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Abstract: Sound source localization is one of the applicable areas in speech signal processing.
The main challenge appears when the aim is a simultaneous multiple sound source localization
from overlapped speech signals with an unknown number of speakers. Therefore, a method able
to estimate the number of speakers, along with the speaker’s location, and with high accuracy is
required in real-time conditions. The spatial aliasing is an undesirable effect of the use of microphone
arrays, which decreases the accuracy of localization algorithms in noisy and reverberant conditions.
In this article, a cuboids nested microphone array (CuNMA) is first proposed for eliminating the
spatial aliasing. The CuNMA is designed to receive the speech signal of all speakers in different
directions. In addition, the inter-microphone distance is adjusted for considering enough microphone
pairs for each subarray, which prepares appropriate information for 3D sound source localization.
Subsequently, a speech spectral estimation method is considered for evaluating the speech spectrum
components. The suitable spectrum components are selected and the undesirable components
are denied in the localization process. The speech information is different in frequency bands.
Therefore, the adaptive wavelet transform is used for subband processing in the proposed algorithm.
The generalized eigenvalue decomposition (GEVD) method is implemented in sub-bands on all
nested microphone pairs, and the probability density function (PDF) is calculated for estimating the
direction of arrival (DOA) in different sub-bands and continuing frames. The proper PDFs are selected
by thresholding on the standard deviation (SD) of the estimated DOAs and the rest are eliminated.
This process is repeated on time frames to extract the best DOAs. Finally, K-means clustering and
silhouette criteria are considered for DOAs classification in order to estimate the number of clusters
(speakers) and the related DOAs. All DOAs in each cluster are intersected for estimating the position
of the 3D speakers. The closest point to all DOA planes is selected as a speaker position. The proposed
method is compared with a hierarchical grid (HiGRID), perpendicular cross-spectra fusion (PCSF),
time-frequency wise spatial spectrum clustering (TF-wise SSC), and spectral source model-deep
neural network (SSM-DNN) algorithms based on the accuracy and computational complexity of real
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and simulated data in noisy and reverberant conditions. The results show the superiority of the
proposed method in comparison with other previous works.

Keywords: sound source localization; nested microphone array; spectral estimation; wavelet
transform; subband processing; clustering

1. Introduction

Sound source localization (SSL) is one of the important areas in speech processing applications.
The main challenge is multiple simultaneous SSL in noisy and reverberant conditions. These scenarios
highly decrease the accuracy of localization algorithms, which means more error in the estimated
locations. Source localization based on the microphone array is one of the principal concepts in array
signal processing [1,2], which is implemented in such applications as: automatic camera steering in
conferences [3], array steering in speech signal recording [4], robot tracking [5], speech enhancement [6],
and speaker tracking [7]. Sound source localization based on microphone array originated from an
array of antennas and hydrophones in radar and sonar signal processing [8]. Many researchers are
working in this area since SSL still is one of the main applications in smart rooms signal processing
in noisy and reverberant conditions. In addition, we are interested in using small-sized microphone
array, which is one of the contributions in this article.

The localization algorithms are widely proposed for indoor [9–14] and outdoor [15–18] applications.
Different types of sensors are considered for localization, such as acoustic, electromagnetic, microphone
array network [19], etc. In recent years, many studies have been done on SSL based on a microphone
array [20]. Various direction of arrival (DOA) estimation algorithms by the use of microphone
array were proposed such as: subspace-based algorithms, spectrum-based localization methods,
and energetic analysis of sound sources [21]. The main challenges in all localization methods are
summarized as follows: (1) high computational complexity, (2) pre-information of speech signal
especially the number of speakers, and (3) low accuracy in the case of multiple simultaneous sound
sources in noisy and reverberant conditions. In the proposed method in this article, the main focus is to
solve these challenges by keeping the computational complexity in an acceptable range and increasing
the accuracy of the localization algorithm by estimating the number of speakers.

Various methods have been proposed for sound source localization. Two important categories are
based on time difference of arrival (TDOA) [22] and steered response power (SRP) [23], which evaluate
the speech signal within the time domain. The TDOA-based methods have lower computational
complexity in comparison with the high complexity in SRP-based methods, but the accuracy of
SRP-based methods is higher than the TDOA-based methods in noisy and reverberant conditions.
These algorithms work in single-source scenario better than multiple-source conditions.

The source localization algorithms are divided into parametric and non-parametric strategies.
The most famous parametric methods [24] are beamforming and maximum likelihood (ML), which
prepares a function for all candidate locations in the search space. Then, each function has several
maximums that searching the available space for these maximums is a high computing process.
The signal subspace and eigenvalue decomposition algorithms are considered as non-parametric
methods [25]. For example, multiple signal classification (MUSIC) [26] and estimating signal parameters
via the rotational invariance technique (ESPRIT) [27] are algorithms designed to prepare higher
resolution in comparison with parametric methods. These methods have been designed based on
uniform linear arrays and narrow band signals. There has been some development of these techniques
for circular microphone array [28] and wideband signals [29].
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2. State of the Art-Sound Source Localization

Many research works have been proposed in recent years for SSL. In the following, a couple
of important researches are explained. Cross-power spectrum phase analysis (CPSP) is a time
domain-based technique for SSL based on the use of a microphone array. The CPSP method localizes
the sound sources by the intersection between estimated DOAs of microphone pairs. However,
the accuracy of this method is decreased in multiple speaker conditions because of the cross-correlation
(CC) between sound sources.

Nishiura and Yamada proposed a method for solving the CC problem by the summation of the
CPSP coefficients of microphone signals [30]. By this summation, the CPSP coefficients related to the
right directions are amplified while the other coefficients are weakened. This modified version of
the CPSP method localizes multiple simultaneous speakers. More coefficients in the modified CPSP
method prepare a better accuracy in source localization.

Kim and Komatani proposed a two microphones-based method via the combination between
CPSP and expectation-maximization (EM) techniques for source localization [31]. Firstly, the TDOAs
of microphone signals are calculated based on the CPSP method, which is obtained by maximizing
the CPSP coefficients. In the next, the DOAs are estimated by the use of the TDOAs, while the EM
algorithm is considered for estimating the source location distribution function. In this method,
a Gaussian probability density function (PDF) is selected for candidate points of the source location.
Then, the PDF’s parameters are calculated through the training data and EM algorithm. After many
repetitions of expectations and maximizations steps, the estimated variances and means are used for
calculating the PDF’s parameters.

Li and Chen proposed a method for SSL by the use of microphone array based on extraction of
reverberation-resistant features [32]. The method is proposed for specific indoor environments, such as
meeting rooms, where the sound source location is predictable and the candidate locations are limited.
Therefore, machine learning is considered as a suitable strategy. The machine learning-based methods
localize the speakers with high accuracy in reverberant conditions by the use of prior information
about source recording environment. The key point in machine learning-based methods is how to
extract the useful features of a speech signal. Here, the features are extracted in machine learning
algorithms by sound intensity (SI) property based on a small-sized microphone array, which prepares
the robust results in comparison with traditional methods.

Burkay et al. proposed an SSL algorithm by the use of the steered response power density (SRPD)
in combination with the Hierarchical grid refinement method (HiGRID) [33]. The SRP is a localization
method based on maximization the power of the steering array for candidate locations. This method
has high computational complexity due to the evaluation of all candidate places in the search space.
It represents an extended version of the SRP known as SRPD and hierarchical grid refinement search
method to decrease the number of steering in the SRP algorithm for DOA estimations. The proposed
method localizes the non-coherent sources with the same accuracy as the coherent sources for a certain
number of speakers. The method is robust in noisy and reverberant conditions and for real and
simulated data.

Farmani et al. proposed a method for SSL by the use of a relative transfer function for hearing
aids applications [34]. The target DOA estimation for binaural hearing aids systems is evaluated in
noise-free conditions. A framework based on the ML function is proposed for DOA estimation, which
models the user’s head shadowing effect on microphone signals as a relative transfer function (RTF)
for hearing aids system (HAS). In addition, the DOA estimator is formulated as the inverse discrete
Fourier transform (IDFT) for evaluating the complexity of the likelihood function.

In 2017, Deng et al. proposed a low power consumption method in wireless sensor networks for
SSL [19]. It has been shown that the energy-based methods provide sufficient accuracy for SSL in low
power conditions. The SSL is widely used in battlefield environments, which is necessarily to have
the equipment’s with low power consumption for increasing the life span. Also, some variables are
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introduced that affect the path loss exponent. In addition, it is shown that the energy-based methods
for SSL determine the appropriate path loss exponent accurately.

Stefanakis et al. proposed a perpendicular cross-spectra fusion (PCSF) method for SSL by the use
of a planer microphone array [35]. Here, the PCSF method is introduced as a new algorithm for DOA
estimation which uses the analytic formulas in time-frequency (TF) domain. Also, the proposed method
estimates the multiple DOAs in TF domain for simultaneous sound sources. In addition, a coherence
criterion based on the divergence property of DOA estimations is introduced for evaluating the reliability
of different parts of a speech signal in order to prepare the robustness in undesirable conditions.

Ma et al. proposed a binaural SSL method by the combination between the spectral source model
and deep neural network (SSM-DNN) [36]. The proposed method is based on a new framework for
binaural source localization that combines the model-based information of spectral features of sound
sources and DNNs. Initially, a background source model and a target source model are estimated in
the phase training step in order to extract the spectral features of sound signals. When the background
source identity is unknown, a universal background model is considered for the learning phase.
In the next step, the source modes are jointly used for improving the localization process by selecting
weighted source azimuth and DNN-based localization algorithms. Finally, the proposed method
uses the combination between model-based and data-driven for expressing a single-computational
framework in undesirable conditions.

Yang et al. proposed a TF-wise spatial spectrum clustering (TF-wise SSC) method for multiple
SSL by the use of a microphone array [37]. The proposed TF method based on spatial spectrum
clustering is divided into two steps. In the first step, the spatial correlation matrix is calculated by
microphone signals and is denoised in the TF domain. The TF spatial spectrum is estimated based
on the sub-band information and, then, is enhanced by an exponential transform. In the second
step, the source locations are calculated by searching for the maximum of global spatial spectrum.
The spatial spectrum is reassigned after the detection of each source, which is considered for locating
the next speaker. This process is continuing in order to detect all speaker.

In this article, a novel method is proposed for multiple simultaneous SSL in undesirable conditions.
The spatial aliasing between microphone signals in microphone arrays decreases the precision of
localization algorithms. Firstly, a cuboids nested microphone array (CuNMA) is proposed with a proper
distribution of microphones. The microphone array is structured to prepare enough microphone pairs
for each frequency band related to the nested microphone array. The spatial aliasing is eliminated by
the use of the CuNMA and all microphone information are suitable for localization process. The speech
spectral components are different in frequency bands and there is not useful information on some
frequencies during speech recording, which decreases the localization accuracy due to the prevailing
noise. A spectral estimation step is proposed for detecting the proper speech spectrum area such that
the localization accuracy is increased by removing the undesirable frequency components and the
computational complexity is decreased by processing less information. Speech is a wideband and
non-stationary signal with the windowed-disjoint orthogonality (W-DO) property [38]. Therefore, each
TF bin is related to one speaker with high probability in multi-speaker conditions. Since processing
all TF points has high computational complexity, the adaptive wavelet transform is considered for
subband processing. The advantage of using the wavelet transform comes from the variable frequency
resolution proportional to speech signal. Therefore, the wavelet transform is designed in a way to
prepare high frequency resolution in low frequency components related to speech spectral information.
The generalized eigenvalue decomposition (GEVD) algorithm is a feasible method for estimating
the impulse response between source and microphone signals for DOA estimation. In this article,
the proposed subband GEVD (SBGEVD) algorithm resulting from wavelet transform is considered for
DOA estimation of all microphone pairs in CuNMA. Subsequently, the PDFs for estimated DOAs are
plotted in each sub-band. The mathematical expectation and standard deviation (SD) are two important
parameters in these PDFs for DOA estimations. Whatever the DOA estimations are closer to each
other in sub-bands, it is more likely that there is just one independent speech source in this sub-band.
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Subsequently, by thresholding on the SDs, the PDFs with more SD are removed and this process is
repeated for all time frames. Finally, the K-means clustering is implemented on all passed DOAs and
the number of speakers is estimated by the silhouette criteria. After this estimation and considering
DOAs for each cluster, the 3D sound source locations are calculated by intersecting between all DOAs
in each cluster. The DOAs for each microphone pair is plotted and the intersection point (or the closest
point to all DOA planes in the case of no existence one point) is considered as the 3D source location.
The proposed method is implemented on real and simulated data for two and three simultaneous
speakers. Also, the proposed method is compared with HiGRID [33], PCSF [35], TF-wise SSC [37],
and SSM-DNN [36] algorithms.

In Section 3, the microphone signal model is introduced jointly with the proposed cuboids nested
microphone array. Section 4 represents the proposed algorithm based on spectral estimation, subband
processing with adaptive wavelet transform, and subband GEVD. Also, the PDFs, clustering, silhouette
criteria, and intersections between DOAs are shown in this section. Section 5 shows the simulations
and results for the proposed method in comparison with other previous works on real and simulate
data. Section 6 presents some conclusions.

3. Microphone Signal Model and Cuboids Nested Microphone Array

The microphone signal modeling is the first step in the evaluations for localization and tracking
algorithms to prepare the simulated signals similar to real conditions. Firstly, the microphone signal
model is introduced and, then, the cuboids nested microphone array with analysis filter bank and
down samplers are proposed as a proper structure to eliminate the spatial aliasing and to increase the
localization accuracy. In addition, the subarrays are introduced in this section.

3.1. Microphone Signal Model in Localization Algorithms

The localization algorithms are evaluated under controlled conditions to determine the robustness
and accuracy. Therefore, these algorithms are examined on real and simulated data. In the evaluations
of localization algorithms, the microphone signals are modeled to be similar to real scenarios. Ideal
and real models are considered for microphone signals in the evaluations for localization, tracking,
and estimating the number of speakers. In the ideal model, the received signal to the microphone is a
delayed and weakened version of source signal, namely:

xm[n] =
1

rm
s[n− τm] +

^
vm[n], (1)

where xm[n] is the received signal in the m-th microphone, rm is the distance between the sound
source and m-th microphone,τm is the delay to arrive signal from the source to m-th microphone, and
^
vm[n] is the additive noise in the m-th microphone place. This model is considered ideal because the
effects of indoor conditions and reverberations are not considered. Reverberation is an important and
undesirable environmental factor that the localization algorithms are not valid without considering
this effect. Therefore, the microphone signal model is designed to be similar to real conditions. The real
model for microphone signals is expressed as [39]:

xm[n] = s[n] ×Λm[
→

d
(s)

, n] +
^
vm[n], (2)

where Λm[
→

d
(s)

, n] is the impulse response between the source and m-th microphone, which contains
the room reverberation effect and the speech signal attenuation because of the distance between the
source and the microphone. The received signal in the m-th microphone is obtained by the convolution
(*) between the source signal and room impulse response, which is highly similar to real scenarios.
Also, the noise is considered as the same as the real conditions. Notice that the real model is selected
for the simulations to make the results comparable to real environments.
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The near-field and far-field assumptions are considered for the signal propagation in the
environments. In the near-field assumption, the source is located near to the microphone array,
where the signal arrives to microphones in a spherical shape. However, in the far-field assumption,
the source signal is located far from the microphone array and the speech signal arrives to the array
in a flat shape. The near-field assumption is selected for the simulations due to the consideration of
the indoor condition, room dimension, and source location. Figure 1 shows the near-field model for
speech signal propagation between source and microphone array.Electronics 2020, 9, 867 6 of 28 
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Figure 1. The near-field model for sound signal propagation in sound source localization
(SSL) algorithms.

3.2. The Proposed Cuboids Nested Microphone Array for SSL

The spatial aliasing due to the inter-microphone distances in microphone arrays destroys the
spectral information of speech signal and decreases the accuracy of the localization algorithms.
The nested arrays are usually used in speech enhancement applications owing to their elimination
of spatial aliasing. The linear microphone array was proposed for a speech enhancement algorithm
in combination with adaptive noise canceller [40]. However, the linear nested array is not useful
in localization applications because it does not prepare enough information for DOA estimations
in different directions. In this section, a cuboids nested microphone array is proposed for the first
time, which is applicable for 3D multiple simultaneous SSL. Each subarray is connected to the specific
analysis filters. Figure 2 shows the block diagram of the proposed 3D localization method, where
the CuNMA is shown in the left side of the diagram. The proposed CuNMA is designed to have the
same characteristics for all speakers in different directions. There are enough microphone pairs in the
direction of each speaker in this array [41]. Therefore, the proposed array does not make restrictions
on the speaker’s locations.

The most spectral components of speech signal are in the frequency range [50–8000] Hz, with
sampling frequency Fs = 16,000 Hz. The proposed CuNMA is designed to cover the frequency range
[50–7600] Hz, which maintains the speech signal information. The proposed array is structured of
4 subarrays. The first subarray is designed for the highest frequency range B1 = [3800–7600] Hz. In this
condition, the central frequency is f c1 = 5700 Hz for analysis filter bank. The inter-microphone distance
(d) follows the formula d ≤ λ/2 (where λ is the wavelength associated with the maximum frequency of
speech signal in the related subband) to avoid the spatial aliasing. Then, d1 is calculated as follows
d1 ≤ λ/2 = c/(2 f ) = 342 (m/s)/(2× 7600 Hz) = 2.3 cm for the first subarray. The second subarray is
structured for the frequency range B2 = [1900–3800] Hz The central frequency and inter-microphone
distance are calculated as f c2 = 2850 Hz and d2 = 2× d1 ≤ 4.6 cm, respectively. The third subarray
is designed to cover the frequency range B3 = [950–1900] Hz, where the inter-microphone distance
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is d3 = 4 × d1 ≤ 9.2 cm and the central frequency is f c3 = 1425 Hz. Finally, the fourth subarray is
designed for the lowest frequency range B4 = [50–950] Hz. The central frequency and inter-microphone
distance are f c4 = 500 Hz and d4 = 8× d1 ≤ 18.4 cm, respectively.
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Figure 2. The block diagram of the proposed 3D SSL system based on cuboids nested microphone
array (CuNMA) and subband generalized eigenvalue decomposition (GEVD) algorithm.

The CuNMA is designed to follow the above information. Then, the inter-microphone distance for
the closest microphone pairs (1,2), (2,3), (3,4), (4,1), (5,6), (6,7), (7,8), and (8,5) is adjusted as d1 = 2.3 cm.
The inter-microphone distance is d2 = 3.25 cm for the second subarray with microphone pairs (1,3),
(2,4), (5,7), and (6,8). This process is repeated for the third subarray with microphone pairs (4,7), (8,3),
(5,4), (1,8), (6,1), (5,2), (6,3), and (2,7) with the inter-microphone distance d3 = 9.2 cm. Finally, the fourth
subarray with microphone pairs (3,5), (6,4), (8,2), and (1,7) were designed with the inter-microphone
distance d4 = 9.56 cm. Therefore, the spatial aliasing is eliminated by the proposed CuNMA without
any effect on the speech signal information. Figure 3 shows the proposed CuNMA with microphone
pairs related to each subarray. Four subarrays in this figure are designed based on the calculated
microphone distances.
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Figure 3. The proposed CuNMA with the related microphone pairs for each subarray.

Each designed subarray in Figure 3 needs an analysis filter bank to prevent the spatial aliasing.
The subarrays require a multirate sampling with a down sampler to design the appropriate filter for
each subband. The analysis filter Hi(z) and down sampler Di are implemented as a multilevel tree
structure, which is shown in Figure 4. Each level of this tree includes a high-pass filter (HPF)HPi(z),
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a low-pass filter (LPF) LPi(z), and a down sampler Di. The relationships between the analysis filter
Hi(z), high-pass filter HPi(z), and low-pass filter LPi(z) are expressed as [40]:

H1(z) = HP1(z)
H2(z) = LP1(z)HP2(z2)

H3(z) = LP1(z)LP2(z2)HP3(z4)

H4(z) = LP1(z)LP2(z2)LP3(z4).

(3)
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In each level of the tree, a 52-tap LPF and a 52-tap HPF are selected, which are designed with
Remez method based on the finite impulse response (FIR) filters. The filters have stop band attenuation
−50dB and transition band 0.0647rad/s. Figure 5 shows the frequency response for analysis filter bank
Hi(z) related to designed microphone array. The filter H1(z) and H4(z) are implemented on the closest
(subarray 1) and furthest (subarray 4) microphone pairs, respectively. Therefore, the microphone
signals are prepared to enter the proposed system.
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4. The Proposed Algorithm for Multiple SSL Based on SBGEVD

Multiple simultaneous SSL is a challenge in speech processing with unknown number of speakers
in noisy and reverberant conditions. The proposed techniques for SSL should able to increase the
accuracy of the algorithms with negligible computational complexity. In addition, the proposed
method has to be resistant in noisy and reverberant conditions to prepare the trustable results for
speaker localization. Since the speech is a W-DO signal, the main focus of the proposed method is
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subband processing based on the speech signal components. Subsequently, each block in the proposed
algorithm in Figure 2 are explained in detail.

4.1. Spectral Estimation for Noise Reduction

Noisy speech spectral components decrease the accuracy of the speech processing algorithms
such as localization and tracking. The speech spectral components are different in frequency bands.
For example, the high frequency bands contain a few information of the speech signal while noise
and reverberation have more effect in these components. The idea here is to propose a speech
spectral estimation block for keeping the proper speech frequency components and for eliminating
the undesirable components. Therefore, a spectral estimation block is considered in this section.
The spectral estimation methods are divided into the parametric and non-parametric algorithms [42].
The non-parametric methods are based on the Fourier transform, which are calculated on a windowed
signal before a smoothing method is implemented on these signals, such as periodogram and Welch.
In parametric methods, the signal spectrum is modeled by a mathematic formula and the model’s
parameters are estimated from the speech signal; finally, the signal spectrum is calculated via the
following models: autoregressive (AR), moving average (MA), and autoregressive–moving-average
(ARMA) methods. The experiments in [43] show that the Welch method prepares a smoother spectrum
in comparison with other algorithms hence, it is considered in the proposed method in this article.

The Welch method was introduced to compensate the adverse effects of periodogram. In the Welch
method, data blocking with overlapping and spectral averaging is considered for spectral estimation.
String

{
xm,k

}
is assumed for k = 0, 1, 2, . . . , N − 1. I blocks with length L are defined as:

xi
m,k = xm[k + (i− 1)D], where


m = 1, . . . , 8
k = 0, 1, 2, . . . , L− 1
i = 0, 1, 2, . . . , I

, (4)

where xi
m,k is the i-th block of string

{
xm,k

}
, L is length of the block, and D is forward step (overlap

rate). Each I block is multiplied by the window w(k) and its periodogram is calculated.Ŝi(ω) is the
normalized periodogram for i-th block, which is defined as follows:

Ŝi(m) =
∆t

EwL

∣∣∣∣∣∣∣
L−1∑
k=0

xi
m,kw(k)e− j 2πkm

L ∆t

∣∣∣∣∣∣∣
2

i = 0, 1, 2, . . . , I. (5)

The normalization factor Ew is the average window power, which is expressed as:

Ew =
1
L

L−1∑
k=0

w2(k). (6)

The Welch spectral estimation for power spectrum is defined as the average periodogram from I
blocks, namely:

Ŝ(m) =
1
I

I−1∑
i=0

Ŝi(m). (7)

The Welch method is similar to periodogram due to the bias but it is the enhanced version in
terms of variance. If the signal length is enough, the non-overlapping data are considered for the
Welch method, but the maximum 50% overlap is selected in the case of short data. Figure 6 shows
an example of using Welch spectral estimation on a time frame of speech signal. As seen, the signal
spectral amplitude is proper in some areas and is weak in others. The selected threshold for spectral
amplitude in each frame is 30% of the maximum spectral amplitude in that frame. The areas with an
amplitude lower than this value are denied from the localization process.
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4.2. Adaptive Wavelet Transform

As mentioned, the speech spectral components depend on the frequency bands. Therefore, by
paying better attention to each frequency band increases the accuracy of the localization algorithms.
Since the speech signal is W-DO, with high probability there is just one speaker in narrow frequency
bands. This property is considered for implementing the sub-band processing on speech signals.
The sub-band divisions can be considered uniformly but speech is a non-stationary signal and, thus,
its frequency information is variable during the time. Therefore, using the adaptive wavelet packet
decomposition (AWPD) is proposed. The output of the Welch method is entered to the AWPD block.
This adaptive wavelet is selected in the proposed system because of high and variable resolution in
low frequency components related to the speech signal information. The Welch spectral estimation
block output is shown as x̃m,i[n], where m is the microphone index (m = 1, . . . , 8) and i is the analysis
filter index in CuNMA (i = 1, . . . , 4). Figure 7 shows the structure of the AWPD block for the applied
method. This wavelet transform is adaptive because the number of levels and channels (p) are variable
based on the estimated speech spectral components.
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The continues wavelet transform (CWT) extracts the translation and scale coefficients from a
continues signal. The obtained signal of CWT is highly capable to be used in TF analysis. CWT of
continues signal x(t) by the use of wavelet ψ(t) is defined as [44]:

Wψ(s, τ) =
∫ +∞

−∞

x(t)ψs,τ(t)dt, (8)

where ψs,τ(t) is expressed as:

ψs,τ(t) =
1
√

s
ψ(

t− τ
s

), (9)

where s and τ are scale and translation parameters, respectively and the over line denotes to the
complex conjugate operator.Wψ(s, τ) is the wavelet coefficients and ψ(t) denotes the mother wavelet,
which is selected in different forms. The discrete wavelet transform (DWT) is considered as a powerful
instrument in the speech signal processing. DWT can be expressed based on the CWT formulas.
The only difference in DWT is the scale and translation parameters, which are written in power 2. The
s and τ are considered as s = 2a and τ = b× 2a where (a, b) ∈ Z2; DWT is given by:

ψs,τ(t) =
1
√

2a
ψ

(
t− b× 2a

2a

)
. (10)

The main part in DWT is the signal decomposition. The idea for decomposition in DWT is the use
of LPFs and HPFs in combination with down samplers. The decomposition levels a are selected based
on the desired cut-off frequency. Figure 7 shows the structure of the wavelet package decomposition,
where f0[n], f1[n] and ↓ 2 are HPF, LPF, and down sampler with factor 2, respectively. The DWT input
and output signals are considered as x̃m,i[n] and ỹm,i, j[n], respectively, where j is the number of created
sub-bands by DWT on the input signal. The relation between LPF and HPF is written as:

f1[n] = (−1)n f0[G + 1− n], (11)

where G is the filter length with n = 0, 1, . . . , G. There is not a certain method to select the mother
wavelet. The mother wavelet selection is related to the input signal and application. Daubechies,
Haar, Coiflet, Biorthogonal, Symlets, Morlet, and Mexican hat are the mother wavelets [45] where the
Daubechies (Db4) is selected for the DWT in the proposed system because it has a proper performance
on speech signals. Therefore, the AWPD is considered for subband processing and the speech signals
are divided into high frequency resolution sub-bands for GEVD algorithm.

4.3. The Subband GEVD Algorithm for DOA Estimation

The SSL algorithm in this article is based on TDOA estimations from microphone pairs. The GEVD
is a novel method for source localization, which is implemented in sub-bands on microphone
pairs. The eigenvector related to the smallest eigenvalue of covariance matrix contains the impulse
responses between the source and microphone signals, which are all required information for TDOA
estimation [46]. If the room is considered as a linear and time invariant (LTI) system, signals for each
microphone pair are written as:

xT
1 [n] × g

2
= xT

2 [n] × g
1
, (12)

where x1[n], x2[n] are signal vectors, while g
1

and g
2

are the impulse responses for microphones 1 and
2, respectively. Then, signal xi[n] is expressed as:

xi[n] = [xi[n], xi[n− 1], . . . , xi[n−M + 1]]T , i = 1, 2. (13)
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As seen in Equation (13), the microphone signal xi[n] is shown by M samples of this signal and T
denotes the transposing of the vector. The impulse response vector with length M is introduced as:

g
i
= [gi,0, gi,1, . . . , gi,M−1]

T , i = 1, 2. (14)

The linear property in Equation (12) comes from the fact that xi = gi × s(i = 1, 2). Therefore, it
can be written as:

x1 × g2 = s× g1 × g2 = x2 × g1. (15)

The GEVD algorithm estimates the TDOA between each microphone pair by the use of the
covariance matrix, which is expressed as follows:

R =

(
Rx1x1 Rx1x2

Rx2x1 Rx2x2

)
, (16)

where the covariance matrix components are defined as:

Rxix j = E
{
xi[n], xT

j
[n]

}
, i = 1, 2, (17)

where E is the expected value. In the next, vector u with length 2M for estimating the impulse response
is proposed as follows:

u =

 g
2
−g

1

. (18)

From Equations (12) and (16), it is clear that Ru = 0, and vector u contains the eigenvector of
covariance matrix R related to eigenvalue 0. The accurate estimation of vector u is not possible in real
conditions because of the non-stationary of the speech signal and background noise. We assume that
noise is stationary in short frames. Then, the noise covariance matrix in the silent part of the signal
is considered for updating the formulas in the noisy speech frames. The GEVD method extracts the
generalized eigenvector related to the smallest generalized eigenvalue of noise covariance matrix (Rb

M)
and signal covariance matrix (Rx

M) by the use of stochastic gradient algorithms. The noise covariance
matrix (Rb

M) is estimated from silence part of the signal. Therefore, it is not able to be updated in the
frames by existence noise and speech simultaneously. The noise covariance matrix (Rb

M) is used for
updating the formulas in noisy speech part of the signal.

The generalized eigenvector is calculated by minimizing the cost function uTRx
Mu in an iterative

process instead of updating all matrix Rb
M and Rx

M, and by use of generalized eigenvector related to the
smallest generalized eigenvalue. Therefore, the error signal e[n] is processed as:

e[n] =
uT[n]xm[n]√
uT[n]Rb

Mu[n]
=

uT[n]xm[n]∣∣∣∣∣∣∣∣∣∣ √Rb
Mu[n]

∣∣∣∣∣∣∣∣∣∣ , (19)

where is obtained in an iterative process by least mean square error (LMS) algorithm as:

u[n + 1] = u[n] − µe[n]
∂u[n]
∂e[n]

, (20)

where µ is the adaptation step in this algorithm. The gradient of error signal e[n] is calculated as follows:

∂e[n]
∂u[n]

=
1√

uT[n]Rb
Mu[n]

xm[n] − e[n]
Rx

Mu[n]√
uT[n]Rb

Mu[n]

. (21)
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Vector u[n] is calculated by replacing Equations (19) and (21) by Equation (20) as:

u[n + 1] = u[n] −
µ

uT[n]Rb
Mu[n]

(
xm[n]x

T
m
[n]u[n] − e2[n]Rb

Mu[n]
)
, (22)

where the expected value of Equation (22) is calculated after convergence, then:

Rx
Mu[∞] = E

{
e2[n]

}
Rb

Mu[∞], (23)

where u[∞] is the generalized eigenvector related to the smallest generalized eigenvalue of matrixes Rb
M

and Rx
M. An extra normalization step is implemented at each iteration step to prevent error propagation,

which is expressed as:
e[n] = uT[n]xm[n], (24)

and,
ũ[n + 1] = u[n] − µe[n]

{
xm[n] − e[n]Rb

Mu[n]
}
. (25)

Finally, vector u is calculated as follows:

u[n + 1] =
ũ[n + 1]√

ũT[n + 1]Rb
Mũ[n + 1]

. (26)

Impulse responses g
1

and g
2

are calculated by estimating vector u. The signal in the source
location is obtained by the deconvolution between these impulse responses and microphone signals.
Also, the TDOA between each microphone pair is calculated by estimating vector u. The results section
will show the convergence of the SBGEVD algorithm to the related TDOA for each sound sources.
The GEVD algorithm is implemented on each sub-band (SBGEVD) and the TDOA (or DOA) values
are calculated for all microphone pairs in sub-bands. The cumulative distribution function (CDF)
is plotted for all calculated DOAs in each sub-band. The sub-bands with information for just one
dominant speaker are selected by thresholding on these CDFs (or PFDs) and the other sub-bands
with inappropriate information are denied. This thresholding is based on the SD calculation on data
(DOAs) in each sub-band. The SBGEVD algorithm is iterated for each 3 continues frames and the SD is
calculated for sub-band CDFs and this process is repeated for frequent time frames to cover one second
of overlapped speech signal for multiple speakers. Therefore, the updated time is selected as one
second for the proposed SSL algorithm. When the process is fully completed, all passed DOAs by the
SD thresholding decision step are entered to the clustering for estimating the number of speakers and
3D SSL. The K-means clustering with silhouette criteria [47] are selected for the final step. The K-means
algorithm is implemented on all passed DOAs of the SD decision step.

4.4. Clustering and 3D Sound Source Localization

K-means is an unsupervised clustering algorithm for data classification. The idea is to define
K centroids, which are far from each other to have the best results. In the next step, each datum
(the estimated DOAs by SBGEVD method and passed in the SD decision step) are associated with
the closest centroids. Then, the centroids are recalculated by the associated data entire each cluster.
The new centroids are calculated by averaging the existence data in each cluster. Therefore, the first
data grouping is denied and the grouping step (associating data to the closest cluster) is iterated based
on the new centroids. These steps are repeated until the centroids have no tangible changes. In other
words, the aim is minimizing the following cost function:

J =
K∑

m=1

Nk∑
n=1

‖DOA(m)
n −Cm‖

2
, (27)
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where ‖DOA(m)
n −Cm‖

2
is the Euclidean distance between data DOA(m)

n and centroid Cm, and Nk is the
number of DOAs in each cluster. The main issue in K-means clustering is the estimation of the K-value.
Therefore, the number of speakers is determined by estimating the K value and, finally, the 3D position
of each speaker is estimated by the intersection between DOAs in each cluster. The silhouette criteria
are considered for estimating the K value in the proposed method.

Silhouette criteria is a method for validating the associated data to the clusters. This method
shows graphically if the data is adjusted to the proper cluster or should be associated to another cluster.
We assume that data have been clustered with a specific K value. For each data i,v(i) is defined as
the average dissimilarity between data i and all data in the same cluster. The Euclidean distance is
selected for this measurement. The smaller v(i) value shows the better adjustment of data i in its
cluster. The average dissimilarity v(i) of data i to the centroid Cm is defined as the average distance
between data i and all other data in the same cluster. We define c(i) as the lowest average dissimilarity
of data i with other clusters that data i is not a member of them. The cluster with smallest c(i) value is
selected as a neighbor cluster for data i because is the best cluster for data i if it does not adjust well in
the current cluster. The silhouette value,Z(i), for data i is defined as:

Z(i) =
c(i) − v(i)

max
{
v(i), c(i)

} . (28)

Z(i) can be simplified mathematically as:

Z(i) =


1− v(i)

c(i) i f v(i) < c(i)

0 i f v(i) = c(i)
c(i)
v(i) − 1 i f v(i) > c(i).

(29)

If v(i)� c(i),Z(i) value becomes close to 1. Since v(i) is the average dissimilarity of data i to its
cluster, this value shows that data i is adjusted properly to the cluster. Moreover, a large value of c(i)
explains that data i has not been adjusted well with its cluster. If Z(i) is close to −1, then it is better
than data i transfers to the neighbor cluster. The means that the silhouette value Z(i) is a criterion for
validating an unsupervised clustering algorithm on a series of data. In the results and discussions
section, the means silhouette value (MSV) is shown for various K values and signal frames. The pick
position in the MSV plot refers to the number of speakers that K is the index of pick value. If the
MSV curve has no maximum, the number of speakers is considered as 1. Each cluster represents one
speaker. In the next, the DOAs in each cluster are plotted as a plane and the intersections are calculated.
This process is repeated for all clusters to obtain the 3D position for all K speakers as:

(x̂k, ŷk, ẑk) =
{
DOAk,1 ∩DOAk,2 ∩ . . .∩DOAk,n

}n=1,...,Nk

k=1,...,K
, (30)

where K is the number of speakers and Nk is the number of DOAs in cluster k that the 3D location of
speaker k is represented as (x̂k, ŷk, ẑk). Therefore, the accuracy of localization algorithm is increased
by the cuboids nested microphone array, sub-band processing on GEVD method, SD thresholding by
making a decision on DOA values, and intersections between DOAs in each cluster for estimating the
3D positions.

5. Results and Discussions

The experiments are implemented on real and simulated data for evaluating the proposed multiple
simultaneous SSL algorithm. The Texas Instruments and Massachusetts Institute of Technology (TIMIT)
dataset is considered for simulated data in evaluations [48]. The proposed algorithm is implemented
on the overlapped speech signal. In the real condition, for about 90% of overlapped speech is from
two simultaneous speakers. Almost 8% of overlapped speech is from 3 simultaneous speakers and
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the rest is for four and more simultaneous speakers [49]. As seen, around 98% of overlapped speech
signal is just for two and three simultaneous speakers. Therefore, the simulations are implemented for
the scenarios with two and three speakers. Then, one male and one female speaker (S1 and S2) are
considered for two simultaneous speakers and two males, and one female speaker are selected for
three overlapped speakers. Also, the evaluations are implemented on real data, which are recorded at
a speech processing laboratory, at the Universidad Tecnológica Metropolitana, to compare the results
between the simulated and real conditions. The microphone signals are recorded in the acoustic
room by a cuboids nested 8-microphones array, located in the middle of room. The microphones are
connected to a recording speech system, which captures the synchronized signals simultaneously. Also,
the connected speakers to separate computers are considered instead of humans in the recording room
for better control of the transmitted signal power. The speech signals are played by the speakers in
front of CuNMA and they are recorded by the microphones. In the simulations, 45 s speech signal is
considered for each speaker that 27.2 s of the signals have overlap between 2 speakers and 20.6 s of the
overlapped signals are for three simultaneous speakers. Figure 8 shows the speech signal for each
speaker jointly with two and three overlapped signals.
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Figure 8. The time-domain speech signal, (a) first speaker, (b) second speaker, (c) third speaker,
(d) overlapped between 2 speakers (speaker 1 and speaker 2), and (e) overlapped between 3 speakers.

The simulation conditions are adjusted to be similar to real scenarios. Therefore, the room
dimension is set as (350, 300, 400) cm. The three speakers are located at (60,220,170) cm (S1),
(310,245,175) cm (S2) and (95,75,180) cm (S3), respectively. In addition, the CuNMA is placed in the
middle of room that the center of the array is located at (175,150,120) cm. Figure 9 shows a view of
the room with locations of the speakers and microphone array. The microphone positions, speakers’
locations, and room dimensions are summarized in Table 1.
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Table 1. Microphones positions, speakers’ locations and room dimension.

Positions X, cm Y, cm Z, cm

Microphone 1 (m1) 179.5 148.8 121.2
Microphone 2 (m2) 179.5 151.1 121.2
Microphone 3 (m3) 179.5 151.1 118.9
Microphone 4 (m4) 179.5 148.8 118.9
Microphone 5 (m5) 170.5 148.8 121.2
Microphone 6 (m6) 170.5 151.1 121.2
Microphone 7 (m7) 170.5 151.1 118.9
Microphone 8 (m8) 170.5 148.8 118.9

Speaker 1 60 220 170
Speaker 2 310 245 175
Speaker 3 95 75 180

Room Dimension 350 300 400

Noise and reverberation are two important factors that decrease the accuracy of localization
algorithms. These two factors are observed clearly in the real conditions. Therefore, we should
consider these factors in the simulated scenarios. White Gaussian noise with variable power is selected
for simulations to create the noisy signal with different signal-to-noise ratio (SNR). This Gaussian
noise models the real noisy environment in the simulated data. The Image model is selected for the
simulations to prepare the reverberation effect as same as the real conditions [50]. The Image model
creates the reverberations in the indoor conditions similar to the real environments with high accuracy.
This model estimates the room impulse response between source and microphone by considering
room dimensions, microphone location, source position, impulse response length, sampling frequency,
surface reflection coefficients, and reverberation time (RT60). The received signal in the microphone
place is generated by the convolution between the generated room impulse response and source signal.
The room reverberation time is easily changeable in simulations, but it is hard to change RT60 in real
conditions. The absorbent panels are used on the walls and floors to change the room reverberation
time in real scenarios. The RT60 value changes by moving the location, increasing and decreasing the
number of panels.

The experiments are implemented on environmental scenarios. Then, three main scenarios are
designed for the evaluations. The first scenario is reverberant environment with RT60 = 650 ms
and SNR = 20 dB. The noisy scenario has dominant noise against reverberation as SNR = 5 dB and
RT60 = 250 ms. Finally, the most challenging scenario is noisy-reverberant with SNR = 5 dB and
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RT60 = 650 ms. Also, the experiments are done on fixed-SNR values and variable RT60 and vice versa for
evaluating the robustness of the proposed method during the SNR and RT60 changes. The simulations
are done on MATLAB software version 2019b (MathWorks, Natick, MA, USA). Also, the experiments
are implemented on PC with CPU core i7-7700 (Intel, Santa Clara, CA, USA), 4.2 GHz and 32 GB RAM.
The Hamming window with 60ms length and 50% overlap is considered to prepare the constant frames
of speech signal that the speaker positions are fixed during this short time. Therefore, the sufficient
and trustable information is prepared for the proposed algorithm. The proposed CuNMA-SBGEVD
method is compared with HiGRID [33], PCSF [35], TF-wise SSC [37] and SSM-DNN [36] methods to
show the precision and robustness of the estimated locations in comparison with previous works.
Also, the mean absolute estimation error (MAEE) criteria between the true (xk, yk, zk) and estimated
(x̂k, ŷk, ẑk)3D locations, in cm, is calculated for N f continuous frames and for speaker k to compare
results in noisy and reverberant scenarios.

MAEEk =
1

N f

N f∑
q=1

∣∣∣(xk,q, yk,q, zk,q) − (x̂k,q, ŷk,q, ẑk,q)
∣∣∣ (31)

One of the main parts of the proposed system is the SBGEVD block. The final localization
results are related directly to the convergence of DOA values in this part. Figure 10 shows the
convergence curve for the SBGEVD algorithm in sub-band 1.8–2 kHz and for noisy, reverberant,
and noisy-reverberant scenarios for the first speaker. As seen in this Figure, the SBGEVD function is
converged to the correct DOA 59o for the first speaker in all three scenarios. These correct convergences
are due to the sub-band processing with spectral estimation in the pre-processing step. The speed of
convergence in noisy scenario is more than the reverberant scenario and noisy-reverberant scenario,
which has the lowest speed of convergence because of the existence of both undesirable factors at
the same time. Also, in the sub-bands with simultaneous speakers, the DOA is not converged to the
correct value and it makes errors in the estimated location. Therefore, the sub-bands with simultaneous
speakers are denied in the next step.
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The CDF and PDF calculations are another block in the proposed CuNMA-SBGEVD algorithm,
which are implemented on the estimated DOAs from each sub-band. The CDFs (and finally PDFs) are
calculated to show a robust distribution of DOAs in sub-bands. Figure 11 shows the CDFs and PDFs
for sub-bands 0.8–1 kHz and 2–2.5 kHz and for three continuous time frames. As shown in Figure 11a,
the PDF is closer to Gaussian distribution and it means the estimated DOAs in this subband are centralized
around a specific point (the DOA for first speaker 59o). The calculated SD in this condition is a small value.
Figure 11b shows the CDF and PDF for a sub-band, which contains the mixing of speaker information
and the estimated DOA does not present a correct direction. Therefore, the PDF curve is closer to uniform
distribution and SD is a larger value in this condition. This means that the estimated DOAs in this
sub-band are not trustable and will be denied. Based on the experiments, the threshold value for the SD
to accept or reject the DOAs in sub-bands is ±10o. Therefore, the estimated DOAs for the sub-band with
the SD of PDF function under ±10o are passed to the clustering step and the rest are denied. Then, the
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proper estimated DOAs are considered for the clustering process to decrease the localization error. Finally,
the intersection between passed DOAs in each cluster represent the 3D position of each speaker.
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Finally, the last step of the proposed method is K-means clustering jointly with silhouette criteria
for estimating the number of speakers and 3D SSL. Therefore, simulations are implemented on three
areas of speech signal for single, two, and three simultaneous speakers to show the superiority of the
proposed method. Figure 12 shows the results for clustering and silhouette criteria in SNR = 20 dB
and RT60 = 250 ms(low level of noise and reverberation). Figure 12a represents the approved DOAs
from thresholding on sub-band PDFs. The K-means algorithm is implemented on all of these data. Also,
the silhouette criteria are considered to select the best K for all regions of data. Figure 12b–d shows
the results for silhouette criteria in the time domain. Figure 12b represents the MSV curve for the first
region (left side) of Figure 12a, which shows the existence of just one speaker because of not having any
outstanding maximum in different K values. The 3D source location is estimated by this clustering and
the intersection between DOAs as (51,229,168) cm with 12.88 cm error in comparison with correct location
(60,220,170) cm. This process is iterated for the second region (center) in Figure 12a that the MSV curve is
shown in Figure 12c. As shown in this Figure, the MSV curve is maximized in K = 3 by showing the
existence of three speakers in this area. The locations for three speakers are estimated by the intersection
between DOAs in the three clusters as (66,215,176) cm (S1), (321,230,184) cm (S2) and (102,71,172) cm (S3)
which have 9.84 cm, 20.66 cm, and 11.35 cm errors with correct locations (60,220,170) cm (S1), (310,245,175)
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cm (S2) and (95,75,180) cm(S3), respectively. Finally, the silhouette criteria is implemented for the last
region of Figure 12a, which is shown in Figure 12d with maximum in K = 2 and existence of two speakers
(speakers 1 and 2) in this region. The speakers’ locations are estimated by the intersection between
DOAs in each cluster, which shows the location (58,227,161) cm and (302,253,181) cm for the first and
second speakers, respectively. The correct locations for these two speakers are (60,220,170) cm (S1) and
(310,245,175) cm (S2), respectively, which have11.57 cm and 12.8 cm errors with the estimated locations.
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Table 2 shows the results for the proposed CuNMA-SBGEVD algorithm in comparison with
HiGRID, PCSF, TF-wise SSC, and SSM-DNN methods in reverberant, noisy, and noisy-reverberant
scenarios on real and simulated data for two simultaneous speakers. The MAEE criteria, in cm, is
considered for measuring the error in the estimating of 3D speaker locations on 20 continuous frames.
Based on the MAEE values in this table, the noisy environment has better results in comparison with
two other scenarios. Also, the simulated data have less MAEE in comparison with real data because of
the better control of environmental parameters (noise and reverberation). In addition, the proposed
CuNMA-SBGEVD has a better accuracy in most of the scenarios in comparison with previous works.
In scenario 3, for real data, the SSM-DNN method has a slight smaller MAEE, which cannot be extended
to all scenarios.

Table 2. The mean absolute estimation error (MAEE) comparison between the proposed cuboids
nested microphone array (CuNMA)-subband generalized eigenvalue decomposition(SBGEVD) and
hierarchical grid (HiGRID), perpendicular cross-spectra fusion (PCSF), time-frequency wise spatial
spectrum clustering (TF-wise SSC), and spectral source model-deep neural network (SSM-DNN)
methods for reverberant, noisy, and noisy-reverberant scenarios on real and simulated data for 2
simultaneous speakers.

MAEE (cm) HiGRID [33] PCSF [35] TF-Wise SSC [37] SSM-DNN [36] Proposed
CuNMA-SBGEVD

Simulated Data

Speaker S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Scenario 1 51 53 46 50 45 49 43 44 36 38
Scenario 2 40 44 37 39 34 38 32 36 25 29
Scenario 3 59 65 55 61 54 55 48 51 41 43

Real Data

Speaker S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Scenario 1 55 62 55 54 46 52 45 47 37 41
Scenario 2 43 46 41 44 36 39 36 33 26 30
Scenario 3 64 68 61 63 53 61 44 54 45 46

Figure 13 shows the averaged MAEE results for the proposed CuNMA-SBGEVD in comparison
with HiGRID, PCSF, TF-wise SSC, and SSM-DNN methods for different range of SNRs and RT60 on
real and simulated data for 2 simultaneous speakers. Figure 13a represents the averaged MAEE for
SNR = 5 dB and 0 < RT60 < 700 ms. As seen, the proposed method has less MAEE in comparison with
other previous works on real and simulated data. For example, in RT60 = 700 ms, the averaged MAEE
for the proposed CuNMA-SBGEVD method on the simulated data is 44 cm in comparison with 65 cm
for HiGRID, 60 cm for PCSF, 56 cm for TF-wise SSC, and 51 cm for SSM-DNN, which shows the higher
accuracy of the proposed method in contrast to other methods. Also, Figure 13b shows these results
for RT60 = 650 ms and −10 < SNR < 20 dB. As shown, the proposed method has a better accuracy
in all of the conditions in comparison with other works. For example, in SNR = 5 dB, the averaged
MAEE is 42 cm for the proposed CuNMA-SBGEVD in comparison with 62 cm for HiGRID, 58 cm for
PCSF, 54 cm for TF-wise SSC, and 49 cm for SSM-DNN algorithms for simulated data, thus showing
the superiority of the proposed method.
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Table 3 represents the MAEE results for the proposed CuNMA-SBGEVD method in comparison
with HiGRID, PCSF, TF-wise SSC, and SSM-DNN for 3 simultaneous speakers in reverberant, noisy,
and noisy-reverberant scenarios on real and simulated data. The results are obtained from 20 continuous
frames of overlapped speech signals. The results show the accuracy of the proposed method in the
3D localization in comparison with previous works. Also, the results in noisy scenarios are better
than reverberant and noisy-reverberant conditions in all methods. In addition, the accuracy of the
localization is higher for the closer speakers to the CuNMA because of the signal high power and low
reverberation. The results for the simulated data are better than the real data because there is more
accurate control of undesirable conditions in the simulations.

Table 3. The MAEE comparison between the proposed CuNMA-SBGEVD method and HiGRID, PCSF,
TF-wise SSC, and SSM-DNN algorithms in reverberant, noisy, and noisy-reverberant scenarios on real
and simulated data for 3 simultaneous speakers.

MAEE (cm) HiGRID [33] PCSF [35] TF-wise SSC [37] SSM-DNN [36] Proposed
CuNMA-SBGEVD

Simulated Data

Speaker S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Scenario 1 55 54 59 53 56 58 48 50 54 43 48 47 41 39 44
Scenario 2 43 46 47 39 43 44 39 42 40 34 37 39 28 29 32
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Scenario 1 65 63 69 59 55 61 53 51 56 45 53 50 38 45 43
Scenario 2 45 47 51 43 44 46 38 42 44 35 42 43 29 34 35
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Figure 14 represents the averaged MAEE results for the proposed CuNMA-SBGEVD method and
HiGRID, PCSF, TF-wise SSC, and SSM-DNN algorithms for 3 simultaneous speakers and various range
of SNRs and RT60. Figure 14a shows the averaged MAEE for SNR = 5 dB and 0 < RT60 < 700 ms.
As seen, the proposed method has high accuracy on real and simulated data in comparison with
other previous works. For example, in RT60 = 700 ms,the averaged MAEE for the proposed
CuNMA-SBGEVD method on the simulated data is 47 cm, which is more accurate in comparison
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with averaged MAEE 69 cm for HiGRID, 64 cm for PCSF, 59 cm for TF-wise SSC, and 56 cm for
SSM-DNN. In addition, Figure 14b represents the results for RT60 = 650 ms and −10 < SNR < 20 dB.
This experiment evaluates the noise effect on the proposed SSL method. As shown, the proposed
method has the lowest averaged MAEE and higher precision in SSL in comparison with previous
works. For example, in SNR = 5 dB, the averaged MAEE for the proposed CuNMA-SBGEVD on
simulated data is 45 cm in comparison with 65 cm in HiGRID, 62 cm in PCSF, 55 cm in TF-wise SSC,
and 53 cm in SSM-DNN algorithms.

Table 4 compares the computational complexity of the proposed CuNMA-SBGEVD in comparison
with other previous works based on the run-time of MATLAB software in second. The experiments are
implemented on real data for two and three simultaneous speakers. As seen, the HiGRID method
has the highest computational complexity values because of searching the candidate places by the
indoor conditions. After this method, PCSF and SSM-DNN algorithms have lower complexities in
comparison with HiGRID but the SSM-DNN method still has the higher complexity because of using
training and testing steps in the DNN structure. The complexity of the proposed method is similar to
the TF-wise SSC algorithm, but in some conditions, the proposed method has less complexity. This
can be justified by the use of spectral estimation blocks to remove the undesirable spectral contents of
the speech signal and also, eliminating the improper DOAs in the SD decision on PDFs. Therefore,
the complexity of the proposed method is less than other previous works.
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Figure 14. The averaged MAEE curves for the proposed CuNMA-SBGEVD in comparison with HiGRID,
PCSF, TF-wise SSC, and SSM-DNN on real and simulated data for 3 simultaneous speakers, (a) for
SNR = 5 dB and 0 < RT60 < 700 ms, and (b) for RT60 = 650 ms and −10 < SNR < 20 dB.

Table 4. Comparison of computational complexity between the proposed CuNMA-SBGEVD, HiGRID,
PCSF, TF-wise SSC, and SSM-DNN algorithms on real data for 2 and 3 simultaneous speakers (run-time
in second).

Run-time (s) HiGRID [33] PCSF [35] TF-wise SSC [37] SSM-DNN [36] Proposed
CuNMA-SBGEVD

2 Simultaneous Speakers

Scenario 1 641 548 446 589 453
Scenario 2 592 529 419 557 438
Scenario 3 668 570 474 612 462

3 Simultaneous Speakers

Scenario 1 693 596 466 607 459
Scenario 2 659 572 437 582 448
Scenario 3 724 634 495 637 483
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In summary, the evaluation results on real and simulated data for two and three simultaneous
speakers show the superiority of the proposed method in comparison with other previous works.
The high accuracy, low computational complexity, and robustness of the CuNMA-SBGEVD algorithm
create the proper conditions for using the proposed method for 3D localization and for estimating the
number of speakers in real conditions.

6. Conclusions

The multiple simultaneous SSL of overlapped speech signals is one of the main challenges in
speech signal processing. Also, noise and reverberation as undesirable environmental factors reduce
the accuracy of localization algorithms. Some methods localize the speakers’ locations based on the
energy and some others based on the TDOAs. The localization method is selected based on the accuracy
and computational complexity. In addition, the microphone array increases the accuracy of the SSL
algorithms by the information redundancy, but the spatial aliasing decreases the accuracy because of
inter-microphone distances. In this article, first, a cuboids nested microphone array is proposed which
eliminates the spatial aliasing by having proper inter-microphone distances in all microphone pairs
and prepares the high quality signals for the SSL algorithm. In most conditions, the speech spectrum
components are centralized in some specific frequency bands and the other bands do not have suitable
information. Therefore, the use of the Welch spectral estimation method is proposed for keeping
the components with proper spectrums and eliminating the rest of areas. Therefore, the improper
information is removed from the localization procedure. Speech signals provide more information in
low frequency components in comparison with high frequencies. The Wavelet transform is proposed
as a proper method for sub-band processing in the proposed SSL algorithm. The low frequency
components of speech signal are considered deeply by this sub-band processing. The GEVD algorithm
is implemented on sub-bands for estimating the DOAs for each nested microphone pair. The sub-bands
with just one speaker have DOA values which are centralized around a specific point, but the sub-bands
with multiple speakers do not have any specific distribution of estimated DOAs. Therefore, the PDF
for DOAs is calculated in each sub-band and the DOAs are passed for sub-bands with a SD smaller
than the threshold and the other DOAs are denied. Finally, the K-means clustering with silhouette
criteria are considered for the classification the DOAs (estimating the number of speakers) and the 3D
speakers locations are estimated by the intersection between DOAs in each cluster. The accuracy and
computational complexity of the proposed CuNMA-SBGEVD method is compared with HiGRID, PCSF,
TF-wise SSC, and SSM-DNN algorithms on real and simulated data for two and three simultaneous
speakers. The results show the superiority of the proposed method in comparison with other previous
works. As we reported in the article, the MATLAB software were used for the simulations on the
real and simulated data. Table 4 shows that the implemented methods still are far from the real-time
implementations. The MATLAB software is considered for the implementations because it is user
friendly and more applicable for the use of existing functions and the preparation of figures and tables
in the results section. Otherwise, alternative software such as Python and C, or the implementation
of a digital signal processor hardware, are the options more suitable for real-time implementation.
The idea for future work is to implement the method in such hardware to be implementable for
real-time applications.
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Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregressive
ARMA Autoregressive–moving-average
AWPD Adaptive wavelet packet decomposition
CC Cross-correlation
CPSP Cross-power spectrum phase analysis
CuNMA Cuboids nested microphone array
CuNMA-SBGEVD Cuboids nested microphone array-sub-band generalized eigenvalue decomposition
CWT Continues wavelet transform
DOA Direction of arrival
DWT Discrete wavelet transform
EM Expectation-maximization
ESPRIT Estimating signal parameters via rotational invariance technique
FIR Finite impulse response
GEVD Generalized eigenvalue decomposition
HAS Hearing aids system
HiGRID Hierarchical grid
HPF High-pass filter
IDFT Inverse discrete Fourier transform
LPF Low-pass filter
MA Moving average
MAEE Mean absolute estimation error
ML Maximum likelihood
MSV Means silhouette value
MUSIC Multiple signal classification
PCSF Perpendicular cross-spectra fusion
PDF Probability density function
RTF Relative transfer function
SBGEVD Sub-band generalized eigenvalue decomposition
SD Standard deviation
SRP Steered response power
SRPD Steered response power density
SSL Sound source localization
SSM-DNN Spectral source model-deep neural network
TDOA Time difference of arrival
TF-wise SSC Time-frequency wise spatial spectrum clustering
W-DO Windowed-disjoint orthogonality
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