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Abstract: For wireless charging of electric vehicles (EVs), increasing the output power level is
particularly important. In this paper, the purpose of improving the output power while maintaining
optimal transmission efficiency is achieved by optimizing the parameters of the compensation
topology under the premise that the coupled coils of the system does not need to be redesigned.
The series-series (SS) and hybrid-series-parallel (LCC, composed by an inductor and two capacitors)
compensation topology are studied. The influence factors of load resistance to achieve optimal
efficiency, the influence of LCC compensation parameters on the power output level, and the influence
of parameter changes on system safety are analyzed. Theorical results show that by rationally
designing the LCC compensation parameters, larger output power and optimal transfer efficiency
can be achieved under different load resistance by adjusting the inductances of the primary and
secondary compensation circuits. The output power of the optimized system with adjusted LCC
compensation topology is increased by 64.2% with 89.8% transfer efficiency under 50 ohms load in
experiments. The correctness and feasibility of this parameter design method are verified by both
theorical and experimental results.

Keywords: Wireless Power Transfer (WPT); compensation topology; optimal load; output power
level; electric vehicle (EV)

1. Introduction

Since the concept of magnetic coupled resonant wireless power transfer (MCR-WPT) was proposed
by MIT in 2007, the technology has developed rapidly and has been widely applied in implantable
medical devices, home appliances, mobile devices and electric vehicles [1–8]. Increasing transmission
power is particularly important for wireless charging of electric vehicles. The main ways to improve
power levels are: (1) power supply parallel topology, which uses multiple parallel power supplies for
power distribution, but the parallel topology is too redundant [9]; (2) multi-phase parallel, there are
shortcomings of current imbalance between phases and serious coil loss. In addition, the compensation
topology also has a great impact on the output power level.

At present, the basic compensation topologies are series-series (SS), series-parallel (SP),
parallel-series (PS), and parallel-parallel (PP) [10,11]. The most widely used is the SS topology, but this
topology has inherent disadvantages: once coil parameters are determined, the rated output power
can be regulated only by the input voltage. In addition to the four basic resonance topologies described
above, hybrid-series-parallel (LCC, composed by an inductor and two capacitors) compensation
topology has been extensively studied for its excellent performance. It can implement zero phase angle
(ZPA) and zero voltage switching (ZVS), and its output current is independent of the load [12–17].
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Most of the current studies on WPT compensation topology focus on improving the output
performance by adopting complex control strategies. However, the load resistance to achieve optimal
efficiency of SS topology WPT system is unchangeable after the coil-parameters are fixed whereas the
one of LCC topology can be adjusted according to the parameters of compensation topology. In this
paper, the WPT system is modeled and the transfer performance is analyzed. Methods are proposed
to increase output power level while maintaining optimal transmission efficiency without redesign
of the coupled coils by optimizing the parameters of LCC compensation topology. Both theorical
and experimental results indicate that the proposed parameter optimization strategy is effective in
improving transfer efficiency and adjusting output power under different load resistances. It avoids
the disadvantages of redesigning the coil due to power level changes to maintain high transmission
efficiency. At the same time, it has obvious advantages in safety under the condition of output
short circuit.

2. Theoretical Analysis

2.1. System Analysis

Figure 1 shows the schematic diagram of the magnetic coupled wireless power transfer system,
where AC power on the grid side is rectified to form DC power, the high-frequency inverter is composed
of H-bridge, and the direct current is converted by inverter circuit into alternating current with a system
rated frequency, which flows through the transmitter end and transmits the power to the receiver coil.
The primary and secondary compensation circuit is composed of SS or LCC compensation topology.
The transmitter and receiver coils are planar spiral coils designed in Section 3, and the receiver end is
connected to electric vehicle battery through a rectifier circuit.
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Figure 1. The structure diagram of wireless power transfer system.

Because the resonance part of wireless power transfer system has the characteristics of band-pass
filtering, only the fundamental wave component is considered later, and the square wave generated by
the full-bridge inverter can be equivalent to an AC voltage source for theoretical analysis. The square
wave is expanded according to the Fourier series, the duty cycle is set to D, and the fundamental wave
of the square wave whose amplitude is Ud is as follow:

ft =
4Ud
π

sin(πD) cos(ωt−πD) (1)

The battery is a typical non-linear load. With the use of battery, the battery charging current and
the state of charge are different, and different external load characteristics are displayed. In order
to simplify the difficulty of system analysis, the battery is generally equivalent to a resistive load
according to the ratio of charging voltage and current of battery and then analyzed. Therefore, the
battery and its management system are equivalent to a load in this paper.

2.2. Theoretical Analysis of SS and LCC Compensation Topology

Modeling and analysis of SS-type and LCC-type compensation topologies are shown below.
Figures 2 and 3 show simplified topologies of SS-type and LCC-type resonant circuits, respectively.
The parasitic resistance of inductors and capacitors are much smaller than the internal resistance of
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coil, so it can be ignored. The subsequent experimental results show that this approximate analysis
does not affect the accuracy of experiment.

2.2.1. Analysis of SS-type Resonance Circuit

The SS topology is the most basic resonance structure. Both primary and secondary side use
series resonance. The equivalent circuit is shown in Figure 2, where US is a voltage-stabilized source,
the source internal resistance is ignored, M is the mutual inductance between two coils.
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According to Figure 2 and Kirchhoff voltage law (KVL), we can obtain:
(R1 + jωL1 +

1
jωC1

)I1 − jωMI2 = Us

(R2 + RL + jωL2 +
1

jωC2
)I2 − jωMI1 = 0

(2)

When the system meets the resonance conditions:

f0 =
1

2π
√

L1C1
=

1
2π
√

L2C2
(3)

When RL is much greater than R1 and R2, R1 and R2 can be ignored, the currents are as follows:
I1 =

UsRL

(ωM)2

I2 =
Us

ωM

(4)

The transmission power and efficiency of the system are:

Pss =
Us

2RL

(ωM)2 (5)

ηss = 1−
RLR1

(ωM)2 −
R2

RL
(6)

The maximum efficiency and corresponding load value are:

ηss_max = 1−
2
√

R1R2

ωM
(7)

Rss =

√
R2

R1
(ωM)2 (8)

Due to the inverse relationship between distance and mutual inductance, in practical applications,
it is common for charging object to be far away from primary coil. It can be seen from (4) and (5) that
when the secondary side is open, the primary current will increase sharply; when a short circuit occurs
on the secondary side, the primary current and transmission power will decrease. On the other hand,
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in the case of the SS structure with constant coil parameters, the load resistance to achieve optimal
efficiency is unchangeable.

2.2.2. Analysis of LCC-type Resonance Circuit

The LCC structure is a new type of composite resonant structure. As shown in Figure 3,
Lf 1, C1, Cp1 and Lf 2, C2, Cp2 are the corresponding resonant circuit units of primary and secondary
coils, respectively.
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Similarly, we can formulate KVL equation according to Figure 3:

( jωL f 1 +
1
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The resonance conditions are as follows:
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The currents of the loops are: 
I1 = ω6C1

2C2
2M2RLUs

I2 = −ωC1Us

I3 = ω4C1C2
2MRLUs

I4 = −ω3C1C2MUs

(11)

The transmission power and efficiency of the system are:

PLCC =
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2RL

ω2L f 1
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The maximum efficiency and corresponding load values are:
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2
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(14)
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RLCC =

√
R1ω2L f 2

4

R2M2 =
R1L f 2

2

R2M2 RSS (15)

It can be known from (11) that when the mutual inductance decreases, the currents of primary and
secondary coils decrease, which is a safe working condition. And when the system coil-parameters
are fixed, the load resistance to achieve optimal efficiency can be adjusted by the inductance of the
secondary resonance circuit Lf 2. C2 also needs to be adjusted to keep resonant according to (10).
Compared with the SS structure, it avoids the disadvantages of redesigning the coil parameters to
maintain efficient operation when the system’s rated parameters are changed, which makes the system
design more flexible and reduces the manufacturing cost.

3. Parameter Design

3.1. Effect of Coil Design on Optimal Efficiency Load

When a WPT system is actually designed, some parameters are fixed due to the limitation of
frequency or coil size. At this time, choosing a specific resonance mode to obtain better transmission
efficiency according to the existing parameters becomes the key to the design.

This paper presents a design scheme of planar spiral coil [18] that optimizes the system
transmission efficiency. The core idea of designing a high-efficiency MCR-WPT system is to maintain
the system’s high-efficiency operating state by adjusting the other coil parameters (mainly turn number,
wire diameter, turn pitch, etc.) when the rated load is the optimal load to achieve maximum efficiency.

Figure 4 is a schematic diagram of planar spiral coil. The internal resistance R, self-inductance L
and mutual inductance M between the coils [19–21] can be obtained by:

R =

√
ρµ0ω

2
Nravg

a
L = µ0N2ravgc1[ln(c2/λ) + c3λ+ c4λ2]

M =
µ0πN1N2(

r1_avg

2
)

2
(

r2_avg

2
)

2

2[h2 + (
r1_avg

2
)

2
]
1.5

(16)

where ρ is the conductor resistivity, µ0 is the vacuum permeability, ω is the current angular
frequency, N is the number of coil turns, rmin is the inner radius of coil, d is the turn spacing of
coil, ravg = rmin + (N − 1)d/2 is the average radius of coil, a is the conductor radius, c1, c2, c3 and c4 are
fitting coefficients, for circular coils they are 1, 2.46, 0 and 0.2, respectively, λ = (N − 1)d/(2*ravg), h is the
transmission distance.
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According to the actual application scenario, some parameters of the system can be determined.
In this paper, the transmission distance h = 20cm, the inner radius of the transmitter and receiver coil
r1_min = r2_min = 2 cm. In the case of tightly wound, the conductor diameter and turn spacing are not
considered, the influence of coil turns on transmission efficiency occupies the main factor. Where the
load resistance RL is optimal to realize maximum transmission efficiency, the coupling coefficient
k = M/

√
L1 ∗ L2, self-inductance L1 and L2, the coil internal resistance R1 and R2, and the optimal load

RL are all related to the turn number of primary coil N1 and secondary coil N2:{
PL = ς(k(N1, N2), L1(N1), L2(N2), R1(N1), R2(N2), RL(N1, N2))

η = ξ(k(N1, N2), L1(N1), L2(N2), R1(N1), R2(N2), RL(N1, N2))
(17)

(17) shows that the transmission power PL and efficiency η are quantities related to the
coupling coefficient, load value, self-inductance, and coil internal resistance. Under the tightly
wounding condition, the independent variable is mainly affected by the turn number of the coils.
Therefore, the ultimate optimization goal of this paper can be expressed as finding the optimal coil
turn number while meeting the rated power value of the system design, that is, to find max(η(N1,N2)).

Figure 5 can be made by Equation (16). It can be seen from Figure 5a that the transmission power
decreases with increasing turns; from Figure 5b, the efficiency increases quickly first, then slowly
increases as the turn number increases, only when the turn number of primary and secondary coils
reaches a critical point can the efficiency be maintained at a higher level. Finally, the iterative method
is used to obtain the number of turns, and the coil parameters are reasonably designed to achieve a
high-efficiency transmission system that meets the power requirements. The specific design process is
shown in Figure 6.
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The following Table 1 shows the optimized resonant parameters of SS compensation topology
designed to the load (50 Ω) corresponding to optimal efficiency point.

Table 1. The resonant circuit parameters of SS-type.

Parameter Value Unit

resonance inductance L1 477.4 µH
resonance inductance L2 426 µH

primary coil turns N1 50 -
secondary coil turns N2 48 -
resonance capacitor C1 7.34 nF
resonance capacitor C2 8.23 nF

input voltage 300 V
output power 2 kW

3.2. Selection of LCC Resonance Parameters

By optimizing the coil design, for the SS resonance structure, the system is in an optimal efficiency
condition when the load is 50 ohms. According to (15), after the coil parameters of LCC resonance
structure are determined, the optimal efficiency load value is only related to the parameter Lf 2.
The optimal efficiency load of LCC resonance structure can be determined by designing the inductance
Lf 2. From (5) and (12), we have:

PLCC =
M4

L f 1
2L f 2

2 PSS (18)
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For the LCC resonance structure, since the load and coil parameters have been determined,
it can be known that by adjusting the value of Lf 1, the level of rated output power can be changed.
The parameter configuration method is as follows: (1) Firstly, according to the design parameters of SS
compensation structure system, the value of Lf 2 is obtained by Equation (15); (2) Secondly, according
to the rated power of system, determine the value Lf 1 through Equation (18); (3) Finally, determine the
remaining parameter values according to Equation (10).

As the rated output power of SS resonant structure is 2 kW, a margin of 0.85 is taken, and the
rated output power of LCC resonant structure is 2.45 kW, so the values of two inductors Lf 1 and Lf 2

can be determined. The specific parameter values are as follows in Table 2.

Table 2. The resonant circuit parameters of LCC-type.

Parameter Value Unit

resonance inductance Lf 1 64.9 µH
resonance inductance L f 2 93.6 µH

resonance capacitor C1 54.0 nF
resonance capacitor C2 37.5 nF
resonance capacitor Cp1 9.1 nF
resonance capacitor Cp2 10.5 nF

output power 2.45 kW

4. Simulation and Experimental Verification

4.1. Magnetic Simulation

For the coil designed in Section 3, the finite element simulation software ANSYS EM was used for
simulation, and the vertical distance between two coils was 200 mm, the remaining parameters are
shown in Tables 1 and 2. The 3D finite element model is shown in Figure 7a, the boundary condition is
radiation, the excitation currents Ip = 7A and Is = 7A, the maximum mesh element lengths of solution
region, transmitter and receiver coil are 75 mm, 40 mm and 40 mm, respectively. Figure 7b is the
distribution diagram of magnetic field strength around the system. It can be seen that the magnetic
field distribution around the system is evenly distributed, mainly concentrated near the coils, and has
little effect on the surrounding environment.
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Another purpose of simulation is to obtain the self-inductance, mutual inductance and coupling
coefficient of the coil. There are many theoretical calculation methods for calculating these parameters,
which will not be repeated here. They can also be obtained by actual measurement. According to the
SAEJ2954 standard [22], the actual measured coupling coefficient formula is:

k =
√

VocIsc/V1I1 (19)
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where, V1 and I1 are the voltage and current of primary coil respectively, Voc and Isc are the open circuit
voltage and short circuit current of secondary coil, respectively.

The actual mutual inductance value can be obtained by “open circuit and short circuit test”.
This method needs to measure three quantities, Lp1 is the measured primary inductance when the
secondary circuit is open, Ls1 is the measured secondary inductance when the primary circuit is open,
and Lp2 is the measured primary inductance when the secondary circuit is shorted, as follow:

M =
√
(Lp1 − Lp2)Ls1 (20)

Table 3 shows the theoretical, simulated and actual measured parameter values of the system
under rated parameters. It can be seen from Table 3 that the deviation of the theoretical, simulated and
actual value of the primary and secondary coil self-inductance can be ignored.

Table 3. System parameter values.

Parameter Theoretical Value Simulation Value Measured Value

primary coil self-inductance (µH) 477.4 481.5 475.2
secondary coil self-inductance (µH) 426.1 428.3 423.1

mutual inductance (µH) 82.0 82.6 81.2
coupling coefficient 0.18 0.18 0.18

4.2. Experiment

The experimental setup is shown in Figure 8, the experimental parameters of compensation circuit
are generally consistent with Tables 1 and 2. The coils are planner spiral coil wound by Litz wire,
and tightly wound with the turn spacing d = 2a, the conductor radius a = 1.8 mm, the inner radius of
the transmitter and receiver coil r1_min = r2_min = 2 cm, the out radius of the transmitter r1_max = 20 cm,
the out radius of the receiver r2_max = 19.28 cm. The quality factor of the transmitter and receiver coil
are 612 and 623, respectively. The gate drive signal of full-bridge inverter circuit can achieve frequency
adjustment, and its duty cycle is 0.5. In the resonance state, the input power can be obtained from
the input voltage value and input current value of rectifier bridge. The output power is obtained by
measuring the load voltage with a differential probe and measuring the output current with a current
probe. Considering that the voltage on the capacitor at resonance is Q (quality factor) times the voltage
on the circuit, the tuning capacitor is composed of CBB capacitor series and parallel.
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A comparative experiment is performed for SS and LCC compensation topologies. Figure 9 shows
the experimental waveforms of SS and LCC under the system’s optimal efficiency load. In Figure 9b,
the primary current shows wonky parts. This is because LCC compensation topology is more
complicated than SS, and the coil winding and capacitance matching errors are larger, which results
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in the failure to realize ideal resonance at the rated frequency. Therefore, the IP waveform of LCC
structure is not as stable as the SS structure.
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As can be seen from Table 4, the actual system operating efficiency and output power are basically
consistent with the design goals. It illustrates the correctness of the above design method. The error
between experimental results and simulation values is due to the fact that the actual system cannot
fully work in the ideal state, the coil and resonant capacitor cannot be perfectly matched at the rated
frequency in experiment. It is verified through experiments that the output power is increased by
13.5% under the same input voltage without a significant decrease in efficiency.

Table 5 shows the experimental data of the power and efficiency of the SS and LCC compensation
topology under different loads. It can be seen from Table 5 that both SS and fixed LCC compensated
WPT system achieve maximum efficiency at 50 ohms load, which is consistent with theoretical analysis.
By adjusting the parameters of LCC compensation topology according to the load resistances, the output
power and transfer efficiency of the adjusted LCC compensated WPT system are improved and more
stable under different loads.

Table 4. System experimental results and simulation values.

Parameter SS Simulation SS Experiment LCC Simulation LCC Experiment

input voltage 300 V 300 V 300 V 300 V
input current 7.2 A 7.56 A 8.857 A 8.52 A
input power 2.161 kW 2.268 kW 2.657 kW 2.556 kW
load voltage 316 V 319 V 352.1 V 339.6 V

output power 1.994 kW 2.011 kW 2.475 kW 2.282 kW
efficiency 92.26% 88.67% 93.14% 89.28%

Table 5. System power and efficiency under different load resistances.

Load
SS LCC with Fixed Parameters LCC with Adjusted Parameters Adjusted Lf1 Adjusted Lf2Power Efficiency Power Efficiency Power Efficiency

10 Ω 455.2 W 68.6% 478.7 W 73.7% 3295.1 W 89.0% 1.4 µH 18.7 µH
33 Ω 1331.8 W 82.8% 1559.5 W 87.7% 3323.5 W 89.3% 66.3 µH 61.8 µH
50 Ω 2011.0 W 88.7% 2282.1 W 89.3% 3302.1 W 89.8% 54.3 µH 93.6 µH
83 Ω 3170.0 W 85.6% 3210.7 W 86.7% 3313.0 W 89.5% 41.2 µH 155.4 µH

Based on the experiment of transmission distance change under SS and LCC structures, Figure 10
was produced. When the transmission distance changes, the system resonance frequency remains
unchanged, so as to observe the vertical offset stability of the system under SS and LCC structures.
It can be seen from Figure 10 that for the SS resonant topology, the input current and output current
increase with distance; for the LCC structure, the input and output current decrease with distance.
In practical applications, this positive correlation of the SS structure is very dangerous.
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There is a deviation between the theoretical and experimental current values, the main reason is
that the mutual inductance measured by the actual wound coil is smaller than the theoretical value.
However, the current trend is basically the same.

5. Conclusions

In this paper, the optimal transfer efficiency of the WPT system under certain load resistance is
achieved by optimizing the coil-turns number. Once the coupled coil-parameters are fixed, the load
resistance to make the optimal efficiency can be adjusted and the output power can be increased by
optimization design of the parameters of LCC compensation topology. The major contributions of this
paper are as follows:

(1) The method is proposed to keep the optimal transfer efficiency of the WPT system under different
load resistances by adjusting the inductance value of the LCC compensate topology Lf 1.

(2) The method is proposed to increase the output power of the WPT system to satisfy more power
requirements by adjusting the inductance value of the LCC compensate topology Lf 2.

(3) The optimized LCC compensated WPT system has significant advantages over the SS type.
There’s no need to redesign the coupled coils to maintain transmission power and efficiency under
different power levels and transfer distance. When the load resistance equals 50 Ω, the output
power of the optimized WPT system is increased by 64.2% with 89.8% transfer efficiency.
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