is a method that we used to change the order of the path

to expand the current solution. Initially it was designed on TSP, and now it is widely used in solving

path problems (TSP, VRP, VRPTW, and so on). Its swap concept is shown in Figure 2. If (1, 3) and (2,

4) nodal lines are replaced, (1, 2) and (3, 4) could be connected to change its path.

The method for the cross-route path swap is different from the one we used for the single one

path (see Figure 3 for the swap concept). If the nodal lines of (5, 6) and (1, 2) are exchanged, (5, 2) and

(1, 6) as well as (5, 1) and (2, 6) are two possible paths that will be changed, respectively. Compared

to the original path, the direction of the latter one will change. Thus, the use of 2-opt would be

possible for reversing the directions of the paths.

Figure 1. Main flow chart.

3.1. Tabu Search

Tabu search is a global search method. First, it establishes an initial solution, and then finds the
neighborhood optimal solution, or accords the solution of aspiration criterion as the base for moving.
That means, searching for solutions in the neighborhood domain of the current solution. Among them,
the tabu list memory mechanism is noticeably important. It records the solutions which have been
searched already to prevent any useless or redundant searching. Once the search on all neighborhood
domains is completed, the optimal solution is selected. If any solution that be selected is found to be
better than the current optimal solution, the optimal solution is updated until the termination condition
is reached [18].

3.2. 2-opt Swap Method

The tabu search combined with the 2-opt nodal line swap method that was proposed by Lin
(1965) [19] was adopted in this research. It is a method that we used to change the order of the path to
expand the current solution. Initially it was designed on TSP, and now it is widely used in solving
path problems (TSP, VRP, VRPTW, and so on). Its swap concept is shown in Figure 2. If (1, 3) and (2, 4)
nodal lines are replaced, (1, 2) and (3, 4) could be connected to change its path.

The method for the cross-route path swap is different from the one we used for the single one
path (see Figure 3 for the swap concept). If the nodal lines of (5, 6) and (1, 2) are exchanged, (5, 2) and
(1, 6) as well as (5, 1) and (2, 6) are two possible paths that will be changed, respectively. Compared to
the original path, the direction of the latter one will change. Thus, the use of 2-opt would be possible
for reversing the directions of the paths.

Electronics 2020, 9, 534 6 of 18
Electronics 2020, 9, x FOR PEER REVIEW 6 of 18

Figure 2. 2-opt Swap Method Concept (a).

Figure 3. 2-opt Swap Method Concept (b).

3.3. Establishment of the Initial Solution

This phase was carried out in three steps, as shown in Figure 4. In step 1, tabu search and 2-opt

were used to optimize the single path. In step 2, the single path was being divided into multiple sub-

paths as the initial solution for our second phase.

Figure 4. Establishment of the Initial Solution.

3.3.1. Use of Tabu Search to Program a Single Path

We used Nearest Distance Method to establish a rough single path as an initial solution for the

tabu search. First, we established a distance array 𝑐𝑖𝑗 , and let the zeroth row of 𝑐𝑖𝑗 = ∞. Next, we set

the point in which the row of 𝑐𝑖𝑗 had a minimum value as the first point, and let the value of this

row of 𝑐𝑖𝑗 be infinity. Then, we repeated the same procedure to search and set the second point, the

third point, and so on. The initial solution was generated until all of the points were searched.

Following this, the tabu search and 2-opt were used to optimize the single path. The 2-opt was used

as a move method to solve the problem of the single optimal path. We also set up the length of the

tabu list, with the condition of stopping the search and using the solution of the Nearest Distance

Method as the initial solution 𝑥0 at that time. We then executed a tabu search to get the optimal

single path.

Figure 2. 2-opt Swap Method Concept (a).

Electronics 2020, 9, x FOR PEER REVIEW 6 of 18

Figure 2. 2-opt Swap Method Concept (a).

Figure 3. 2-opt Swap Method Concept (b).

3.3. Establishment of the Initial Solution

This phase was carried out in three steps, as shown in Figure 4. In step 1, tabu search and 2-opt

were used to optimize the single path. In step 2, the single path was being divided into multiple sub-

paths as the initial solution for our second phase.

Figure 4. Establishment of the Initial Solution.

3.3.1. Use of Tabu Search to Program a Single Path

We used Nearest Distance Method to establish a rough single path as an initial solution for the

tabu search. First, we established a distance array 𝑐𝑖𝑗 , and let the zeroth row of 𝑐𝑖𝑗 = ∞. Next, we set

the point in which the row of 𝑐𝑖𝑗 had a minimum value as the first point, and let the value of this

row of 𝑐𝑖𝑗 be infinity. Then, we repeated the same procedure to search and set the second point, the

third point, and so on. The initial solution was generated until all of the points were searched.

Following this, the tabu search and 2-opt were used to optimize the single path. The 2-opt was used

as a move method to solve the problem of the single optimal path. We also set up the length of the

tabu list, with the condition of stopping the search and using the solution of the Nearest Distance

Method as the initial solution 𝑥0 at that time. We then executed a tabu search to get the optimal

single path.

Figure 3. 2-opt Swap Method Concept (b).

3.3. Establishment of the Initial Solution

This phase was carried out in three steps, as shown in Figure 4. In step 1, tabu search and 2-opt
were used to optimize the single path. In step 2, the single path was being divided into multiple
sub-paths as the initial solution for our second phase.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 18

Figure 2. 2-opt Swap Method Concept (a).

Figure 3. 2-opt Swap Method Concept (b).

3.3. Establishment of the Initial Solution

This phase was carried out in three steps, as shown in Figure 4. In step 1, tabu search and 2-opt

were used to optimize the single path. In step 2, the single path was being divided into multiple sub-

paths as the initial solution for our second phase.

Figure 4. Establishment of the Initial Solution.

3.3.1. Use of Tabu Search to Program a Single Path

We used Nearest Distance Method to establish a rough single path as an initial solution for the

tabu search. First, we established a distance array 𝑐𝑖𝑗 , and let the zeroth row of 𝑐𝑖𝑗 = ∞. Next, we set

the point in which the row of 𝑐𝑖𝑗 had a minimum value as the first point, and let the value of this

row of 𝑐𝑖𝑗 be infinity. Then, we repeated the same procedure to search and set the second point, the

third point, and so on. The initial solution was generated until all of the points were searched.

Following this, the tabu search and 2-opt were used to optimize the single path. The 2-opt was used

as a move method to solve the problem of the single optimal path. We also set up the length of the

tabu list, with the condition of stopping the search and using the solution of the Nearest Distance

Method as the initial solution 𝑥0 at that time. We then executed a tabu search to get the optimal

single path.

Figure 4. Establishment of the Initial Solution.

3.3.1. Use of Tabu Search to Program a Single Path

We used Nearest Distance Method to establish a rough single path as an initial solution for the
tabu search. First, we established a distance array ci j, and let the zeroth row of ci j = ∞. Next, we set
the point in which the row of ci j had a minimum value as the first point, and let the value of this row of
ci j be infinity. Then, we repeated the same procedure to search and set the second point, the third point,
and so on. The initial solution was generated until all of the points were searched. Following this, the
tabu search and 2-opt were used to optimize the single path. The 2-opt was used as a move method
to solve the problem of the single optimal path. We also set up the length of the tabu list, with the
condition of stopping the search and using the solution of the Nearest Distance Method as the initial
solution x0 at that time. We then executed a tabu search to get the optimal single path.

3.3.2. Path Split

We roughly split the single path program into multiple sub-paths, and then split all the target
points into m sub-paths. We also made the closed sub-paths link to the original point as much as

Electronics 2020, 9, 534 7 of 18

possible, less than the maximum distance limit. At worst, no more than one route exceeded the
maximum distance limit. The split path was not necessarily the optimal path, but it was good enough
to be the initial solution for the next phase.

3.4. Improvement of Path to Obtain an Optimal Solution

In this phase, the rules of 2-opt were followed to swap the node lines in in-route and cross-route
paths for moving. The solutions were gradually converged into the optimal solution. At this point, we
decided to minimize the distance summation of all paths, and make sure the assigned distance of each
robot car did not exceed the maximum distance limit. The flow chart is shown in Figure 5.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 18

3.3.2. Path Split

We roughly split the single path program into multiple sub-paths, and then split all the target

points into m sub-paths. We also made the closed sub-paths link to the original point as much as

possible, less than the maximum distance limit. At worst, no more than one route exceeded the

maximum distance limit. The split path was not necessarily the optimal path, but it was good enough

to be the initial solution for the next phase.

3.4. Improvement of Path to Obtain an Optimal Solution

In this phase, the rules of 2-opt were followed to swap the node lines in in-route and cross-route

paths for moving. The solutions were gradually converged into the optimal solution. At this point,

we decided to minimize the distance summation of all paths, and make sure the assigned distance of

each robot car did not exceed the maximum distance limit. The flow chart is shown in Figure 5.

Figure 5. Path Improvement Flow Chart.

3.4.1. Modified Tabu Search for Improving Cross-route Switch

Compared to a general tabu search, the major difference of this improved search is that 𝑆𝑙𝑚𝑡,

which contains solutions exceeding the maximum distance limitation, were removed from the

Candidate List to ensure that all path solution values were within range. However, this limitation

resulted in an empty set for the Candidate List, thereby blocking all solutions from entering the next

generation. When this occurred, an original tabu list was adopted with 𝑆𝑙𝑚𝑡 , the solution set retaining

all solutions, even with values exceeding the maximum distance limitation. With loosened criteria,

the search also selected “the distance of the longest traveling path” as the solution of minimum value.

A tabu search combined with 2-opt was used in this step. By moving based on 2-opt, swapping

the nodal lines among different paths was used to improve each of the current paths. So, 2-opt was

applied to improve cross-route paths. At that time, we set up the length of the tabu list, the condition

of stopping the search, and the initial solution as 𝑥0. Then we executed the flow of the improved tabu

search to get the optimal paths as follows (its pseudo code is shown in Algorithm 1):

Step 1.

First, an initial solution 𝑥0 was set as the current optimal solution; the suboptimal solution was

𝑥∗, 𝑥+. Then we set the current optimal and suboptimal distance function values as 𝑑(𝑥∗), 𝑑(𝑥+) ;

with the initial generation of 𝑖 = 0, the number of optimal solutions was not improved (𝑘 = 0) and

tabu list T was the empty set (𝑇 = ∅).

Step 2.

Figure 5. Path Improvement Flow Chart.

3.4.1. Modified Tabu Search for Improving Cross-Route Switch

Compared to a general tabu search, the major difference of this improved search is that Slmt, which
contains solutions exceeding the maximum distance limitation, were removed from the Candidate
List to ensure that all path solution values were within range. However, this limitation resulted in
an empty set for the Candidate List, thereby blocking all solutions from entering the next generation.
When this occurred, an original tabu list was adopted with Slmt, the solution set retaining all solutions,
even with values exceeding the maximum distance limitation. With loosened criteria, the search also
selected “the distance of the longest traveling path” as the solution of minimum value.

A tabu search combined with 2-opt was used in this step. By moving based on 2-opt, swapping
the nodal lines among different paths was used to improve each of the current paths. So, 2-opt was
applied to improve cross-route paths. At that time, we set up the length of the tabu list, the condition
of stopping the search, and the initial solution as x0. Then we executed the flow of the improved tabu
search to get the optimal paths as follows (its pseudo code is shown in Algorithm 1):

Step 1.

First, an initial solution x0 was set as the current optimal solution; the suboptimal solution was
x∗, x+. Then we set the current optimal and suboptimal distance function values as d(x∗), d(x+); with
the initial generation of i = 0, the number of optimal solutions was not improved (k = 0) and tabu list
T was the empty set (T = ∅).

Step 2.

Electronics 2020, 9, 534 8 of 18

According to characteristics of 2-opt, it extends all feasible neighborhood solutions of xi
as a neighborhood solution set N(xi). The candidate list included an N(xi) deduction T,
and a solution of the maximum distance limit Slmt [N(xi) − T − Slmt]. We selected the optimal
neighborhood solution xi+1 which had an optimal total distance function value of d(xi+1) in it.
(xi+1 = MinTotalDist(N(xi) − T − Slmt)). If N(xi) − T − Slmt = ∅, we changed the Candidate List to
N(xi) − T and selected an optimal neighborhood solution xi+1, which had an optimal maximum
distance function value of t(xi+1) in it. (Note that the xi+1 = MinMaxDist(N(xi) − T))

Step 3.

We had to determine whether d(xi+1) was less than d(x∗). If it was, x∗ had to be replaced by
xi+1 (x∗ = xi). Then k = 0. Otherwise, the current optimal solution was preserved, and k = k + 1. Then,
we determined whether d(xi+1) was less than d(x+). If it was, x+ was replaced with xi+1 (x+ = xi)

Otherwise, we proceeded to the next step.

Step 4.

We determined whether the condition of stopping the search was reached (stopping the search
and setting the current optimal solution as the global optimal solution when k reached the preset).
Otherwise, we updated the tabu list. That is, we added xi+1 to T. If T was full, according to rule of
first-in, first-out, to evict the solution which is the earliest one that enters T. Then we let i = i + 1 and
returned to Step 2 to continue the operation.

Algorithm 1. Improved Tabu Search Pseudo Code

Begin
i, k = 0

xi, x∗ = x0

T = ∅
Do
Use 2-opt method to expand xi to get N(xi)

Candidate List = N(xi) − T − Slmt
xi+1 = Neighborhood optimum have minimum total distance in Candidate List
If Candidate List = ∅ then

Candidate List = N(xi) − T

xi+1 = Neighborhood optimum have minimum maximum-distance in Candidate List
end If
If xi+1 < x∗ then
x∗ = xi+1
k = 0
else
k = k + 1
If xi+1 < x+ then
x+ = xi+1
end If
end If
add xi+1 into T
i = i + 1

While k <= preset
end While
end

Electronics 2020, 9, 534 9 of 18

3.4.2. Diversification Strategy

When this phase proceeded to the second generation, part of the cross-route improvements had
solutions that were not improved. It was possible for a solution to be identical to the one obtained
in the first generation. If this solution was sent to the calculation in the next step, it still came out as
a useless local optimal solution without any further improvements. In order to avoid this situation,
we had to determine whether the solution was improved before going to the second generation. If not,
the suboptimal solution from the cross-route path exchange had to be implemented for improvement,
to get rid of the circle of the local optimal solution and to obtain the global optimal solution.

3.4.3. Improvements for Each Single Path

In this part, the path solution given by the diversification strategy was adopted as the initial
solution. We improved the single path of each group by using a tabu search in combination with 2-opt
to be the same as in the first stage. Thus, we used each single path as an initial solution, and we used
2-opt as a move method to make improvements among different paths. Additionally, we set up the
length of the tabu list with the condition of stop search. Then we executed the tabu search that was
the same as that of the first stage. We did this until each group had been improved after the end of
the sequence.

4. Experimental Vehicle and System Architecture

4.1. System Architecture

As we aimed to complete the task with multiple target points by multiple vehicles in the
shortest possible time, a multi-agent system (MAS) under central control was set up for this research.
The so-called “central control” was enlisted to allocate assignments to each individual robot, so that
each of them could complete the tasks independently, rather than controlling the cars throughout the
procedure. Through cooperation among multiple agents, the system was able to complete a task of a
larger scale. From an MAS viewpoint on task allocation, the system was seen as having a Single-robot
Task, Single-task Robots, and an Instantaneous Allocation of Task (ST-SR-IA) [20].

Various assignments at different levels of difficulty were randomly allocated by the system,
meaning that each robot car may have received any assignment. Thus, each car in the robot swarm
was equipped with identical specifications to ensure their performance and capacity to cope with
various assignments.

From the viewpoint of MAS heterogeneity, the degree of similarity among individual robots
within a collection Het(R) can be expressed as follows:

Het(R) = −
Caste∑
i=1

pi log2(pi) (11)

where Caste represents types of robots, and pi is the decimal percent of robots belonging to any caste.
Since all specifications of this system are the same (caste = 1, pi = 1), Het(R) = 0 (Equation (11)) [21],
which indicates a homogeneity system of a robot swarm.

Figure 6 illustrates the system architecture. This system included a Remote Monitoring Station,
a Multi-Vehicle Paths Programming System, and Robot Cars. The Remote Monitoring Station acted
as a central controller capable of programming the paths and distributing paths to the robot swarm,
designed to complete the work together. From the viewpoint of network topology, the system was a
sort of star topology. Each robot car was able to communicate with the Remote Monitoring Station, but
they were not able to communicate with each other. The system mainly used LabVIEW to develop
the Dynamic Remote Monitoring Station interface. By sending a URL to obtain a Google map web
page as a display interface, it was used as a man–machine interface (MMI), in which each vehicle’s
location feedback and initial path programming could be displayed and managed. By clicking the

Electronics 2020, 9, 534 10 of 18

target points displayed on the MMI, the location could be sent to the Remote Monitoring Station, where
the algorithm was run for the path programming. Then, the planned paths were passed to each car via
XBee. Once the cars received the data, they cross-compared their locations against the target points
designated by the central monitoring station. Next they came out at an angle between the car and
target point, and then headed out of the electronic compass. With these results, the robot car was
able to drive the DC motor forward and control the servo motor differential to successfully complete
the assignment.Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Figure 6. The Robot Cars System Architecture.

4.2. Experimental Vehicle

The robot car was used as an experimental vehicle (see Figure 7). Its function was to receive the

data of target points from the Remote Monitoring Station and to establish a database for traveling.

Once the car arrived at a designated target point, its real-time location was immediately sent to the

Remote Monitoring Station.

This experimental vehicle was modified from a 1/10 scale Shot Course Truck remote control car.

We removed the car’s shell and related remote control devices, then mounted additional off-the-shelf

electronic components, including an Arduino Mega 2560 to act as an onboard computer; a U-blox

NEO-7M Global Positioning System (GPS) module to provide position information for navigation;

an HMC5883L Electronic Compass (E-Compass) to indicate heading; a 915 Mhz Xbee PRO S3B

wireless module for duplex communication with the Remote Monitoring Station; a Liquid Crystal

Display (LCD) to act as a health information indicator for field debugging; and a memory card (SD

Module) to function as an integral data logger to include trajectory history. All the embedded

automotive electronics are shown in Figure 8.

Figure 7. The Sub-System of Robot Car Architecture Diagram.

Figure 6. The Robot Cars System Architecture.

4.2. Experimental Vehicle

The robot car was used as an experimental vehicle (see Figure 7). Its function was to receive the
data of target points from the Remote Monitoring Station and to establish a database for traveling.
Once the car arrived at a designated target point, its real-time location was immediately sent to the
Remote Monitoring Station.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

Figure 6. The Robot Cars System Architecture.

4.2. Experimental Vehicle

The robot car was used as an experimental vehicle (see Figure 7). Its function was to receive the

data of target points from the Remote Monitoring Station and to establish a database for traveling.

Once the car arrived at a designated target point, its real-time location was immediately sent to the

Remote Monitoring Station.

This experimental vehicle was modified from a 1/10 scale Shot Course Truck remote control car.

We removed the car’s shell and related remote control devices, then mounted additional off-the-shelf

electronic components, including an Arduino Mega 2560 to act as an onboard computer; a U-blox

NEO-7M Global Positioning System (GPS) module to provide position information for navigation;

an HMC5883L Electronic Compass (E-Compass) to indicate heading; a 915 Mhz Xbee PRO S3B

wireless module for duplex communication with the Remote Monitoring Station; a Liquid Crystal

Display (LCD) to act as a health information indicator for field debugging; and a memory card (SD

Module) to function as an integral data logger to include trajectory history. All the embedded

automotive electronics are shown in Figure 8.

Figure 7. The Sub-System of Robot Car Architecture Diagram. Figure 7. The Sub-System of Robot Car Architecture Diagram.

This experimental vehicle was modified from a 1/10 scale Shot Course Truck remote control car.
We removed the car’s shell and related remote control devices, then mounted additional off-the-shelf
electronic components, including an Arduino Mega 2560 to act as an onboard computer; a U-blox
NEO-7M Global Positioning System (GPS) module to provide position information for navigation;
an HMC5883L Electronic Compass (E-Compass) to indicate heading; a 915 Mhz Xbee PRO S3B wireless

Electronics 2020, 9, 534 11 of 18

module for duplex communication with the Remote Monitoring Station; a Liquid Crystal Display
(LCD) to act as a health information indicator for field debugging; and a memory card (SD Module)
to function as an integral data logger to include trajectory history. All the embedded automotive
electronics are shown in Figure 8.Electronics 2020, 9, x FOR PEER REVIEW 11 of 18

Figure 8. Experimental Robot Vehicle.

The robot car control principle was constructed from the latitude and longitude data of each

target point stored in the database. Once the tasks assigned by the Remote Monitoring station were

received by the robot car, the geographical data of each target point was extracted from the database

for cars to travel among the points. On the other hand, a set of embedded steering strategies was also

required for the car to automatically move along the planned paths and directions. In order to

calculate the car’s relative distance and angle against the target point, an electronic compass H was

used. Also, the heading angle of the servo motor was set as θ s. When θ s = 0, the robot car would

go straight. When the θ s value was positive, the robot car would turn right. When the θ s became

negative, the robot car would turn left. The maximum range of the angle was set at positive/negative

180°.

The input latitude and longitude data of the robot car (𝑙𝑎𝑡𝑟 , 𝑙𝑛𝑔𝑟) and the target point (𝑙𝑎𝑡𝑔,

𝑙𝑛𝑔𝑔), which were received from the GPS, were used in equation 12 to get ∅ (the angle of the target

point against the exact north). Then we deducted H, the heading direction (see equation 13), to get

the direction error 𝜃𝑡, which was the angle between the current direction and the target point. We

then used the proportional control 𝜃𝑡 to multiply 𝐾𝑃 (the gain used for servo proportional control;

𝐾 p = 0.161) after adding 𝜃 c (the center angle of the servo motor for the steering) to obtain θ𝑠 (that

is, the command sent to the servo motor for moving). In addition, the maximum range for the motor

to move, ±15°, was set to prevent the cars from rolling over under high-speed turning. The 𝐾𝑃θ𝑡

was determined with the understanding it should not exceed ±15° (Equation 14).

∅ = tan−1 (
𝑙𝑛𝑔𝑔 − 𝑙𝑛𝑔𝑟

𝑙𝑎𝑡𝑔 − 𝑙𝑎𝑡𝑟

) (12)

 θ𝑡 = ∅ − H (13)

 {

θ𝑠 = 𝜃𝑐 + 𝐾𝑃θ𝑡
𝐾𝑃θ𝑡 = 15, 𝐾𝑃θ𝑡 ≥ 15

𝐾𝑃θ𝑡 = −15, 𝐾𝑃θ𝑡 ≤ −15
 (14)

In addition to steering, determining whether to reach the target point was equally important.

Once the car reached the target point, only then was it allowed to move to the next one. The distance

between the car and the target point was the key. We set the target point radius R. If the robot car

was entering the range of R (the distance between the robot car and the target point < R), the target

point hit would be determined. In this case, R was set with an appropriate value, understanding that

it would be difficult for the car to hit the target points with too small or too large of an R value. The

R value, then, was acknowledged as affecting the accuracy of the experiment [22].

Figure 8. Experimental Robot Vehicle.

The robot car control principle was constructed from the latitude and longitude data of each target
point stored in the database. Once the tasks assigned by the Remote Monitoring station were received
by the robot car, the geographical data of each target point was extracted from the database for cars to
travel among the points. On the other hand, a set of embedded steering strategies was also required
for the car to automatically move along the planned paths and directions. In order to calculate the
car’s relative distance and angle against the target point, an electronic compass H was used. Also, the
heading angle of the servo motor was set as θs. When θs = 0, the robot car would go straight. When
the θs value was positive, the robot car would turn right. When the θs became negative, the robot car
would turn left. The maximum range of the angle was set at positive/negative 180◦.

The input latitude and longitude data of the robot car (latr, lngr) and the target point (latg, lngg),
which were received from the GPS, were used in Equation (12) to get ∅ (the angle of the target point
against the exact north). Then we deducted H, the heading direction (see Equation (13)), to get the
direction error θt, which was the angle between the current direction and the target point. We then used
the proportional control θt to multiply KP (the gain used for servo proportional control; KP = 0.161)
after adding θc (the center angle of the servo motor for the steering) to obtain θs (that is, the command
sent to the servo motor for moving). In addition, the maximum range for the motor to move, ±15◦,
was set to prevent the cars from rolling over under high-speed turning. The KPθt was determined with
the understanding it should not exceed ±15◦ (Equation (14)).

∅ = tan−1
(

lngg − lngr

latg − latr

)
(12)

θt = ∅−H (13)
θs = θc + KPθt

KPθt = 15, KPθt ≥ 15
KPθt = −15, KPθt ≤ −15

(14)

In addition to steering, determining whether to reach the target point was equally important.
Once the car reached the target point, only then was it allowed to move to the next one. The distance
between the car and the target point was the key. We set the target point radius R. If the robot car was

Electronics 2020, 9, 534 12 of 18

entering the range of R (the distance between the robot car and the target point < R), the target point
hit would be determined. In this case, R was set with an appropriate value, understanding that it
would be difficult for the car to hit the target points with too small or too large of an R value. The R
value, then, was acknowledged as affecting the accuracy of the experiment [22].

5. Tests and Results

This section describes the tests for the proposed hybrid path programming method with maximum
range constraint for the mission planning of multi-robot cars. Three types of tests were performed:

1. Convergence Test—This was conducted to confirm the convergence of the hybrid programming
algorithm under range limitation.

2. Bench Test—This was performed to verify competitiveness by comparing with existing public
TSPLIB instances.

3. Field Test—This was used to validate the practicality of the proposed algorithm by a group of
three robot cars deployed on a field test.

In all tests, the proposed hybrid path programming computer code was processed on the remote
control station based on a laptop PC with Intel Core i7 2.4 GHz CPU and 8 GB RAM.

5.1. Convergence Test

To see whether this hybrid path programming algorithm could successfully converge a solution
set to optimize the route of each robot car group under their maximum travelable distance limitation,
a series of tests were conducted. First, we ensured the algorithm convergence status by a simple
22-point test. As shown in Figure 9, a solution was converged at the 63rd generation. However, the
solution was not immediately improved at the first generation. The solution exceeded the maximum
distance limit as well as the Candidate List = N(xi) − T − Slmt = ∅, so we followed the improved
tabu search and liberalized the Candidate List = N(xi) − T. We compared the maximum distance of
each of the paths and selected the solution with the minimum value in the Candidate List. Due to the
maximum distance limit, there was a function to restrict the maximum distance of the feasible solution,
which was not allowed to exceed this threshold. Starting from the maximum distance, we picked
the minimum maximum distance of the neighborhood solution, and then made the current solution
gradually close to the threshold (maximum distance limit). This eventually sufficed for meeting
the threshold. Finally, the current solution was eligible (see the green line in Figure 9—the distance
variation of the current solution). In this way, the current solution was improved and gradually got
close to the feasible solution.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 18

5. Tests and Results

This section describes the tests for the proposed hybrid path programming method with

maximum range constraint for the mission planning of multi-robot cars. Three types of tests were

performed:

1. Convergence Test—This was conducted to confirm the convergence of the hybrid programming

algorithm under range limitation.

2. Bench Test—This was performed to verify competitiveness by comparing with existing public

TSPLIB instances.

3. Field Test—This was used to validate the practicality of the proposed algorithm by a group of

three robot cars deployed on a field test.

In all tests, the proposed hybrid path programming computer code was processed on the remote

control station based on a laptop PC with Intel Core i7 2.4GHz CPU and 8GB RAM.

5.1. Convergence Test

To see whether this hybrid path programming algorithm could successfully converge a solution

set to optimize the route of each robot car group under their maximum travelable distance limitation,

a series of tests were conducted. First, we ensured the algorithm convergence status by a simple 22-

point test. As shown in Figure 9, a solution was converged at the 63rd generation. However, the

solution was not immediately improved at the first generation. The solution exceeded the maximum

distance limit as well as the Candidate List = 𝑁(𝑥𝑖) − 𝑇 − 𝑆𝑙𝑚𝑡 = ∅, so we followed the improved

tabu search and liberalized the Candidate List = 𝑁(𝑥𝑖) − 𝑇. We compared the maximum distance of

each of the paths and selected the solution with the minimum value in the Candidate List. Due to the

maximum distance limit, there was a function to restrict the maximum distance of the feasible

solution, which was not allowed to exceed this threshold. Starting from the maximum distance, we

picked the minimum maximum distance of the neighborhood solution, and then made the current

solution gradually close to the threshold (maximum distance limit). This eventually sufficed for

meeting the threshold. Finally, the current solution was eligible (see the green line in Figure 9—the

distance variation of the current solution). In this way, the current solution was improved and

gradually got close to the feasible solution.

Figure 9. Solution Convergence Diagram.

5.2. Bench Test

The problem definition of this research is similar to mTSP. The difference, in comparison to

mTSP, is that this research is limited to the travel distance of each robot car. Since mTSP instances are

easy to obtain, we used the innovative algorithm developed in this research to solve the same mTSP

problem for comparing.

Most scholars have modified TSPLIB instances to test mTSP, because mTSP does not have public

instances. In this research, Pr76, Pr152, Pr226, Pr299 and Pr439 were tested. The mTSP rule that each

salesman must visit more than two targets was used. We then compared with MGA [23], MACO [24],

Figure 9. Solution Convergence Diagram.

5.2. Bench Test

The problem definition of this research is similar to mTSP. The difference, in comparison to mTSP,
is that this research is limited to the travel distance of each robot car. Since mTSP instances are easy to

Electronics 2020, 9, 534 13 of 18

obtain, we used the innovative algorithm developed in this research to solve the same mTSP problem
for comparing.

Most scholars have modified TSPLIB instances to test mTSP, because mTSP does not have public
instances. In this research, Pr76, Pr152, Pr226, Pr299 and Pr439 were tested. The mTSP rule that each
salesman must visit more than two targets was used. We then compared with MGA [23], MACO [24],
NMACO [11] and SA+EAS [25]. For establishing the initial solution, the tabu list length was set to 30,
and the condition set for stopping was that the optimal solution was not updated, and it improved in
50 generations. The tabu list length of Improvement of Each Single Path was set to 50. The tabu list
length of Improvement between Different Paths was 50 as well. As well as this, the condition set for
stopping calculations for programming both paths was that the solution had neither been updated nor
improved in the most recent 10 generations. The condition set for stopping the path improvement part
was that the optimal solution had not been updated or improved in the second iteration.

Table 1 is the comparison result of our algorithm in TSPLIB instances with each other.
The 2TS+2OPT was the hybrid algorithm developed in this research. The number of the target
is expressed as n. The number of salesmen is shown as m. The maximum number of waypoints (cities)
that each vehicle (salesman) could visit is denoted by u. As a result, the distance values of 2TS+2OPT
are better than the others, and most of the CPU Times are less than the others as well.

Table 1. The Comparison Result of 2TS+2OPT Algorithm in the library of sample traveling salesman
problem (TSPLIB) Instances.

Name pr76 pr152 pr226 pr299 pr439

n 76 152 226 299 439

m 5 5 5 5 5

u 20 40 50 70 100

SA+EAS 157482 127755 167655 81922 161698

NMACO 157413 127781 167239 81261 160298

MACO 178597 130953 167646 82106 161955
CPU Time(s) 51 128 143 288 563

MGA 178597 130953 167646 82106 173839
CPU Time(s) 43 91 165 363 623

2TS+2OPT 153840 121165 159831 72813 141526
CPU Time(s) 11.3 51.2 153.4 190.5 455.4

5.3. Field Test with Multiple Robot Cars

In this study we set out to solve the path programming of a multi-target wide area. Subject to
vehicle ability constraints, cars were not able to travel to all target points. Therefore, we sent multiple
vehicles to respectively travel to target points and complete tasks. We selected a site in Yunlin, Taiwan,
and set up several target points on it. With a maximum distance limit set up, the shortest total distance
paths and the total distance limits for each robot car were set, so they did not exceed this limit. A hybrid
tabu search combined with a 2-opt swap method was adopted to program the optimal path in the
Remote Monitoring Station, which was a laptop with CI7, 2.4 GHz, and 8 GB RAM. For establishing the
initial solution, the tabu list length was set to 30. The condition set for stopping was that the optimal
solution had not been updated nor improved in 50 generations. The tabu list length of Improvement of
Each Single Path was set to 30. The tabu list length of Improvement between Different Path parts was
30. Additionally, the condition set for stopping calculations for the programming of both paths was
that the solution had not been updated or improved in the most recent 50 generations. The condition
set for stopping the path improvement part was that the optimal solution had not been updated nor
improved in the second iteration. After all of these settings were in place, the paths were assigned to
robot cars for them to run on the designated site with the paths programmed.

Electronics 2020, 9, 534 14 of 18

5.3.1. Maximum Distance Limit = 170 m

The test started by randomly setting up 15 target points on the e-map of the Remote Monitoring
Station. We assumed that the maximum travelable distance limit was 170 m. If we were sending
a single robot car to travel all target points, the optimal (shortest) path was 270.6 m (as shown in
Figure 10). But this path obviously had exceeded the maximum distance limit that a single car can
handle for completing a task; hence three cars were sent for this test. The system soon provided
new paths (as shown in Figure 11), with the shortest distance by using the algorithm developed in
this research. In this test, the CPU time of the Remote Monitoring Station computer was only 0.79 s.
With this solution, the A-path was 81.3 m; the B-path was 164.7 m; and the C-path was 139.9 m. None
of the paths exceeded the maximum distance limit. The shortest total distance was 385.9 m. Then the
system automatically dispatched those three routes to robot cars to visit their assigned target points.
We recorded the path trajectory of each robot car, as shown in Figure 12. The actual total distance was
401.1 m. The actual distance of the A path was 86.9 m; for the B path it was 167.9 m; and for the C path
it was 146.3 m. The maximum error of all robot cars was 6.8% of car A. The error of total distance was
3.9% (Table 2). This error was mainly caused by GPS drifting, a bumpy surface and steering center
offset factors.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

(as shown in Figure 11), with the shortest distance by using the algorithm developed in this research.

In this test, the CPU time of the Remote Monitoring Station computer was only 0.79 s. With this

solution, the A-path was 81.3 m; the B-path was 164.7 m; and the C-path was 139.9 m. None of the

paths exceeded the maximum distance limit. The shortest total distance was 385.9 m. Then the system

automatically dispatched those three routes to robot cars to visit their assigned target points. We

recorded the path trajectory of each robot car, as shown in Figure 12. The actual total distance was

401.1 m. The actual distance of the A path was 86.9 m; for the B path it was 167.9 m; and for the C

path it was 146.3 m. The maximum error of all robot cars was 6.8% of car A. The error of total distance

was 3.9% (Table 2). This error was mainly caused by GPS drifting, a bumpy surface and steering

center offset factors.

Figure 10. Shortest Single Distance Path.

Figure 11. Shortest Total Distance Path When the Maximum Distance Limit Is 170 m.

Figure 12. Experimental Trajectory When the Maximum Distance Limit Is 170 m.

Figure 10. Shortest Single Distance Path.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

(as shown in Figure 11), with the shortest distance by using the algorithm developed in this research.

In this test, the CPU time of the Remote Monitoring Station computer was only 0.79 s. With this

solution, the A-path was 81.3 m; the B-path was 164.7 m; and the C-path was 139.9 m. None of the

paths exceeded the maximum distance limit. The shortest total distance was 385.9 m. Then the system

automatically dispatched those three routes to robot cars to visit their assigned target points. We

recorded the path trajectory of each robot car, as shown in Figure 12. The actual total distance was

401.1 m. The actual distance of the A path was 86.9 m; for the B path it was 167.9 m; and for the C

path it was 146.3 m. The maximum error of all robot cars was 6.8% of car A. The error of total distance

was 3.9% (Table 2). This error was mainly caused by GPS drifting, a bumpy surface and steering

center offset factors.

Figure 10. Shortest Single Distance Path.

Figure 11. Shortest Total Distance Path When the Maximum Distance Limit Is 170 m.

Figure 12. Experimental Trajectory When the Maximum Distance Limit Is 170 m.

Figure 11. Shortest Total Distance Path When the Maximum Distance Limit Is 170 m.

Electronics 2020, 9, 534 15 of 18

Electronics 2020, 9, x FOR PEER REVIEW 14 of 18

(as shown in Figure 11), with the shortest distance by using the algorithm developed in this research.

In this test, the CPU time of the Remote Monitoring Station computer was only 0.79 s. With this

solution, the A-path was 81.3 m; the B-path was 164.7 m; and the C-path was 139.9 m. None of the

paths exceeded the maximum distance limit. The shortest total distance was 385.9 m. Then the system

automatically dispatched those three routes to robot cars to visit their assigned target points. We

recorded the path trajectory of each robot car, as shown in Figure 12. The actual total distance was

401.1 m. The actual distance of the A path was 86.9 m; for the B path it was 167.9 m; and for the C

path it was 146.3 m. The maximum error of all robot cars was 6.8% of car A. The error of total distance

was 3.9% (Table 2). This error was mainly caused by GPS drifting, a bumpy surface and steering

center offset factors.

Figure 10. Shortest Single Distance Path.

Figure 11. Shortest Total Distance Path When the Maximum Distance Limit Is 170 m.

Figure 12. Experimental Trajectory When the Maximum Distance Limit Is 170 m. Figure 12. Experimental Trajectory When the Maximum Distance Limit Is 170 m.

Table 2. The Comparison of Shortest Total Distance (Theoretical) and Total Experimental Trajectory
(Actual) under the Constraint of the Maximum Distance Limit of 170 m for Each Car.

A B C Total

Theoretical
Actual
Error

Error%

81.3
86.9
+5.6

+6.8%

164.7
167.9
+3.2

+1.9%

139.9
146.3
+6.4

+4.5%

385.9
401.1
+15.2
+3.9%

Path programming CPU time = 0.79 s

5.3.2. Maximum Distance Limit = 164 m

With the same location target points set up, we tuned down the maximum distance limit as 164 m.
The algorithm converged a new solution set (as shown in Figure 13) in a very short (0.75 s) CPU
time. For this solution, the A path was 105.2 m; the B path was 159.9 m; and the C path was 139.9
m. None of paths exceeded the maximum distance limit. The total distance, however, increased to
405 m, because the maximum travelable distance of each car was compressed, which made the solution
more “load-balanced”. The completion time was relatively less. After the solution was converted, the
system immediately dispatched those three routes to robot cars to visit their assigned target points.
We recorded the path trajectory of each robot car, as shown in Figure 14. The actual total distance was
412.5 m. The actual distance of the A path was 106.8 m; for the B path it was 160.9 m; and for the C
path it was 144.8 m. The maximum error of all robot cars was 3.5% of car C. The error of total distance
was 1.8% (see Table 3). It is worth mentioning that none of the robots exceeded the range limitation.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

Table 2. The Comparison of Shortest Total Distance (Theoretical) and Total Experimental Trajectory

(Actual) under the Constraint of the Maximum Distance Limit of 170m for Each Car.

 A B C Total

Theoretical

Actual

Error

Error%

81.3

86.9

+5.6

+6.8%

164.7

167.9

+3.2

+1.9%

139.9

146.3

+6.4

+4.5%

385.9

401.1

+15.2

+3.9%

Path programming CPU time = 0.79 s

5.3.2. Maximum Distance Limit = 164 m

With the same location target points set up, we tuned down the maximum distance limit as 164

m. The algorithm converged a new solution set (as shown in Figure 13) in a very short (0.75 s) CPU

time. For this solution, the A path was 105.2 m; the B path was 159.9 m; and the C path was 139.9 m.

None of paths exceeded the maximum distance limit. The total distance, however, increased to 405

m, because the maximum travelable distance of each car was compressed, which made the solution

more “load-balanced.” The completion time was relatively less. After the solution was converted, the

system immediately dispatched those three routes to robot cars to visit their assigned target points.

We recorded the path trajectory of each robot car, as shown in Figure 14. The actual total distance

was 412.5 m. The actual distance of the A path was 106.8 m; for the B path it was 160.9 m; and for the

C path it was 144.8 m. The maximum error of all robot cars was 3.5% of car C. The error of total

distance was 1.8% (see Table 3). It is worth mentioning that none of the robots exceeded the range

limitation.

Figure 13. Shortest Total Distance Path When the Maximum Distance Limit Is 164 m.

Figure 14. Experimental Trajectory When the Maximum Distance Limit Is 164 m.

Figure 13. Shortest Total Distance Path When the Maximum Distance Limit Is 164 m.

Electronics 2020, 9, 534 16 of 18

Electronics 2020, 9, x FOR PEER REVIEW 15 of 18

Table 2. The Comparison of Shortest Total Distance (Theoretical) and Total Experimental Trajectory

(Actual) under the Constraint of the Maximum Distance Limit of 170m for Each Car.

 A B C Total

Theoretical

Actual

Error

Error%

81.3

86.9

+5.6

+6.8%

164.7

167.9

+3.2

+1.9%

139.9

146.3

+6.4

+4.5%

385.9

401.1

+15.2

+3.9%

Path programming CPU time = 0.79 s

5.3.2. Maximum Distance Limit = 164 m

With the same location target points set up, we tuned down the maximum distance limit as 164

m. The algorithm converged a new solution set (as shown in Figure 13) in a very short (0.75 s) CPU

time. For this solution, the A path was 105.2 m; the B path was 159.9 m; and the C path was 139.9 m.

None of paths exceeded the maximum distance limit. The total distance, however, increased to 405

m, because the maximum travelable distance of each car was compressed, which made the solution

more “load-balanced.” The completion time was relatively less. After the solution was converted, the

system immediately dispatched those three routes to robot cars to visit their assigned target points.

We recorded the path trajectory of each robot car, as shown in Figure 14. The actual total distance

was 412.5 m. The actual distance of the A path was 106.8 m; for the B path it was 160.9 m; and for the

C path it was 144.8 m. The maximum error of all robot cars was 3.5% of car C. The error of total

distance was 1.8% (see Table 3). It is worth mentioning that none of the robots exceeded the range

limitation.

Figure 13. Shortest Total Distance Path When the Maximum Distance Limit Is 164 m.

Figure 14. Experimental Trajectory When the Maximum Distance Limit Is 164 m. Figure 14. Experimental Trajectory When the Maximum Distance Limit Is 164 m.

Table 3. The Comparison of Shortest Total Distance (Theoretical) and Total Experimental Trajectory
(Actual) under the Constraint of Maximum Distance Limit 164 m for Each Car.

A B C Total

Theoretical
Actual
Error

Error %

105.2
106.8
+1.6

+1.5%

159.9
160.9
+1.0

+0.6%

139.9
144.8
+4.9

+3.5%

405.0
412.5
+7.5
1.8%

Path programming CPU time = 0.75 s

5.4. Discussion

From the bench test, compared to other algorithms, the 2TS+2OPT hybrid algorithm proposed in
this research has very high advantages in both path optimization and CPU time, which are crucial
for the practical applications of unmanned system. Besides, when examining the results generated
from this hybrid algorithm of path programming, it was found that the total distance was inversely
proportional to the maximum distance limit value. Thus, the lower the maximum distance limit value
was, the longer the total distance would be. Relatively speaking, the lower the maximum distance limit
value, the shorter the mission time. In general, a tighter margin in onboard energy capacity yielded a
“load-balanced” situation for each robot in the group, which means every robot had equal loading.

From the field experiments, we obtained the error of maximum total distance at 3.9%, and
the maximum error of each robot car at 6.8%. These are both minor and representative of a rather
satisfying result, as we expected. In addition, we also found a few minor errors in Algorithm 1; Table 1,
which were due to the following three factors:

1. GPS drifting
The GPS device adopted in this research was designed for general commercial purposes, with

couple meters measuring error. This GPS drifting may be easily fixed with higher-level equipment,
such as that of a real-time, kinematic GPS.

2. Pavement condition
The paths programmed by the system were generated based on a smooth ground surface for car

operation. But in fact, there some unexpected surface conditions, like tiny pebbles on the pavement
that may have caused an offset to the route.

3. Offset of steering center
The steering mounted on the robot car consisted of a servo motor and a steering mechanism; this

unit may have been offset while it was traveling among target points during a long run. This offset
might have somehow led to the car moving off the path, and thus resulted in a few minor errors at the
end. In this research, we tried to minimize the effect of this factor by regularly correcting the steering.

Electronics 2020, 9, 534 17 of 18

In terms of the case that set the maximum distance limit at 170 m, since the longest path was
164.7 m (which was very close to the maximum distance limit), the robot car could run and exceed
the limit as long as any error occurred. For example, the car with a maximum error of 6.8% in this
experiment was obviously not able to complete the task. Thus, reserving 10% as an allowance margin
when setting the maximum distance limit is recommended (maximum distance limit: 10%).

6. Conclusions

In this research, a hybrid 2TS+2OPT algorithm with limited range constraints for the path
programming of multiple robot vehicles was successfully developed. This innovative algorithm is
superior in both better path optimization and shorter CPU time, compared to other mTSP algorithm
solutions. In the last stage of this research, a general scenario was presented to show the whole process
of the multi-robot mission planning, in which three robots were deployed in a field to complete a
series of wide area multi-waypoint tasks which were far beyond a single car’s endurance capabilities.
Those tests validated that the algorithm can successfully optimize robots’ routes to visit assigned target
points within their range limitations.

In real-world, unmanned vehicles practices, optimized paths based on onboard energy capacity
(fuel or battery) constraints are critical to multiple-agent system applications of this type, including
large area multi-points surveillance exercises, robot swarm deliveries, multi-drone attacks, and so on.
This research could contribute to those types of instances.

Author Contributions: Conceptualization, M.-T.L.; Formal analysis, B.-Y.C., M.-T.L. and Y.-C.L.; Methodology,
M.-T.L.; Project administration, M.-T.L.; Software, B.-Y.C. and M.-T.L.; Writing—original draft, B.-Y.C. and M.-T.L.;
Writing—review & editing, M.-T.L. and Y.-C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan (ROC), under grant
number MOST-107-EPA-F-010-001.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luan, Y.; Xue, H.; Song, B. The Simulation of the Human-Machine Partnership in UCAV Operation.
In Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorage, AK, USA,
14–19 September 2008.

2. Cai, B. Path Programming for Autonomous Unmanned Vehicle System. Bachelor’s Thesis, National Formosa
University (NFU), Huwei, Taiwan, 2015.

3. Atanasov, N.; Ny, J.L.; Daniilidis, K.; Pappas, G.J. Decentralized Active Information Acquisition: Theory and
Application to Multi-robot SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4775–4782.

4. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Hitchhiking Robots: A Collaborative Approach for
Efficient Multi-Robot Navigation in Indoor Environments. Sensors 2017, 17, 1878. [CrossRef] [PubMed]

5. Maity, D.S.; Goswami, S. Multipath Data Transmission with Minimization of Congestion Using Ant Colony
Optimization for mTSP and Total Queue Length. IJLRST 2013, 2, 109–114.

6. Sariel-Talay, S.; Balch, T.R.; Erdogan, N. Multiple Traveling Robot Problem: A Solution Based on Dynamic
Task Selection and Robust Execution. IEEE/ASME Trans. Mechatron. 2009, 14, 198–206. [CrossRef]

7. Ahmadvand, M.; Yousefikhoshbakht, M.; Mahmoodi Darani, N. Solving the Traveling Salesman Problem by
an Efficient Hybrid Metaheuristic Algorithm. JACR 2012, 3, 75–84.

8. Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired
by Imperialistic Competition. In Proceedings of the IEEE CEC 2007, Singapore, 25–28 September 2007.

9. Larki, H.; Yousefikhoshbakht, M. Solving the Multiple Traveling Salesman Problem by a Novel Metaheuristic
Algorithm. JOIE 2014, 16, 55–63.

10. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents.
IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s17081878
http://www.ncbi.nlm.nih.gov/pubmed/28809803
http://dx.doi.org/10.1109/TMECH.2009.2014157
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004

Electronics 2020, 9, 534 18 of 18

11. Yousefikhoshbakht, M.; Didehvar, F.; Rahmati, F. Modification of the Ant Colony Optimization for Solving
the Multiple Traveling Salesman Problem. ROMJIST 2013, 16, 65–80.

12. Necula, R.; Breaban, M.; Raschip, M. Performance Evaluation of Ant Colony System for the Single-Depot
Multiple Traveling Salesman Problem. In Proceedings of the 10th International Conference on Hybrid
Artificial Intelligence Systems, Bilbao, Spain, 22–24 June 2015; pp. 257–268.

13. Xu, M.; Li, S.; Guo, J. Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing
Genetic Algorithm. MATEC Web Conf. 2017. [CrossRef]

14. Côté, J.F.; Potvin, J.Y. A Tabu Search Heuristic for the Vehicle Routing Problem with Private Fleet and
Common Carrier. EJOR 2009, 198, 464–469. [CrossRef]

15. Liao, T.; Huang, W. A Study of Dynamic Logistics Based on Two-Phased Method. IJAIT 2008, 2, 76–94.
16. Lin, W.; Cheng, F.; Tsay, M. An Improved Tabu Search for Economic Dispatch with Multiple Minima.

IEEE Trans. Power Syst. 2002, 17, 108–112. [CrossRef]
17. Bektas, T. The Multiple Traveling Salesman Problem: An Overview of Formulations and Solution Procedures.

Omega 2006, 34, 209–219. [CrossRef]
18. Hung, F. Vehicle Routing Problem of Integrated Supply Medical Materials in Strategic Alliance Hospitals—A

Study of One Medical Center. Master’s Thesis, National Yunlin University of Science and Technology, Yunlin,
Taiwan, 2004; p. 15, Unpublished.

19. Lin, S. Computer Solutions of the Traveling Salesman Problem. BSTJ 1965, 44, 2245–2269. [CrossRef]
20. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot Task Allocation: A Review of the State-of-the-Art, Cooperative

Robots and Sensor Networks 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 31–51.
21. Balch, T.R. Social Entropy: A New Metric for Learning Multi-Robot Teams. In Proceedings of the 10th

International FLAIRS Conference (FLAIRS-97), Daytona, FL, USA, 11–14 May 1997.
22. Lai, L.; Hsieh, Y. The Research in Real-time Dynamic Path Programming for Multiple Autonomous Ground

Vehicle Mission. Bachelor’s Thesis, National Formosa University (NFU), Huwei, Taiwan, 2016.
23. Tang, T.; Liu, J. Multiple Traveling Salesman Problem Model for Hot Rolling Scheduling in Shanghai Baoshan

Iron & Steel Complex. EJOR 2000, 24, 267–282.
24. Junjie, P.; Dingwei, W. An Ant Colony Optimization Algorithm for Multiple Traveling Salesman Problem.

In Proceedings of the First International Conference on Innovative Computing, Information and Control
(ICICIC ‘06), Beijing, China, 30 August–1 September 2006; pp. 210–213.

25. Yousefikhoshbakht, M.; Sedighpour, M. A Combination of Sweep Algorithm and Elite Ant Colony
Optimization for Solving the Multiple Traveling Salesman Problem. P. Pomanian. Acad. A 2012, 13,
295–302.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1051/matecconf/201710002025
http://dx.doi.org/10.1016/j.ejor.2008.09.009
http://dx.doi.org/10.1109/59.982200
http://dx.doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Design of the Two-Phase Path Programming
	Tabu Search
	2-opt Swap Method
	Establishment of the Initial Solution
	Use of Tabu Search to Program a Single Path
	Path Split

	Improvement of Path to Obtain an Optimal Solution
	Modified Tabu Search for Improving Cross-Route Switch
	Diversification Strategy
	Improvements for Each Single Path

	Experimental Vehicle and System Architecture
	System Architecture
	Experimental Vehicle

	Tests and Results
	Convergence Test
	Bench Test
	Field Test with Multiple Robot Cars
	Maximum Distance Limit = 170 m
	Maximum Distance Limit = 164 m

	Discussion

	Conclusions
	References

