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Abstract: Internet of Things (IoT) forms the foundation of next generation infrastructures, enabling
development of future cities that are inherently sustainable. Intrusion detection for such paradigms
is a non-trivial challenge which has attracted further significance due to extraordinary growth in
the volume and variety of security threats for such systems. However, due to unique characteristics
of such systems i.e., battery power, bandwidth and processor overheads and network dynamics,
intrusion detection for IoT is a challenge, which requires taking into account the trade-off between
detection accuracy and performance overheads. In this context, we are focused at highlighting
this trade-off and its significance to achieve effective intrusion detection for IoT. Specifically, this
paper presents a comprehensive study of existing intrusion detection systems for IoT systems in
three aspects: computational overhead, energy consumption and privacy implications. Through
extensive study of existing intrusion detection approaches, we have identified open challenges to
achieve effective intrusion detection for IoT infrastructures. These include resource constraints, attack
complexity, experimentation rigor and unavailability of relevant security data. Further, this paper is
envisaged to highlight contributions and limitations of the state-of-the-art within intrusion detection
for IoT, and aid the research community to advance it by identifying significant research directions.

Keywords: internet of things; security and privacy; intrusion detection; performance evaluation;
computation and energy overhead

1. Introduction

Cyber-Physical Systems (CPSs) are typically highly interconnected systems which are integrated
to deliver novel functionalities in diverse disciplines such as healthcare, manufacturing, defence and
energy [1]. Evolution of technologies such as 5G, artificial intelligence, and Internet of Things (IoT) has
a profound role in this. These advancements have led to development of emerging paradigms such as
smart cities, smart grids, and smart factories, which have contributed towards improving the overall
quality of life in an efficient and cost-effective manner. Although this is still an emerging area, a number
of early applications have demonstrated potential benefits of adopting this technological paradigm.
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For instance, smart grids enable improved management and maintenance of a country’s electric grid in
a cost effective manner by incorporating smart elements throughout the power generation, distribution
and consumption chain. The evolution of smart cities and the role of CPS in this development is
underpinned by IoT which are critical in realizing the next generation of infrastructures to develop
technological solutions in a sustainable manner. Within this context, the ability of smart devices to
communicate using internet connectivity is of fundamental significance, which has enabled IoT to
achieve connected infrastructures.

However, the open network architecture of IoT has also attracted a significant increase in malicious
threats for smart infrastructures as identified by [2]. Furthermore, a recent study by Gartner [3] has
predicted IoT-based attacks to form 25% of all enterprise attacks by 2020, highlighting the need for
distinct protection mechanisms. Due to the proliferation of such devices in almost every aspect of our
life, the threats posed due to their insufficient security are unique, as insecure devices expose end users
to serious security and privacy threats. For instance, if an attacker is able to compromise an in-car
WiFi; in-car devices and data will be at risk. Once inside the car’s network, an attacker can spoof the
car, connect to outside data sources, and steal the owner’s personal information including credit card
data [4].

In view of such emerging threats, the need to address security challenges for infrastructures
underpinning smart cities is paramount [5]. There have been a number of efforts to address
different dimensions of security for IoT such as secure frameworks [6,7], privacy of information [8],
and authentication [9]. However, the challenge in the design of an effective secure system is two-fold:
firstly, the devices which form these systems are typically resource-constrained limiting their ability
to implement sophisticated security management system to monitor device activities in real time;
secondly, the ad-hoc nature of IoT systems allows devices to connect to other devices at run-time,
typically for short time periods, thereby creating a collaborative network. Therefore, efforts to address
security challenges for IoT systems should take into account these factors to ensure effectiveness
and applicability.

Intrusion detection system (IDS) is one of the fundamental components of a typical security
architecture, which provides visibility into the activities of a system, enabling timely detection
and response to any undesired events. An IDS can be categorized into the following main
approaches: misuse/signature-based detection systems, behavioural or anomaly-based detection,
specification-based intrusion detection, and hybrid intrusion detection systems [10–12]. Moreover,
intrusion detection can be performed at the network or host level typically driven by the security
policy of the monitored system. In recent years, IDSs for IoT have received increased attention with a
number of notable efforts such as [13–16]. Within this context, the focus of our research is to investigate
novel challenges to achieve efficient intrusion detection for IoT systems and explore potential solutions
to address them. In particular, we emphasize the challenge of intrusion detection efficiency with
respect to performance metrics such as CPU, energy and bandwidth utilization, and the trade-off
with measures, such as detection accuracy, false positives and false negatives. This paper presents
outcomes of our study of the state-of-the-art with respect to intrusion detection within IoT, identifying
limitations of current approaches and highlighting future directions.

Scope of Survey and Contributions

Our research has identified existing efforts to study the state-of-the-art for intrusion detection
within IoT systems with [17–19] being the most notable efforts. Although these efforts present a
structured analysis of existing literature within IoT intrusion detection domain, these share a significant
limitation in being agnostic of the performance overhead and privacy implications. For instance, using
the interaction ability proposed by Gendreau et al. [17], Jun and Chi [20] scores high (three) indicating
its efficiency to protect an IoT system. However, a deeper analysis of the system highlights that it is
remarkably CPU intensive, which will affect its suitability for an IoT system. A detailed analysis of
existing studies into intrusion detection for IoT is presented in Section 2. In view of these limitations,
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we undertake rigorous analysis of the intrusion detection systems taking into account a number of
performance metrics to present an exhaustive evaluation of existing approaches for intrusion detection
in IoT systems.

In view of the limitations of existing studies, this paper makes the following contributions:

• A comprehensive attack model for IoT systems is presented that is envisaged to inform the
state-of-the-art for intrusion detection within IoT. The attack model comprises of threats across
different dimensions of an IoT system aiming to aid improved classification.

• An extensive review of intrusion detection literature for IoT is conducted highlighting their
performance with respect to critical attributes such as CPU and memory overheads, and privacy
implications. As detailed in Section 2, existing studies have ignored these attributes while
analysing the state-of-the-art.

• Identification of open challenges to achieve effective intrusion detection for IoT systems. These
challenges include resource constraints, attack complexity, experimentation rigor and unavailability
of relevant security data. This is informed by extensive review and analysis of existing intrusion
detection research within IoT systems, and highlights significant research directions.

The rest of the paper is organized as follows: Section 2 includes a detailed discussion about
the existing surveys of intrusion detection research within IoT highlighting unanswered questions.
Section 3 introduces a comprehensive attack model for IoT systems. Extensive review of existing
literature within intrusion detection for IoT is presented in Section 4 which is organized into different
types of IDS and therefore provides a linkage with classification introduced in Section 3. Section 5
presents privacy implications of intrusion detection systems followed by Section 6, which provides a
thorough analysis of the existing literature with respect to a number of attributes including intrusion
detection and performance efficiency. Through the findings of our research, Section 7 discusses open
challenges which require further attention followed by conclusions and future aims of our research
in Section 8.

2. Existing Surveys of Intrusion Detection for IoT

With the evolution of IoT and its application, the volume and variety of attacks for such
systems have increased requiring dedicated efforts to investigate intrusion detection systems for
IoT systems. Furthermore, IoT paradigm shares similarities with concepts, such as Mobile Adhoc
Networks (MANETs) and Wireless Sensor Networks (WSNs). Consequently, a number of studies
have been performed to review the state-of-the-art within intrusion detection for these paradigms.
For instance, Mishra et al. [21–23] presented state-of-the-art with respect to IDS for the MANETs,
whereas Abduvaliyev et al. [24,25] have reviewed existing IDSs for WSNs. However, our focus in this
paper is solely on the intrusion detection approaches for the IoT system taking into account the unique
characteristics of this paradigm.

Our research has identified [17–19,26] as existing efforts to review literature related to intrusion
detection for IoT. A comprehensive analysis of these surveys is discussed below and summarized in
Table 1, which also highlights limitation of these efforts to take into account performance overheads of
existing intrusion detection approaches for IoT.
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Table 1. Comparison of this study with existing reviews of intrusion detection systems (IDSs) for
Internet of Things (IoT).

Survey ID Detection Approaches Review Criteria Performance Efficiency
Considered

Gendreau et al. [17] Rule and Anomaly-based Holistic Detection Intelligence No

Zarpelao et al. [18] Anomaly, Signature and
Hyrbid

Security Threats and
Validation Strategies No

Chaabouni et al. [19] Network-based IDS Threats, Placement, Validation
Strategies No

Kiennert et al. [26] Game Theory-based IDS TPR, FPR, FNR, TNR No

This Study Anomaly, Signature,
Specification and Hybrid

Security and Performance
Metrics Yes

Gendreau et al. [17] defined a term called Interaction Ability of an IDS to assess the level of holistic
detection intelligence. This parameter is defined as the ability of an IDS to interact with different
service layers within the system i.e., Network Interface, Internet, Transport and Application layers
with maximum achievable interaction ability score as four. Authors have attempted to review seven
recent intrusion detection systems against the interaction ability metric to identify respective efficiency.
Although interaction ability is a useful indicator, however, we believe the IoT intrusion detection
landscape requires rigorous analysis of existing efforts. For instance, one of the unique features of IoT
systems is their resource constraints and interaction ability is agnostic of this significant characteristic.
For instance, although Jun and Chi [20] scores high (three) for interaction ability, indicating its efficiency
to protect a IoT system however, a deeper analysis of the system highlights that it is remarkably CPU
intensive which will affect its suitability for a typical IoT system.

Zarpelao et al. [18] presented a recent survey of IDS research efforts for IoT aiming to identify
leading trends, open issues, and future research possibilities. The authors classified existing intrusion
detection efforts based on detection method, IDS placement strategy, security threat and validation
strategy. Although the authors present a comprehensive system to analyze existing intrusion detection
efforts, however, similar to [17], this effort is agnostic of the performance overhead of intrusion
detection systems. Chaabouni et al. [19] presented a multidimensional review of efforts to achieve
effective network-based IDS (NIDS) for IoT. The study is significant as it presents a comparative review
of existing NIDS tools and datasets available, which can help IoT security practitioners to evaluate
different tools available. Furthermore, the authors have presented a brief review of select academic
efforts for NIDS however the review is focused on security characteristics of these systems with limited
coverage of literature and performance metrics.

In addition to the above, Kiennert et al. [26] studied game-theoretic approaches to intrusion
detection within IoT systems, highlighting limitations of using game theory and Markov decision
processes to perform effective intrusion detection. Authors conducted a comparative study of existing
intrusion detection approaches analyzing metrics, such as true positive, false positive, true negative
and false negative to assess the performance of the individual schemes. As with the other studies
discussed earlier, authors do not take into account the performance characteristics of intrusion detection
systems and therefore do not address the gap highlighted in this paper.

In summary, although existing surveys of intrusion detection for IoT highlight advancements
and open challenges, these do not consider performance efficiency of IDS for IoT which is significant
due to limited resources for these devices, such as CPU, memory, storage, bandwidth and battery.
This paper is focused at addressing this gap and presents a thorough analysis of existing IDS efforts
for IoT taking into consideration performance metrics, such as energy consumption, RAM, and CPU
usage for these efforts.
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3. Security Threats for IoT Systems

Although IoT is an emerging paradigm, a significant part of the software stack used by the IoT
applications is adopted from existing software paradigms. This is also evident from the concept of
integrating IoT specific stack (for instance, specific to Zigbee, 6LoWPAN and RPL) with the existing
Internet infrastructure, such as IPv4 and IPv6. This has significant implications with respect to the
attack surface for IoT infrastructures as it is not restricted to the threats specific to the new routing
protocols, such as 6LoWPAN and RPL, but also includes threats to existing infrastructure, such as
IPv6, application-specific attacks and attacks specific to the physical media, such as the radio spectrum.
We present a taxonomy of different attacks for a typical IoT system and summarize in Figure 1.

Figure 1. A taxonomy of attacks for IoT systems.

3.1. Routing-Specific Threats

Routing information in an IoT system can be modified or spoofed in order to route the traffic in a
malicious manner or to launch a further attack on the IoT network. These attacks are the most common
in resource-constrained IoT networks. The most relevant routing attacks in IoT include the following:

Rank attack: A defining characteristic of 6LoWPAN networks is the use of ranking to establish
an optimal routing path. Within this context, Node Rank indicates the quality of the path from a node
to the sink node. Every time a node updates its rank or preferred parent, it is required to inform other
nodes by sending the updated information in the next Directed Acyclic Graph (DAG) Information
Object (DIO). RPL uses the Rank rule i.e., a node in the parent should always have lower rank than its
children to prevent the loop creation. In this way, the rank enables creating optimal topology, preventing
loop creation and managing control overhead [27]. As identified by [27–29] the rank information can
be maliciously tampered with by an attacker such that it chooses the node with worst rank to be its
parent. This will therefore result in disturbing the topology of the network, thereby causing delays in
normal transmission.

Wormhole attack:A wormhole can be considered as a tunnel between two nodes using wired or
wireless links and can be used to achieve faster transmission rates or dedicated connection between
such nodes. As such, the wormhole has legitimate applications, such as the connection between the
local and global IDS modules within our architecture. However, the wormhole can be used by an
attacker to create a dedicated tunnel with a node on the Internet as identified by [30]. Wormhole attack
is not novel to the IoT systems and has been historically identified as a potential threat for wireless
sensor networks by [31–33].

Sinkhole attack: The objective of a sinkhole attack is to attract traffic through a designated node
using illegitimate information making the node a lucrative routing sink (base station within a wireless
network). As with the wormhole attack, literature around the sinkhole attack is well established
with [34] being an initial effort to identify and mitigate against such attack. Creating a sinkhole does
not necessarily disrupt legitimate transmission within a 6LoWPAN, however, by diverting the traffic
through a specific route creates opportunities to launch other attacks, such as wormhole and selective
forwarding attack described below.
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Selective forwarding attack: With a selective forwarding attack, a malicious node attempts to
disrupt legitimate transmission and routing path. The malicious node in this case attempts to block
certain packets and forward selected packets, thereby affecting the routing to fulfil malicious objectives.
For instance, an attacker can forward all RPL control messages but block the remaining messages [30].
As can be inferred, this attack can cause more damage when used in conjunction with the sinkhole
attack. Consequently, such dependencies among different attack types has motivated us to explore
the impact of multi-stage attacks within IoT infrastructures with our initial efforts in this respect
presented in [35].

Fragment duplication attack: The fragment duplication attack leverages a weakness within the
6LoWPAN layer with respect to how fragmented packets are received and assembled by an IoT node.
Due to the integration of 6LoWPAN with IPv6 networks, larger packets supported by IPv6 have to be
fragmented into smaller packets so as to be effectively processed by the resource-constrained nodes
within an IoT system. However, as identified by [36], a recipient node cannot verify if two fragments
of a packet were sent by the same source, therefore the recipient node is unable to distinguish between
legitimate and spoofed fragments. A malicious node can exploit this vulnerability to block reassembly
of targeted packets, such as connection establishment packets. This may result in disrupting legitimate
traffic as well as consuming resources available to the victim node.

Buffer reservation attack: The buffer reservation attack is closely linked to the fragment
duplication attack and may be caused as a consequence of a successful fragment duplication attack.
The buffer reservation attack also targets the vulnerability in the fragmentation mechanism employed
by 6LoWPAN networks. As identified by [36], it leverages the fact that the recipient of a fragmented
packet is unable to determine if all fragments will be received correctly. Therefore, a recipient
node reserves a buffer space based on the information provided in the 6LoWPAN header with any
additional fragments discarded. Taking advantage of this setting, a malicious node can send a
victim a single FRAG1 to reserve arbitrary buffer space thereby consuming scarce memory of the
resource-constrained node.

Sybil and clone ID attack: Sybil and Clone ID attacks are similar in that the objective of the
attacker is to use spoofed logical identities within a network without deploying physical devices.
In particular, for a Clone ID attack, an attacker aims to use a victim’s logical identity within the
network whereas in Sybil attack, the attacker aims to assume multiple logical identities within a
network without deploying physical nodes. These logical identities may not be currently present in
the network. A number of existing efforts, such as Wallgren et al. [30,34] have identified these attacks
for IoT and historically for wireless sensor networks.

3.2. Application Specific Threats

Although routing forms an essential component of the IoT system, the IoT devices are expected to
host application software required by the function envisaged to be performed, such as temperature
monitoring and supply chain management. Being software applications, these can introduce additional
vulnerabilities to the overall attack surface for an IoT system. We categorize these threats as
application-specific and present them below.

Denial of Service attack: Historically, Denial of Service (DoS) attacks are targeted at making
the victim unavailable for legitimate service. This can be achieved by flooding the victim
with extraordinarily large volume of requests or by exhausting resources, such as memory and
computational power available to the victim. Within IoT, the threat of a DoS attack is two-fold; the
victim can be part of the network under threat that an attacker wishes to make unavailable, or the
victim can be used as a zombie to launch a Distributed DoS (DDoS) on a target IoT network. In this
context, Botnet attacks targeting IoT devices have recently attracted significant attention with Mirai [37]
the pioneer of Botnet attack. The significance of these threats within IoT systems has been identified
by [38–40].
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Malicious code injection: As identified by [39,41], malicious code injection is another
application-specific threat to IoT systems. The attacker, in this case, attempts to inject malicious code
to get privileged access to the victim. Consequently, the attacker can damage the normal operation by
causing threat to the data or to the network using one of the routing specific attacks described in the
previous section.

3.3. Traditional Attacks

In addition to the above mentioned attacks, IoT systems are vulnerable to the existing attacks
targeted at computer systems, such as message interception, fabrication, modification, subversion
and phishing. As with the routing-specific attacks, these attacks can also form a part of a more
complicated/sophisticated attack and therefore require efforts to protect against them.

4. State-of-the-Art in IDS for IoT

In order to analyze the state-of-the-art within intrusion detection for IoT, we have conducted
extensive study of existing efforts using prominent databases such as Google Scholar, IEEE Xplore
and ACM library to scout relevant articles. In order to filter articles not related to our study, we used
keywords such as Internet of Things AND Intrusion Detection and IoT AND Intrusion Detection enabling
us to focus on articles within the IoT paradigm. Further, our research identified an overlap in literature
between IoT and Wireless Sensor Networks (WSNs) however we have included articles which are
focused at addressing intrusion detection challenges for IoT. This has enabled our study to retain focus
on challenges and advancements within intrusion detection for IoT.

Although there have been efforts to study literature for intrusion detection within IoT as presented
in Section 2, this study is focused at highlighting the performance overheads and privacy implications
of existing approaches. Within this context, this section presents review of contemporary intrusion
detection approaches for IoT to achieve this objective.

Furthermore, intrusion detection research can be categorized into: Anomaly, Signature,
Specification, Hybrid, and Game-based models. Therefore, we present review of existing efforts
using these categorization. In doing so, we summarize leading efforts for each category of intrusion
detection which can indicate the cutting-edge within that domain. A graphical representation of this
categorization is also presented in Figure 2.
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Figure 2. Categorization of IDS for IoT systems.

4.1. Anomaly-Based Approaches to Intrusion Detection

With the notable advancements within the domains of artificial intelligence, machine learning
and deep learning, anomaly-based approaches have been increasingly used for intrusion detection
in general and for IoT in particular. Nobakht et al. [42] proposed a host-based IDS using Software
Defined Technology (SDN) for smart homes. The authors have defined three basic requirements for an
efficient IDS for IoT i.e., unobtrusive approach, negligible overheads, and scalability. The proposed
approach uses sensors to host the intrusion detection module, which is envisioned to monitor network
traffic visible at an IoT device. The detection can be performed using a choice of detection modules
i.e., signature, anomaly or specification-based techniques. The authors claim that hosting the intrusion
detection module within an IoT device reduces the communication overhead, however, it increases the
processing overhead at the IoT device, which is critical for such low powered devices.

Chordia and Gupta [43] proposed an anomaly-based IDS aiming to reduce false alarm rates and
increase detection efficiency using data mining techniques. The proposed system aims to monitor
network traffic and uses techniques, such as K-NN, K-Means and Decision Table Majority Rule-based
scheme focusing on U2R, R2R ,DoS and Probe attacks. The authors have used a KDD 99 dataset to
evaluate the effectiveness of the approach, which highlights the unavailability of security events data
from an IoT system to aid more rigorous and proportionate evaluation of IDS systems for IoT.
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Khan and Herrmann [44] proposed intrusion detection for IoT via a trust management mechanism
that collects information about neighboring devices and their reputation. The authors investigated
patterns of normal use for the RPL protocol using these to devise trust among the IoT devices and the
edge routers. The trust management algorithms devised as part of this approach aim to develop trust
and reputation values, which are used to protect against routing-specific attacks, such as sinkhole,
selective forwarding and version number. Similarly, Thanigaivelan et al. [45] proposed a distributed
IDS where each node monitors the working of nearby nodes for any abnormal activity. If some
abnormality is detected, its packets are blocked and problem is reported to the parent node or root
node by Distress Propagation Object (DPO). The system has three subsystems i.e., Monitoring and
Grading Subsystem (MGSS), Reporting Subsystem (RSS) and Isolated Subsystem (ISS), which enable
collaboration between an IoT device and edge router to facilitate IoT threat detection effectively.

Zhang et al. [46] proposed a hierarchical and distributed IDS (SGDIDS) that is focused at protection
against Cyber-Physical attacks for smart grids systems. The proposed system leverages classification
algorithms, such as support vector machine (SVM) and artificial immune system (AIS) in order to
determine occurrence of an attack, its type and its origin in the communication system. The SGDIDS
shares some similarities with a typical IoT network in that an IoT network can be divided into two
levels i.e., IoT devices and the edge routers with the possibility to adopt SGDIDS approach for a
hierarchical IDS. Furthermore, the attack surface for smart grids overlaps significantly with that for a
typical IoT network therefore the results of this research are relevant within a generic IDS for IoT.

Pajouh et al. [14] presented a network anomaly-based model for intrusion detection and two
tier classification model, which is proposed to be used in IoT backbone networks. The authors have
focused on two specific attack types i.e., User to Root (U2R) and Root to Local (R2L) demonstrating
high detection accuracy with low false positive rates primarily due to introduction of a refinement
feature and decreased computational complications. The authors have used both supervised and
unsupervised reduction techniques, such as Linear Discriminant Analysis (LDA) (supervised) and
Principal Component Analysis (PCA) (unsupervised), where PCA is used for feature selection and
extraction, and LDA provides fast and efficient IDS. Summerville et al. [47] presented a deep packet
anomaly detection system involving feature selection conducted by pattern matching. The authors
focused on two Internet-enabled devices i.e., a weather station and an interactive networked video
camera, which simulated a sensor and actuator respectively. The evaluation of the approach
demonstrated that the sensor was able to detect 99.9% of abnormal packets whereas the IoT actuator
demonstrated 92.9% detection accuracy.

A user-centric approach is proposed by Tamani and Ghamri-Doudane [48] consisting of two
major blocks i.e., a habit-based approach for anomaly detection system and semantic-based firewall
for access control and security during communication. The authors consider use of IoT devices within
a private setting, such as home networks with devices, including a wrist bracelet, a connected light
bulb and a smart TV to model various user behaviours. Within this context, the authors focus on
the personal data collected and communicated by the devices. The authors do not discuss details of
the detection accuracy, performance efficiency, visibility for the intrusion detection and its placement.
Yang et al. [49] propose using a Bayesian Spatial Temporal (HBST) model to achieve effective and
timely detection of a compromised node at an early stage. The system achieves high detection rate and
low false positives rates with low detection samples.

As with other domains of computer and information security, recent efforts for intrusion detection
have also attempted to leverage advancements in machine learning and artificial intelligence to
improve efficiency and accuracy of the detection process. In this regard, Meidan et al. [50] present one
of the first efforts focusing on protection against the IoT botnets which are one of the emerging threats
for IoT systems. The authors use deep learning autoencoders to establish an anomaly detection engine
which is evaluated against two major botnets i.e., Mirai and BASHLITE. With respect to placement of
the IDS, authors use a hybrid approach where by a central unit coordinates with device level encoders
(each encoder is responsible for profiling individual IoT device).
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Similarly, McDermott et al. [51] use deep learning to achieve effective detection of IoT botnets.
Furthermore, both approaches are similar in that they use patterns within network traffic to discover
anomalous behavior representing infection caused by botnets. In terms of placement of the intrusion
detection system, the authors have adopted a network-based approach employing deep packet
inspection techniques. Moreover, Pandu et al. [52] presented an effort to achieve efficient intrusion
detection and prevention for IoT systems. Authors have proposed an integrated system for detection
and response with specific attention on directing attacks, such as hi surge, sinkhole and wormhole
attacks. Although the proposed system has been implemented with Contiki, evaluation results
especially with respect to performance efficiency are not available.

4.2. Signature-Based Approaches to Intrusion Detection

Signature-based techniques for intrusion detection are well-established especially for conventional
computing systems. However, one of the critical factors for effectiveness of such schemes is the
availability of trustworthy dataset simulating patterns/signatures of misuse, which has proved to be
a challenge for IoT systems. In this respect, Kasinathan et al. [53] presented an IDS framework for
6LoWPAN focusing on detecting denial of service attacks by monitoring physical parameters of the
device. The proposed IDS leverages existing IDS (Surricata) and monitors network traffic for both
signatures and abnormal behaviour to identify malicious users to detect flooding attacks with an
increased detection rate.

Forzin et al. [54] propose leveraging Snort, a contemporary signature-based NIDS, to establish
a portable, easy-to-use intrusion detection for IoT networks. The resultant IDS is packaged within
a Raspberry Pi so it can be transported with the device, enabling it to work in collaboration to
achieve detection of sophisticated attacks, such as those targeting network topology. Under this
setup, an IDS node can request data captured by neighboring nodes to perform rigorous analysis and
reduce false positives. In view of the increasing threats for IoT systems with respect to volume and
sophistication, this observation will be crucial to an effective intrusion detection for IoT systems. Indre
and Lemnaru [55] propose a modular architecture for intrusion detection, which utilizes detection
techniques, such as signature, anomaly and specification-based systems with network traffic to achieve
effective detection. In particular, signature-based detection uses rules based on packet headers whereas
anomaly-based detection aims to identify abnormal data patterns, and specification-based detection
focuses on botnet detection. However, the proposed approach envisages intrusion detection at the
edge router level which compromises the visibility of the system.

4.3. Game-Based Approaches to Intrusion Detection

Wang et al. [56] proposed an attack-defence game model to detect malicious nodes using
repeated-game approach. The authors claim to have developed a tree model, which is used to
formulate an optimal solution to the error detection problems focusing on the detection strategy and
performance overhead for individual IoT devices. This is achieved by developing a repeated game
method where attackers and defenders can alter strategies to achieve maximum pay-offs. The authors
do not discuss challenges, such as placement of the IDS module, type of the detection engine and the
level of visibility, which can contribute towards the overall effectiveness of an IDS for IoT networks.

La et al. [57] proposed a honeypot-based approach to improve defence against malicious attempts
within an IoT infrastructure. In order to strengthen the defence, authors proposed using a game
theoretic model with the defender using honeypot to deceive the attacker. The proposed system
focuses on scenarios where the attacker is not known to the defender, therefore, the system does not
take into account attempts, such as Rank Attack, which can be initiated by an insider node known to the
system. The proposed system is designed and implemented in isolation to the specific challenges and
requirements of the IoT infrastructures, such as the resource constraints, interactions between different
IoT devices and the positioning of the system. The authors presented experimentation performed
in Matlab, which models the overall concept of the system. We believe this to be a limitation, as an
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effective intrusion detection mechanism for IoT systems should ideally take into account the unique
characteristics of such systems as those explained above.

4.4. Specification-Based Approaches to Intrusion Detection

Fu et al. [58] propose an IDS for Internet of Vehicles (IoV) i.e., an open and integrated network
system connecting human intelligence, vehicles, things, environments and the Internet. Authors
explain fundamental requirements for an IDS for IoV i.e., host protection via detection, constrained
resources, and real-time detection. Through our research, we have identified these characteristics
to be shared by a typical IoT system. Due to these requirements, conventional IDS is not feasible
for IoT as it incurs significant overhead with respect to required resources and processing time. Jun
and Chi [20] proposed a Complex Event Processing (CEP)-based approach to intrusion detection
for IoT is proposed with the aim to provide low latency and real time processing of security events.
Although the use of CEP for intrusion detection is not novel, it is rather innovative concept within
intrusion detection for IoT and this work can be considered as a means to assess the feasibility
of CEP within IoT. The proposed system is developed as a rule-based IDS which collects network
traffic data from the edge router, extracts events from this data and performs intrusion detection.
Although the discussion of the approach is not detailed, we believe CEP can be explored further to
address sophisticated or coordinated attacks within IoT which are a combination of simple attack steps.

Amaral et al. [59] present a network-based intrusion detection system for Internet-connected
WSNs which share close similarities with a typical IoT network. The authors adopted a distributed
approach to their design in that the IDS is deployed as a module on randomly selected devices called
watchdogs over a WSN, reporting to a centralised Event Management System (EMS). Although the
IDS module is deployed on individual devices, it only monitors network traffic visible at the node.
However, as the watchdogs devices are heterogeneous in location and function, this may have an
impact on the types of threats encountered at a specific device. Therefore, each watchdog device is
pre-configured with custom monitoring rules, which are designed to detect specific threats expected
to be encountered by a device. We believe that the distributed approach adopted by the authors is
symmetric with the inherent characteristics of a typical IoT network, however, the role of EMS is
limited to information collection limiting its ability to monitor the overall state of a network and to
detect coordinated attacks.

Le et al. [60] presented one of the early efforts to establish an IDS for IoT where authors proposed
a host-based IDS for LoWPANs using Contiki OS and 6LowPAN [61,62]. The proposed IDS is able to
perform detection based on the information at the node-level which is transmitted to a centralized
system for further analysis. The proposed system limits detection to events monitored at the individual
devices and does not demonstrate effective detection under DDoS attacks, which not only overwhelm
the device but also congest the communication channel between nodes and the centralized system.

Mudgerikar et al. [63] is one of the recent attempts to achieve intrusion detection for IoT where
authors present an interesting approach which is similar to COLIDE project [16,35] in that both advocate
collaboration between sensor and edge devices to achieve effective intrusion detection. Authors have
presented details of their implementation of the host component, which performs behavioral analysis
to identify malicious attempts represented by the system calls executed by processes within a device.
Although authors recognize the significance of performance costs for IoT devices, the evaluation
reports performance in terms of computational costs, which does not provide in-depth insight into the
performance efficiency of the proposed scheme. Sharma et al. [64] has proposed a specification-based
approach for IoT intrusion detection aiming to protect against zero-day attacks. The authors argue
that by using a specification-based approach, the proposed IDS achieves higher detection accuracy as
well as performance efficiency (memory and communication overhead) whilst achieving protection
against previously unknown attacks. Although the authors have presented detailed analysis of their
approach as well as performance with respect to detection accuracy, FPR and FNR, however, they have
not included metrics to demonstrate performance efficiency of the proposed IDS.
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4.5. Hybrid Approaches to Intrusion Detection

In addition to the approaches discussed earlier, current literature in this domain also includes
efforts which combine multiple different approaches to achieve effective detection. In this respect,
Midi et al. [13] proposed a self-adapting, Knowledge-driven Expert Intrusion Detection System
(KALIS) which can improve its performance after evaluating its efficiency. It is focused on network
features and its protocols to improve detection efficiency. KALIS automatically collects the information
about the features and configures most suitable detection technique. All the KALIS components
run independently with support for a wide variety of mediums and related protocols. The attacks
considered by KALIS are variants of DoS attacks i.e., ICMP Flood and SMURF which produce similar
symptoms i.e., high amount of ICMP Echo Reply Messages directed to affect the machine.

Sedjelmaci et al. [65] proposed a hybrid approach for intrusion detection within IoT, which
combines signature and anomaly-based techniques to achieve effective detection. The authors adopt
a game theoretic approach based on Nash Equilibrium (NE) to determine the equilibrium state in
which the IDS agent will activate its anomaly detection technique to train, classify and build a rule
related to a new attack’s signature. Furthermore, with respect to placement of IDS, both the signature
and anomaly-based detection systems are based on individual IoT devices. The authors explain
this decision to be motivated by the objective to reduce the communication overhead based on the
assumption that the communication overhead is more resource-hungry as compared to computational
overhead. However, this is expected to have significant computational overhead in the case of zero
day attacks. Furthermore, the proposed system is limited in its visibility to the events occurring on the
individual nodes and therefore limits its ability to effectively detect of sophisticated attacks which may
be composed of multiple steps.

Raza et al. [15] proposed Svelte which is a lightweight hybrid intrusion detection system focused
on Routing attacks, such as Spoofing, Sinkhole and Selective Forwarding. Svelte has three main
modules i.e., 6LoWPAN Mapper (6 mapper), Intrusion Detection component and Distributed Mini
Firewall. Although Svelte presents a hybrid approach, however, there are considerations that should
be taken into account. For instance, although anomaly-based intrusion detection systems have the
advantage of better detection accuracy for zero-day attacks, they are typically resource-hungry which
can be a bottleneck when implementing them on resource constrained IoT devices. Furthermore,
known attacks such as Rank attack, Sinkhole and spoofing are well established leading to an established
signature for their detection. However, attacks such as multi-stage or zero-day require analysis
from a wider perspective, analyzing behavioral and usage patterns which makes a case for using
anomaly-based IDS. Therefore, an IDS for IoT should take these factors into consideration when
making choices, such as the type of IDS, placement and the visibility of the data.

Arshad et al. [66] present a recent effort to address intrusion detection for IoT systems particularly
focusing at the constrained resources available at the IoT devices. The authors presented a collaborative
approach where IDS modules are implemented at both device and edge-router level to improve
visibility, detection rate and to reduce false positives. The authors propose signature-based IDS at the
node level due to its performance efficiency and anomaly-based detection at the edge-router to enhance
the detection accuracy. The approach is novel in that it proposes a innovative solution to achieve high
detection accuracy whilst taking into account the limited resources available at the sensor devices.

4.6. Additional Intrusion Detection Efforts within IoT

The resource constraints in general and the limited available of power in particular are one of the
challenges for any IDS within IoT. To this end, Gendreau [67] seek to address this challenge by using
an enhanced measurement of situation awareness in the IoT. The authors highlight the importance of
awareness of state of monitoring system and propose a framework to enhance the energy efficiency
of a self-reliant management and monitoring WSN cluster head selection algorithm. Although the
experimental results demonstrate positive results for the approach, however, it is limited to assessing
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the energy efficiency for a cluster head selection algorithm and, therefore, require further efforts to
assess its impact on the monitoring capabilities of individual nodes.

In Daramas et al. [68] an enhanced and safe home based IDS HIVE is proposed having three parts
i.e., a sensor manager, firebase as a cloud database and user authentication service, and an android
application for monitoring, configuring and remote notification. The proposed system is especially
design for a smart home with focus on detecting physical intrusion into a home. HIVE aims to detect a
physical intrusion by using three sensors i.e., an infrared sensor to detect motions, a magnetic switch
sensor to detect status of a door or window and a load cell sensor to detect pressure such as footsteps.

Mayzaud et al. [69] proposed a distributed system architecture for detecting the version number
attacks in RPL-based networks and identifies malicious nodes. Furthermore, a number of intrusion
detection system architectures have been developed by Cervantes et al. [70] for resource-constrained
6LoWPAN devices-based systems focusing on the sinkhole and selective-forwarding attacks.
Golomb et al. [71] present an innovative approach, CIOTA, to intrusion detection for IoT leveraging
blockchain technology. The proposed approach is comprised of local agents and a central component
which coordinates information (alerts) received from these agents. Authors use blockchain technology
to achieve assurances about the authenticity of alerts generated by local agents.

Li et al. [72] present a network-based intrusion detection approach for IoT focusing on the task
of feature extraction for effective intrusion detection. Authors have used deep migration learning
model to develop the proposed approach and have evaluated their scheme with the KDD 1999 dataset.
Although the proposed approach demonstrates good detection accuracy as compared to existing
schemes, however, the evaluation is limited to detection accuracy, TPR and FPR and does not take
into account performance efficiency of the proposed scheme, which is a critical metric due to the
resource constraints of such devices. Similarly, Bassey et al. [73] presented one of the efforts focusing
at detection of physical layer attacks on IoT networks. In particular, authors are focused at attacks
whereby an attacker attempts to impersonate a victim IoT device through the use of Radio Frequency
(RF) trace. Authors have proposed a deep learning-based method utilizing a dataset created through
feature extraction of RF traces of similar devices to achieve device fingerprinting.

5. Privacy Implications of Intrusion Detection Systems

Intrusion detection systems are widely used to protect devices and end-users from malicious
actors. The performance of these systems often depends on the type of data and architectural setup
they use while preventing the attacker from misusing personal information of victims. The usage of
data for the intrusion detection introduces the challenges of security and privacy. Therefore, we discuss
the privacy implications of intrusion detection systems in this section.

5.1. Type of Data

Intrusion detection systems can be categorized on the basis of network data they use to detect
malicious actors. Identification of correct data type not only affects the performance of the system,
but also has an impact on the privacy of the users. For instance, if the detection system uses
IP-address to analyze the behavior of a device, it can be easily traced back to the owner of this
IP-address. The challenge in this regard is two-fold: (1) identifying the data type that provides
optimum performance in terms of detection rate, and (2) ensure protection of the privacy of the
network users. The existing intrusion detection systems use two types of data for detecting the
malicious actors i.e., (1) application layer data logs, and (2) network traces data. The first type is data
originated at the application level and is normally associated with specific type of data set. This type
of data can provide information about the device architecture and can help in fingerprinting malicious
and non-malicious devices. The second data-type is the IP traces of the network traffic and contains
much more details about the behavior of the devices. Another data type that can be used is the content
or payload of the information exchanged among devices, such as a temperature reading, a web-page,
or meta data.
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5.2. System Architecture

An intrusion detection system for IoT can operate in two modes i.e., (1) as the standalone system,
or (2) as a collaborative system. The stand-alone detection systems rely on traffic patterns observed
locally within the network domain or Internet service provider. These systems work independently
within a service provider network. The stand-alone systems do not have any information about the
behavior of its users in other domains and, therefore, can be easily circumvented by stealth techniques
and smart attacker, such as by controlling the attack traffic to one domain but target large number of
domains simultaneously. An effective intrusion detection system is envisaged to consider the collective
behaviour of nodes across different domains to facilitate developing a collaborative network.

The collaborative solutions can be grouped in two types: (1) centralized—where alert information
from the domain collaborators is reported to the the centralized system which classifies the behavior
of traffic sender by analyzing traffic patterns from multiple domains, or (2) The distributed or
decentralized settings—where alert information from each service provider is shared and processed in
a completely distributed fashion without a centralized coordinator.

The major challenge towards the design of a collaborative IDS is regarding privacy protections for
the data used for detection. The domain or Internet service provider are reluctant to share operational
data of their users with each other as it risks privacy of their customers. A centralized trusted
aggregation can overcome the problem of privacy if the centralized repository assures cooperating
domain that their provided information would not be misused and disclosed to any one. Furthermore,
use of cryptographic methods or addition of noise data can be considered to anonymize user data,
however, this is expected to substantially increase the network load and computation time.

5.3. Analysis

In this section, we analyze the privacy implications of IoT intrusion detection system for two
important features, the data type used for collaboration, and the system architecture.

Firstly, the system architecture of the detection system determines how data is transferred
by the entities in the detection systems. Standalone detection system installed on the user device
(e.g., IoT device) or installed at the edge router (entry point router to smart home or the corporate
network) operate locally by recording data from the single source, only use data from the single source,
therefore, does not have high performance accuracy. The collaborative system, however, operates
in two modes i.e., the centralized architecture [14,43,55], and the distributed architecture [47,48,56].
In the centralized setup, it is envisaged to protect the privacy and integrity of the data provided to it.
However, it may not be ideal as the attacker has to compromise only one device to breach the privacy
of all collaborators. Furthermore, the centralized system introduces the challenge of single point of
failure, which may inhibit efficient collaboration in case of failure.

The transfer of data to other parties or centralized system has a risk of privacy. In this setting,
the collaborating device can operate in four settings: (1) transfer all raw data to the centralized system
or other devices that process all the data for meaningful decision. This setting does not have any
privacy assurance as data is exposed at other entity whilst also increasing computational workload,
(2) transfer processed data for instance exchanging traffic statistics of a host or IP address, however, it
still carries privacy threat but without requiring significant additional resources, and (3) the encrypted
exchange of data. This setting assures privacy-preservation but requires extensive computation and
communication overhead for the exchange of encrypted data.

Overall, privacy is an important feature which should be guaranteed by intrusion detection
system especially within a collaborative system. However, our analysis of the existing literature reveals
that the research community has not given much attention to privacy preserving collaboration among
the IoT domains or IoT devices. This may be due to resource-constrained nature of IoT devices which
limits alert information and cryptographic processing of data due to computational overheads.
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6. Analysis of Current IDS Approaches

In order to conduct a rigorous and methodical analysis of contemporary literature presented in the
Section 4, we have applied a thorough criteria with metrics, which are significant for effective intrusion
detection for IoT. The individual element of the criteria along with a brief explanation are presented
below. The comparative analysis of existing approaches for these criteria is presented in Table 2.

• Placement: As with the contemporary computing systems, the placement of an intrusion detection
system is crucial as it determines the level of visibility it can offer to the activities within the
monitored system. For instance, a network-based IDS is limited to monitoring the network
traffic originated or destined for the monitored host and, therefore, cannot monitor any process
subversion or privilege escalation within the monitored host. This is increasingly important for IoT
systems with recent studies highlighting the lack of protection for IoT devices [74]. Furthermore,
our analysis of existing intrusion detection approaches for IoT highlights that majority of these
approaches are network-based, which restricts the depth of events visible to such systems. In view
of emerging malware, such as Botnets, visibility of system-level events, including system calls is
important to protect against such threats.

• Detection time frame: One of the important characteristic of IoT systems is the dynamic nature
of the system with the participating nodes following an adhoc pattern. Therefore, the time-frame
of detection becomes even more important with the objective to detect an attack as soon as
possible to avoid spreading infection to wider devices. Through analysis of existing literature,
we have identified that majority of existing approaches are established and evaluated within
isolated environments which has two-fold impact; (i) the implementation and evaluation does not
accurately represent an IoT environment, and (ii) experimentation results conducted in isolated,
simulated environment, such as Matlab or Contiki do not accurately simulate the challenges
encountered within a real-world IoT environment. Therefore, majority of existing approaches are
limited to offline detection which inhibits an IDS’s ability to protect against malicious threats in
timely manner.

• Detection Engine: An IDS can utilize a variety of detection engines, such as anomaly, signature
and game based as highlighted in Section 4. The choice of detection engine has two-fold impact
i.e., (i) it can affect the ability of an IDS to detect attacks, and (ii) it impacts the performance
overhead incurred by the engine. For instance, although signature-based IDS have been identified
to be resource efficient, they do not have the ability to detect zero-day attacks. Analysis of literature
presented in Section 4 and summarized in Table 2 highlights that although existing approaches
use a variety of techniques, however, it also identifies an increase in the use of artificial intelligence
and deep learning to achieve effective intrusion detection. In view of the extraordinary increase
in volume and variety of attacks for IoT systems, these developments highlight future trends and
require further advancements to fulfil the potential of these technological advancements.

• Architecture: The system architecture of an IDS specifies how the detection system carried out
its detection functions. The system architecture not only affects the detection accuracy and
performance but also affects user privacy. The standalone detection system mainly operates at
the local machine or the device thereby susceptible to extended detection time because of the
non-availability of enough data and stealthy nature of the attacker. However, a collaborative
architecture utilizes data from different sources, such as IoT devices or network devices within
the same or different organization. It can improve the detection accuracy, however, it introduces
the challenge of privacy of the data shared between the entities. Furthermore, with regards
to detection accuracy and performance, a typical IoT system is comprised of a number of IoT
devices arranged into a local network such as a LoWPAN and an edge router which manages
communication between local network and the Internet. Within this context, existing approaches
can be categorized based on the location of the IDS module with distributed referring to IDS
module implemented on IoT devices and centralized referring to IDS module implemented at
the edge router. In this context, analysis of literature highlights emergence of schemes, which
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take into account distributed nature of a typical IoT architecture through collaboration between
IoT devices and edge routers [16,35]. We believe collaborative approaches can be beneficial in
protecting against large-scale attacks, however, further work is required to enhance existing efforts
to achieve effective and timely detection.

• Performance Overhead: A typical IoT device is constrained with respect to resources available
for compute-hungry processes, such as intrusion detection. Therefore, we believe performance
overhead caused by an IDS is one of the important criterion and can be measured in the form
of energy consumption or CPU usage by the IDS. Our study of literature has highlighted that
majority of existing approaches do not take into account performance overhead whilst evaluation
effectiveness of these approaches. We believe, due to the resource-constrained nature of IoT
devices, this is an important criteria to assess effectiveness of an IDS for IoT, and therefore,
identifies a gap in literature which requires further efforts by the research community.

• Attack types: We have presented a comprehensive discussion about the potential attacks within
an IoT system supported by an attack model. These different types of attacks can be detected
at different levels (network or host) and using different approaches, such as anomaly and
signature-based. Furthermore, review of literature has also highlighted emergence of novel
attack types, such as Botnets, which exploit specific vulnerabilities within a typical IoT system,
and therefore, require further efforts to achieve effective protection mechanisms.

• Detection Performance: Detection performance represents the rate of with which an IDS can
successfully detect a malicious attempt. It is one of the fundamental attributes of an IDS as
it can be directly aligned to its effectiveness. Analysis of existing approaches summarized in
Table 2 highlights that majority of these approaches report high detection performance in terms of
detection accuracy, FPR and TPR. However, as highlighted earlier, a significant number of current
efforts are implemented and evaluated in isolated environment which do not accurately reflect a
real-world IoT environment and therefore require further efforts to address this limitation.

• Scalability: Typically, the number of devices within an IoT system is significantly higher
compared with contemporary systems. In order to address the significant number of devices
involved, the scalability of the IDS is an important criterion. As highlighted in Table 2, a number
of existing efforts have adopted a centralized approach which affects scalability of such efforts
and therefore require further work to address this limitation.
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Table 2. Comparative analysis of existing IDS approaches for IoT.

Paper Visibility Time Detection Engine Architecture Performance Overhead Attack Types Detection Performance Scalability

Nobakth et al. [42] Host Realtime Hybrid Distributed Not available Masquareding Accuracy: 94.25%,
Recall: 85.05%

Limited

Mudgerikar et al. [63] Host Offline Specification Distributed Defined as High, Medium and Low
Computational Costs Multiple IoT attacks Ranging between 79% and

100% for different modules Yes

Midi et al. [13] Network Offline Hybrid Collaborative CPU usage: 0.19%, RAM usage
(KB) = 13,978.62% ICMP Flooding, SMURF Detection Rate: 91%,

Accuracy: 100%
Yes

Fu et al. [58] Network Realtime Specification Distributed Latency: 4.12 us, power
consumption: 7.5 w

Buffer overflow, probing,
finger printing Not available Yes

Kasinathan et al. [53] Network Offline Signature Distributed Not available DoS Accuracy:100% Limited

Forzin et al. [54] Network Combined Signature Distributed CPU usage: 100% for 70 Mb/s,
RAM usage: 475 MB IP Spoofing Not available Limited

Chordia et al. [43] Network Offline Anomaly Centralised CPU usage: 49% U2R, R2L, DoS, Probe Accuracy: 95.55%, Detection
rate: 93.67%, FPR: 0.019

No

Jun et al. [20] Network Realtime Specification Centralised CPU usage: 48%, RAM usage:
684 MB, processing time: 368 ms Generic Not available No

Khan et al. [44] Network Offline Anomaly Distributed Not available
sinkhole, selective
forwarding and
version number

For 300 nodes: FNR = 26%,
FPR = 47%,
Detection Rate = 50%

Yes

Indre et al. [55] Network Offline Hybrid Centralised Not available Probing and DoS Detection Accuracy = 98.4% No

Thani. et al. [45] Network Offline Anomaly Distributed Not available Neighbouring node
discrepancy Not available Yes

Amaral et al. [59] Network Offline Specification
based Distributed Not available Signature mismatching Not available Yes

Zhang et al. [46] Network Offline Anomaly Distributed Not available DoS, U2R, R2L FPR: 0.67, 0.7 and 1.3. FNR:
2.15%, 21.02%, 26.32%

Yes

Haddad et al. [14] Network Offline Anomaly Centralised Not available U2R and R2L Detection accuracy: 81.97%
and FPR: 5.44%

No

Summ. et al. [47] Network Offline Anomaly Distributed Not available
Worm propagation,
tunneling, SQL code
injection

Detection accuracy: 100% Yes

Tamani et al. [48] Network Offline Anomaly Distributed Not available Privacy Threats Not available Yes

Wang et al. [56] Network Offline Game theory Distributed
Energy consumption: avg 2.0 J for
300 nodes, Energy consumption:
avg 2.0 J for 300 nodes

Not available Detection accuracy: avg.
80%

Yes

Yang et al. [49] Network Offline Anomaly Not available Energy consumption: 8.48 mJ Not available Not available Not available

Sedje. et al. [65] Network Offline Hybrid Distributed Efficiency: 2 s, energy consumption:
approx 3000 mJ for 300 nodes DoS

Detection accuracy 92% for
large number of nodes.
FPR: 3%

Yes
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Table 2. Cont.

Paper Visibility Time Detection Engine Architecture Performance Overhead Attack Types Detection Performance Scalability

Raza et al. [15] Network Realtime Hybrid Distributed efficiency: >150,000 mJ for 64 nodes sinkhole and selective
forwarding attacks

TPR: approx 80% for
30 nodes on avg.

Yes

Le et al. [60] Network Realtime Specification Hybrid
energy consumption: 202 J, power
consumption: 6.3%
increase (1.2 mW)

Rank, sinkhole and
neighbour attacks

TPR: 100%, FPR: apprix:
3% avg

Yes

Mayza. et al. [69] Network Offline Other Distributed Not available version number attacks FPR: 0% for some
simulations

Yes

Meidan et al. [50] Network Offline Anomaly Distributed Not available Botnets TPR: 100%, FPR: 0.007, Yes

McDermott et al. [51] Network Offline Anomaly Centralized Not available Botnets Detection Accuracy: Mirai:
99%, UDP: 98%, DNS: 98% No

Pandu et al. [52] Network Offline Anomaly Centralized Not available hi surge, sinkhole and
wormhole attacks Not available No

Sharma et al. [64] Network Offline Specification Centralized Not available zero-day attacks Avg. FNR: 0.137. Avg. FPR:
0.045, Avg. TPR: 0.863 Limited

Li et al. [72] Network Offline Feature
Extraction Centralized Not available DoS, U2R, R2L, Probe.

Using KDD 99 Data
DoS: 99.91%, Probe: 96.63%,
R2L: 83.33%. Not available

Bassey et al. [73] RF
Traces Offline RF Signatures Centralized Not available Device impersonation AMI: 0.56 to 0.79, Rand

Index: 0.41 to 0.70 Not available

Arshad et al. [16] Both Offline Hybrid Collaborative energy consumption: avg 8.5 mW
for 1, 10, 100 and 1000 packets/sec Generic Not available Yes
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7. Open Challenges and Future Directions

As part of this research, we have performed a thorough review of existing efforts to address one
of the critical aspects of IoT security i.e., intrusion detection. In previous sections, we have presented a
comprehensive account of the state-of-the-art within this domain and a thorough comparative analysis
of individual approaches. In this section, we highlight important future research directions which
require further investigation and efforts to improve overall security of an IoT system.

1. Constrained resources: A typical IoT device has limited resources such as constrained processing
power, low storage capacity, and limited battery power. Within this context, resource-hungry
intrusion detection system would drain the resources of an IoT system. Therefore, it is important
to have a Intrusion detection system that fulfills two important characteristics: (1) any IDS
should not incur significant computational and communication overhead, and (2) an IDS should
achieve high detection accuracy. In particular, the use of anomaly-based detection systems [47–49]
requires considerably higher resources than the signature-based detection systems while having
a trade-off between detection accuracy and overheads. For instance, anomaly detection is
particularly effective against previously unknown attacks, but is expected to incur a significant
performance overhead. As an attempt to explore opportunities within this context, we have
formulated a collaborative intrusion detection system in [66], which aims to use both anomaly-
and signature-based detection engines to achieve performance efficiency without compromising
detection accuracy.

Our analysis has revealed that many of the existing systems have not been designed for
resource-constrained devices, however these approaches mainly focused on increasing the detection
accuracy with small false positive. We believe there should be trade-off among three important factors
(1) high detection accuracy, (2) performance overheads, and (3) privacy-preservation. Furthermore,
dedicated efforts are required to devise approaches considering resource constraints that primarily
focus on the energy consumption agnostic of resources and memory consumption.

2. Multi-stage attacks: A typical intrusion is carried out over multiple stage, each attempting to
exploit a specific vulnerability. Such sophisticated attacks are termed as multi-stage attacks, and are
common mechanisms for traditional and emerging computing systems such as IoT. Although such
threats have been investigated in other domains such as mobile, existing detection systems for
IoT solely focus on the detection of individual threats agnostic of potential relationships between
them. We believe the dynamic nature of the IoT systems makes the challenge of multi-stage attack
detection non-trivial requiring explicit efforts to address it. Jun and Chi [20] represent one of
the initial effort which recognize and explicitly seek to detect relationships between different
malicious incidents. However, it represents a limited effort and further work is required to address
detection and protection against multi-stage attacks within the IoT systems.

3. Device protection: As identified by [74], one of core issues with respect to the security of IoT
systems is the security of the device as “it is often neglected by the manufacturers and usually
an afterthought". The lack of protection at device level within such systems has resulted in
significant security attacks such as Mirai botnet in 2016 [37] and its more recent versions, such
as Brickerbot [75] and Reaper [76]. In order to protect against such threats device-level security
measures are paramount which can protect IoT systems. One such measure can be an effective
intrusion detection installed within the IoT device. Through our research, we have identified
efforts, such as [42,66], which propose to develop intrusion detection capability within the device
however these efforts are generally limited in that these require further refinement to take into
account unique characteristics of IoT devices such as those explained earlier in this section.

4. Large-scale attacks: With the widespread adoption of IoT systems, the number of IoT devices
are increasing exponentially with some estimates predicting more than 50 billion IoT devices
by the year 2020. The impact of this growth on securing the IoT system is is two-folds; firstly,
the enormous scale makes IoT systems a lucrative target for malicious actors, and secondly, it also
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presents IoT systems as a resource which can be used to launch a large-scale attacks. An example
of such attacks is the botnets i.e., Mirai botnet and Brickerbot launched a Distributed Denial of
Service (DDoS) which compromised the Domain Name System (DNS) service [37]. Moreover,
due to the nature of the IoT systems, routing attacks are typically contagious i.e., affecting
all the devices within a LoWPAN. These attacks demand a holistic approach to the intrusion
detection which is able to monitor and detect the state of the overall network as well as the
individual devices.

5. Limited experimentation and evaluation: In order to assess the effectiveness of intrusion
detection efforts, rigorous experimentation is required for integrating multiple dimensions of
the evaluation. Although, experiments have been conducted to demonstrate the effectiveness
with respect to detection accuracy and false positive rate, but this evaluation is performed
without using appropriate simulation software or hardware to replicate a real-life IoT setting.
For instance, a number of efforts have used KDD 99 dataset [77] within an isolated environment
to conduct experimentation, however, it has multiple limitations i.e., (1) the KDD 99 dataset does
not accurately reflect the current threat types prevalent for the IoT systems and, (2) conducting
evaluation in an isolated environment prohibits taking into account important factors such as
resource constraints of a typical IoT device. These challenges require explicit efforts to improve the
state-of-the-art with respect to the evaluation of intrusion detection schemes within IoT systems.
Further, we believe that research into dedicated honeypots for IoT systems is required and will be
significant in facilitating thorough evaluation of future intrusion detection approaches.

6. Unavailability of accurate data: Through our research, we have identified unavailability of
real-world data from an IoT system as one of the bottlenecks to achieve rigorous evaluation.
In absence of such data, a number of current approaches have used KDD99 datasets, which
contain network traffic data for contemporary computing systems. We believe further research
into dedicated honeypots for IoT systems is required and will be significant in facilitating thorough
evaluation of future intrusion detection approaches.

8. Conclusions

Alongside the extraordinary growth witnessed by IoT, the volume and variety of security threats
for such systems have increased manifold, highlighting the importance of an efficient intrusion
detection system. However, intrusion detection within IoT presents new challenges primarily due
to unique characteristics of such systems i.e., battery power, bandwidth and processor overheads,
and network dynamics. Within this context, this paper has analyzed the state-of-the-art with respect
to intrusion detection for IoT focusing on metrics such as CPU and memory usage, and privacy
implications of existing intrusion detection approaches. By doing so, the paper has identified open
challenges to achieve effective intrusion detection for IoT infrastructures, including resource constraints,
attack complexity, experimentation rigor and unavailability of relevant security data. We believe the
paper has, therefore, set out directions for future research to achieve efficient intrusion detection
for IoT.
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