
electronics

Article

Learning to See in Extremely Low-Light
Environments with Small Data

Yifeng Xu 1,2, Huigang Wang 1,* , Garth Douglas Cooper 1, Shaowei Rong 1 and Weitao Sun 1

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
xuyifeng123@mail.nwpu.edu.cn (Y.X.); Coopergd1@mail.nwpu.edu.cn (G.D.C.);
rsw1986@mail.nwpu.edu.cn (S.R.); Sunwt1223@gmail.com (W.S.)

2 Jinhua Polytechnic, Jinhua 321017, China
* Correspondence: wanghg74@nwpu.edu.cn; Tel.: +86-029-88460521

Received: 25 May 2020; Accepted: 14 June 2020; Published: 17 June 2020
����������
�������

Abstract: Recent advances in deep learning have shown exciting promise in various artificial
intelligence vision tasks, such as image classification, image noise reduction, object detection,
semantic segmentation, and more. The restoration of the image captured in an extremely dark
environment is one of the subtasks in computer vision. Some of the latest progress in this field
depends on sophisticated algorithms and massive image pairs taken in low-light and normal-light
conditions. However, it is difficult to capture pictures of the same size and the same location
under two different light level environments. We propose a method named NL2LL to collect the
underexposure images and the corresponding normal exposure images by adjusting camera settings
in the “normal” level of light during the daytime. The normal light of the daytime provides better
conditions for taking high-quality image pairs quickly and accurately. Additionally, we describe the
regularized denoising autoencoder is effective for restoring a low-light image. Due to high-quality
training data, the proposed restoration algorithm achieves superior results for images taken in
an extremely low-light environment (about 100× underexposure). Our algorithm surpasses most
contrasted methods solely relying on a small amount of training data, 20 image pairs. The experiment
also shows the model adapts to different brightness environments.
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1. Introduction

Image restoration is a challenging task, particularly in an extremely dark environment. For example,
the recovery of images captured in a scene where the light is very dark is a difficult problem. There are
two ways to solve the problem: relying on hardware and relying on software. In the aspect of hardware,
the adjustment of the camera settings can partially solve the problem, but there are still difficulties:
(1) a higher sensitivity value of the image sensor increases brightness, but it also increases high
sensitivity noise, and, although the ISO value in the latest cameras can be set to 25,600, the images with
an ISO over 400 should have more noise; (2) the larger aperture receives more light, but it also leads to
worse sharpness and a shallower depth of field; (3) extending exposure time is one of the most direct
solutions, but a little movement should lead to blurred imaging under the condition; (4) the larger size
of the photosensitive element receives more photons, although the size of the photosensitive element is
limited by camera size and cost; (5) using flash helps to capture more light, however, the flash range is
limited and flash is forbidden in some situations.

In addition to the suitable hardware settings, some sophisticated algorithms have been designed
to restore the images in the dark. Many denoising, deblurring, color calibration, and enhancement
algorithms [1–5] are applied to low-light images. These algorithms only deal with normal low-light
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images but are inefficient for the extremely low-light images with brightness as low as 1 lumen.
An alternative method, burst alignment algorithms [6–8], uses multiple pictures taken continuously.
However, this kind of method still loses efficacy on the pictures in extremely low-light conditions.
Chen et al. [9] proposed a deep learning end-to-end method which can restore images with only
0.1 lumens. However, this method was trained with massive amounts of training data and needed
a huge computational cost. It is well known the deep learning algorithms require big data. One of the
reasons is that the quality of partial data is poor. By obtaining better training data, the algorithm can
accomplish the same result with less data.

In the past, the low-light data were basically collected in the low-light environment, while the
ground truth data were collected by long exposure. This collecting method had many difficulties
and generated low-quality training data. We propose a new method to collect dark pictures and
corresponding normal exposure pictures by adjusting camera settings in the daytime.

We use an end-to-end neural network to restore the extremely low-light image only by
20 high-quality image pairs based on the work of [9,10]. Our contributions in this paper are summarized
as follows: (1) we propose a new low-cost method to capture high-quality image pairs, including
dark pictures and corresponding normal exposure pictures; (2) we use the theory of the regularized
denoising autoencoder to explain why the algorithm works effectively; (3) our proposed algorithm can
restore images taken in an extremely dark environment (100× underexposure light level) by only using
20 image pairs.

The rest of this paper is organized as follows. Related work about low-light images restoration is
proposed in Section 2. The image acquisition method and the framework of the neural network are
shown in Section 3. The detailed experimental results are shown in Section 4. Several problems that
require further research are put forward in Section 5. The paper concludes with Section 6.

2. Related Work

The restoration of low-light images has been extensively studied in the literature. In this section,
we provide a short review of related work.

2.1. Low-Light Image Datasets

Well-known public image datasets, such as PASCAL VOC [11], ImageNet [12], and COCO [13]
have played a significant role in traditional computer vision tasks. Because less than 2% of the images
in these datasets were taken in a low-light environment, the public datasets were unsuitable for training
low-light image restoration.

Many researchers proposed low-light image datasets. LLnet [14] darken the original images to
simulate low-light images. The original images were used as a ground truth; the generated dark
images were artificial. The authors of [5] proposed a new dataset of 3000 underexposed images,
each with an expert-retouched reference. PolyU [15] collected real-world noisy images taken from
40 scenes, including indoor normal lighting, dark lighting, and outdoor normal-light scenes. However,
the brightness of the images from these datasets is dusky, not extremely black. SID [9] proposed an
extremely dark image dataset captured by Sony and Fuji cameras, including 5094 short exposure
images and 424 long-exposure images. LOL [16] consists of 500 image pairs. The ExDARK [17] dataset
is made up of images captured in real environments, containing various objects. Because the images
need careful adjustment of the camera settings in dark conditions, the previously mentioned databases
have two common problems: the high cost of collecting data and very few high-quality images.

2.2. Image Denoising

According noise is one of the significant obstacles in the restoration of low-light images; denoising
is a notable subtask in low-light enhancement tasks. A classic traditional method of dealing with
the low-light image is scaling luminosity and the followed denoising procedure. Image denoising
is an often-traversed topic in low-level computer vision. Many approaches have been proposed,
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such as total variation [18], sparse coding [19], and 3D transform-domain filtering (BM3D) [20], etc.
These approaches are grouped into traditional denoising methods. Their effectiveness is often based
on an image prior’s information, such as smoothness, low rank, and self-similarity, etc. Unfortunately,
most traditional methods only work more effectively for the synthetic noise data, such as salt pepper
and Gaussian noise, but the performance of the methods sharply drops for noisy images taken in
real-world environments.

Researchers have also widely explored the application of deep learning networks to image
denoising. Important methods of deep learning include deep illumination estimation [5], end-to-end
convolutional networks [9,21], autoencoders [22,23], and multi-layer perceptron [24]. Generally, most
methods based on deep learning work better than traditional methods. However, the former has the
requirement of huge amounts of training data.

Except for single image denoising, the alternative, multiple-image denoising [6,7,25], achieves
better results since more information is collected. However, it is difficult to select the “lucky image”
and the correspondence estimation between images. On some occasions, taking more than one image
was infeasible.

2.3. Low-Light Image Restoration

One basic method is histogram equalization to expand the dynamic range of the images. The recent
effort on low-light image restoration is the learning-based methods. For instance, the authors of [14]
proposed a deep autoencoder approach. WESPE [26] proposed a weakly supervised image-to-image
network based on a Generate Adversarial Network (GAN). However, WESPE was more focused on
image enhancement. In addition, other methods include the approach based on dark channel prior [27],
the wavelet transform [23], and illumination map estimation [28], etc. These methods mentioned above
only deal with the images captured in a normal dark environment, such as dusk, morning, and shadow,
etc. The end-to-end model proposed by Chen et al. [9] could restore extremely low-light images using
RAW sensor data. However, its model was heavyweight. In sum, the current research suggests that
either the image in the extreme dark cannot be restored or the algorithms require big data.

3. The Approach

3.1. The End-to-End Pipeline Based on Deep Learning

The pipelines based on deep learning and the traditional method can be used to restore low-light
images. Two kinds of pipelines are shown in Figure 1. The deep learning model (the top sub-image)
is an end-to-end method. This method generates a model from image pairs, while the traditional
method cascades a sequence of low-level vision processing procedures, such as luminosity scaling,
demosaicing, denoising, sharpening, and color correction, etc. In Figure 1, luminosity scaling and
cBM3D are selected as the major procedures in the traditional method.
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Figure 1. The two categories of pipelines concerning low-light restoration. The top sub-image shows the
pipeline based on deep learning. The bottom sub-image shows a traditional image processing pipeline.
The toy images on the right side are the results of the two pipelines, respectively. The sub-image
surrounded by a red line box is the zoom-in image. BM3D = 3D transform-domain filtering.
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In the pipeline of the traditional method, the first step is luminosity scaling. The images taken by
the camera Nikon D700 are Nikon Electric Film (NEF) RAW images with 14 bits. This means that the
maximum brightness value is 214, that is, 16,384. Due to the image in the extremely dark condition,
the brightness values of the pixels are distributed between 1 and 50. The procedure of light scaling can
be expressed as a formula: vx/vmax × 16,384. The parameter vx in the formula represents the brightness
value of a pixel, and vmax represents the max brightness value of all pixels. The simple luminosity
scaling also amplifies the noise information in the images. The high noise is demoed in the zoom-in
image surrounded by the red box after luminance scaling. The second step is noise reduction by BM3D.

In our work, the deep learning neuron network is proposed for direct single image restoration of
extremely low-light images. Specifically, a convolutional neural network [29] U-net [10] is used for
processing, inspired by the recent algorithms in the work of [9,10]. The structure of the network is
shown in Figure 2, and the details about the structure are listed in Table 1.
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Figure 2. The structure of the network. The input array is a 4D data converted from the original
RAW image. Convolutional block is abbreviated as “Conv Block”, which represents a convolutional
block including 2D convolutional layer and pooling layer. The red dotted arrow represents copy and
crop operations.

Table 1. The parameters of the neuronal network. The parameter “32 [3,3]” represents that the output
array size is 32 and the convolutional kernel size is 3 × 3.

ID of the Block The First Layer The Second Layer The Third Layer

Block 1 Conv2d(32, [3,3]) Conv2d(32, [3,3]) Max pooling2d
Block 2 Conv2d(64, [3,3]) Conv2d(64, [3,3]) Max pooling2d
Block 3 Conv2d(128, [3,3]) Conv2d(128, [3,3]) Max pooling2d
Block 4 Conv2d(256, [3,3]) Conv2d(256, [3,3]) Max pooling2d
Block 5 Conv2d(512, [3,3]) Conv2d(512, [3,3]) none
Block 6 Conv2d(256, [3,3]) Conv2d(256, [3,3]) none
Block 7 Conv2d(128, [3,3]) Conv2d(128, [3,3]) none
Block 8 Conv2d(64, [3,3]) Conv2d(64, [3,3]) none
Block 9 Conv2d(32, [3,3]) Conv2d(32, [3,3]) Conv2d(12, [1,1])

3.2. Regularized Denoising Autoencoder

In our study, we selected an autoencoder neural network [30,31] similar to U-net to restore dark
images. The autoencoder is a neural networks that is trained to attempt to map the input to the output.
In other words, it is restricted in some ways to learn the useful properties of the data. It has many
layers internally called the hidden layer. The network is divided into two parts: an encoder function
h = F(x) and a decoder function G(h) which generates the reconstruction.

Regularized technology [32,33] is used to solve the invalidation of the over-complete autoencoder.
The case is called over-complete when the hidden dimension is greater than the input. The over-complete
autoencoders fail to learn anything useful if the encoder and decoder have a large number of parameters.
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Regularized autoencoders use a loss function to learn useful information from the input. The useful
information includes the sparsity of the representation, robustness to noise, and robustness to the
missing input. In particular, the clear and real image data is useful information, hidden in the dark
background. In one word, regularization enables the nonlinear and over-complete autoencoder to
learn useful information about the data distribution.

The denoising autoencoder (DAE) [34,35] is one of the autoencoders with corrupted data as
input and clear data as output by a trained model. The structure of a DAE is shown in Figure 3.
It aims to learn a reconstruction distribution precontstruct(y|x) by the given training pairs (x,y). The DAE
minimizes the function L(y,G(F(x))) to obtain the useful properties, where x is a corrupted data relative
to the original data y. Specifically, in our study, data x indicates the images with dark noise and data
y indicates the ground truth images.
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Figure 3. The structure of a denoising autoencoder (DAE). The input data tagged as x and output data
tagged as y represent the noisy data and ground truth, respectably. The function F(x) and G(h) represent
the encoder and decoder. The map M(x|y) represents the procedure of generating x from y.

The first step is sampling y from the training data. The second step is sampling the corresponding
data point x by M(x|y). The third step is estimating the reconstruction distribution by pdecoder(y|h)
with h the output of encoder and pdecoder defined by the decoder G(h). DAE is a feedforward network
and trained by the methods of any other feedforward network. We can perform gradient-based
approximate minimization on the negative log-likelihood. For example, the stochastic gradient descent
can be written by:

− Ey∼p̂data(y)Ex∼M(x|y)log pdecoder(y
∣∣∣h = F(x)) (1)

In Equation (1), the pdecoder is the distribution calculated by the decoder and the p̂data is the training
data distribution.

3.3. The Procedure of Collecting Data

The traditional low-light enhancement methods cascade the procedures: scaling, denoising,
and color-correcting. The traditional methods do not need the ground truth images during processing.
On the contrary, a deep learning neural network must train the data before the testing phase. The training
and testing phases are shown in Figure 4. The upper part of this figure shows that the training data
consists of two parts: the low-light (dark) images and corresponding normal-light images. Every image
pair in the two parts has the same size and shooting range and aligns pixel by pixel. There are only
a few low-light image datasets available, an example from one of these datasets is seen in the upper
left. The learned-based model can learn the fitting parameters to map the image pairs. The mapping
relationship from the low-light images to normal-light images is non-linear, and thus deep learning
is appropriate.

The bottom sub-image of Figure 4 shows the test phase. In the test phase, the low-light images
are inputted into the trained model and the restored normal-light images are outputted. In addition,
the output restored image (bottom right corner) is unknown, the other three kinds of images are known.
Another significant point is that the training and the test images are independent.
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sub-image shows the training phase. The bottom sub-image shows the test phase using the trained
model generated in the training phase.

In order to improve the effectiveness of the restoration, we can start from the two aspects
of the algorithm and the training data. In this section, we describe the training data. Due to
the large computational cost of the training data, data collection becomes an obstacle to the deep
learning algorithms.

The data collecting method in other deep learning literature is shown as the upper sub-image of
Figure 5. The low-light datasets based on deep learning in the computer vision community are almost
collected in low-light conditions, shown as the left box of the upper of Figure 5. The corresponding
ground truth images are also taken in low-light conditions, shown as the right box of the upper.
For taking normal exposure images, the camera is set to a higher ISO, larger aperture, longer exposure
time, larger light-sensing element, and flash. However, such settings reduce the quality of the images.
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The upper sub-figure shows that the image pairs both captured in low-light conditions. In the below
sub-figure, our proposed image acquisition method captures images during the daytime. In our method,
the low-light images are taken in the normal-light condition.

We collected the training data during the daytime, normal-light condition, shown as the button
sub-image of Figure 5. We named the collecting method the NL2LL (normal-light to low-light).
The environment with enough light brings convenience to shoot high-quality data. Three pillars of the
photography: shutter speed, ISO, and aperture can be set as “better” parameters during the daytime.
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We set the shorter exposure speeds, lower ISO, and larger aperture values to take the dark images
during the daytime.

The influence of the aperture is rarely discussed in the relevant literature. Aperture is defined
as the opening in the lens through which light passes to enter the camera. Small aperture numbers
represent a large aperture opening size, whereas large numbers represent small apertures. The critical
effect of the aperture is the depth of field. Depth of field is the amount of the photograph that appears
sharp from front to back. According to the principles of optics, a larger aperture size (smaller aperture
value) leads to a shallower depth of field and therefore more defocus blur.

The effect of the aperture size on the image depth of field is shown in Figure 6. The left half
of this figure has a “thin” depth of field, where the background is completely out of focus. On the
contrary, the right sub-image of Figure 6 has a “deep” depth of field, where both the foreground and the
background are sharp; the camera focuses on the foreground. Because the zoom-in images surrounded
by the solid red box are near the focus point, both images (the first and the third image at the bottom)
are clear. However, the distance between the dotted red region and the camera is far from that between
the focus point and the camera. According to the principles of optics, the background area away from
the focus point becomes blurred with a large aperture camera setting. The zoom-in sub-image taken in
the big aperture size (the second image at the bottom) is more blurred than the respective sub-image
taken in the small aperture size (the fourth image at the bottom).
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Figure 6. The influence of the aperture size on the image quality. The aperture of the left and right
images is set as 4 (large aperture size) and 25 (small aperture size), respectively. The center of the red
circle is the location of the focal point. The area surrounded by the solid red box and dotted red box is
in foreground and background, respectively.

If the images are taken in dark conditions, the aperture must be set as large as possible to receive
more light. The large aperture setting in the camera inevitably results in a large amount of background
blur. The training dataset used in deep learning has many image pairs. Every image pair consists of
a low-light image and a corresponding normal-light image. To achieve high-quality data, each pixel
pair in both images must match one-to-one. Unfortunately, the blur of some pixels impacted the quality
of the training data [9,14].

The large aperture size should blur the image. It is also plain to see that the longer exposure time
and the higher ISO reduces the quality of the image pair. More specifically, it is harder to align the two
images pixel by pixel. When there is less light at night, the exposure time must be increased to capture
more light for the images. Then, during the day it is important to decrease the exposure time; this will
in turn reduce the amount of light that enters the apparatus. The exposure time of the ground truth in
the literature [9] is 10 s and 30 s, while the respective exposure time in our data is between 1/10 s to 3 s.
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The parameter ISO plays the same role. The value of ISO can then be adjusted to the smaller value
(the better quality) in the daytime and set to 100 in our first experiment.

Moreover, we adopted Wi-Fi equipment to remotely adjust the camera settings, and the camera was
fixed on the tripod. The hardware devices ensure the stability of the camera while taking image pairs.

Most researchers consider that the training data used for low-light restoration methods based on
deep learning must be collected in low-light conditions. On the contrary, our experiments have shown
that the training data can be collected in normal-light conditions. As opposed to previous methods to
photograph in a low-light environment, our proposed method takes images in a bright environment.
Figure 7 shows all the training images in our experiment. The shooting parameters are listed in Table 2.
Our algorithm achieves exciting results only using 20 image pairs. The camera parameters in our
method make it easier to take a high-quality image.
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Figure 7. All images in our dataset. Normal-light images (ground truth) are shown at the front.
The low-light images (extremely dark) are shown behind.

Table 2. The EXIF parameters of the training images. The first ID column indicates the number of
image pairs. The order of ID is from left to right of every line, then the next line, and so on. The second
column EXIF indicates the photos’ parameters. GT = ground truth. All the parameters of the dark
images are as same as that of GT except shutter time.

ID EXIF ID EXIF ID EXIF ID EXIF

1 GT: F16.0, 1/8 s, ISO 100
Dark: 1/800 s 2 GT: F16.0, 1 s, ISO 100

Dark: 1/100 s 3 GT: F16.0, 1/4 s, ISO 100
Dark: 1/400 s 4 GT: F16.0, 1/8 s, ISO 100

Dark: 1/800 s

5 GT: F16.0, 1/10 s, ISO 100,
+1.0 EV Dark: 1/1000 s 6 GT: F16.0, 1/10 s, ISO 100,

+1.0 EV Dark: 1/1000 s 7 GT: F16.0, 1/10 s, ISO 100,
+1.0 EV Dark: 1/1000 s 8 GT: F16.0, 1/8 s, ISO 100,

+1.0 EV Dark: 1/800 s

9 GT: F16.0, 1/4 s, ISO 100,
+1.0 EV Dark: 1/400 s 10 GT: F16.0, 1/4 s, ISO 100,

+1.0 EV Dark: 1/400 s 11 GT: F16.0, 1/4 s, ISO 100,
+1.0 EV Dark: 1/400 s 12 GT: F16.0, 1/2 s, ISO 100,

+1.0 EV Dark: 1/200 s

13 GT: F16.0, 1/5 s, ISO 100,
+1.0 EV Dark: 1/500 s 14 GT: F16.0, 1/8 s, ISO 100,

+1.0 EV Dark: 1/800 s 15 GT: F16.0, 1/8 s, ISO 100,
+1.0 EV Dark: 1/800 s 16 GT: F16.0, 3 s, ISO 100,

+1.0 EV Dark: 1/30 s

17 GT: F16.0, 3 s, ISO 100,
+1.0 EV Dark: 1/30 s 18 GT: F16.0, 2 s, ISO 100,

+1.0 EV Dark: 1/50 s 19 GT: F16.0, 1/4 s, ISO 100,
+1.0 EV Dark: 1/400 s 20 GT: F16.0, 1/4 s, ISO 100,

+1.0 EV Dark: 1/400 s

4. Experiments

4.1. Dataset

The images in our dataset were collected from real-world scenes instead of by the artificial
brightness adjustment. The images in our training dataset were taken in a cloudy environment by
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a Nikon D700 made in Japan. The lens was the fixed-focus lens labeled as AF-S NIKKOR 50 mm
f/1.4G. Because the RAW format can save more low-light information than the sRGB format, the images
were saved in the RAW format. The data collection environments of various algorithms are shown
in Table 3. The dataset was divided into the training data and the test data. All the training images
were taken outdoors and selected randomly from the image pairs. The training data included the
20 image pairs shown in Figure 7. To avoid overfitting, the test images were taken separately in
the low-light environment and independent of the training data. The test images were taken from
a variety of scenes, such as a bedroom and outdoors. They were taken from the environment about
1 lumen, approximately 100 times lower brightness than that of the training images. Some of the
test images are shown in Figure 8. The exposure time of the training pictures was reduced exactly
100 times compared to the test data picture. The training images and test images were independent
and identically distributed (i.i.d.) to guarantee the effectiveness of our algorithm.

Table 3. The environments of collecting images in various algorithms.

Class of Methods The Training Data The Test Data

Traditional methods [20] None Low-light environment
Methods based on deep learning [5,9,14] Low-light environment Low-light environment

Our methods Normal-light environment Low-light environment
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Figure 8. The results of the various algorithms. The images marked with a red dotted box on the
second row are the zoom-in images of the region surrounded by the small red dotted box in line 1,
respectively. The images surrounded by the orange boxes in the fourth line are also the magnified
images from the solid orange box region in line 3. The indoor test image (upper left sub-image) was
taken with the parameters: exposure compensation +1.0, f 6.1, 0.1 s and ISO 400. The outdoor test
image (third line and first column) was taken with the parameters: f 3.5, 0.2 s and ISO 400. The first
column shows the test images taken in an extremely dark condition. The second column shows our
results by the end-to-end deep learning model. The third column shows the results by the traditional
method which cascades luminosity scaling and BM3D [20]. The fourth to the seventh columns show
the results by the Robust Retinex Model algorithm [36], by JED [37], by LIME [28] and SID [9]. The last
column shows the ground truth taken with a long exposure time.

4.2. Qualitative Results and Perceptual Analysis

The methods as a comparative baseline include the traditional method and the “modern” method.
The traditional method cascades a luminosity scaling algorithm and a denoising algorithm. BM3D was
selected as the classic denoising algorithm in our research because it outperforms most techniques
facing the images with real noise. The modern data-driven approach selects some machine learning
algorithms that have been proposed in recent years.
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The process of determining the level of image quality is called Image Quality Assessment (IQA).
IQA is part of the quality of experience measures. Image quality can be assessed using two kinds
of methods: subjective and objective. In the subjective method, the corresponding result images
processed by different pipelines were presented to students, who determine which image had higher
quality. The images were presented in a random order, with a random left–right order without any
indication of the provenance. A total of 100 comparisons were performed by five students. The students
found the results using the traditional method (the third column) still had a good aspect of light,
but there were some yellow patches in the large white region and noise particles. Other “modern”
algorithms [28,36,37] did not work well in the extremely dark real environments. Our results were
superior in the aspects of the image contrast, color accuracy, dynamic range, and exposure accuracy.
Our pipeline significantly outperformed the traditional method and the “modern” methods in the
aspect of denoising and color collection, respectively. The results by the various algorithms are shown
in Figure 8.

4.3. Quantitative Analysis

The objective IQA methods were used to quantitatively measure the results. The objective methods
can be classified into full-reference (FR) methods, reduced-reference (RR) methods, and no-reference
(NR) methods.

FR metrics try to assess an image quality by comparing it with a reference image (ground truth)
that is assumed to have perfect quality. The classical FR methods, the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM [38]) were selected in our quantitative analysis. The higher
the value of the two FR methods, the better the image quality.

The ENIQA [39] and Integrated Local NIQE (IL-NIQE) [40] present the high-performance
general-purpose NR IQA methods based on image entropy. IL-NIQE uses a feature-enriched completely
blind image quality evaluator. NIQE [41] makes a completely blind image quality analyzer and is also
one of the NR methods. SSEQ [42] evaluates image quality assessment based on spatial and spectral
entropies without a reference image. The lower scores calculated by these NR methods represents
better image quality.

The quantitative IQA of the experimental results is shown in Tables 4 and 5. The size of the
toy image in Table 4 was set to 512 × 339 pixels. The size of the bicycle image in Table 5 was set to
512 × 340 pixels. The images in the PNG format were evaluated by the following IQA algorithms,
except SID [9]. The original model in SID only accepted the 16-bit raw image taken by the Sony camera
and 14-bit raw image taken by the Fuji camera. Our test images were taken with a Nikon DSLR D700
made in Japan. Therefore, we modified the test code of SID to accept our test images.

Table 4. The Image Quality Assessment (IQA) of the recovery results about the toy image. The first
column shows the various IQA methods. The columns (from second to seventh) show the corresponding
IQA scores of the image results by various algorithms. The last column shows the score of the ground
truth. The bold font and “(1)” indicate the value that is the best score. The underline and “(2)” represent
second place.

Assessment Methods Our Method The Traditional Method Robust Retinex Model JED LIME SID Ground Truth

PSNR 27.4600 (2) 22.1908 12.5453 12.3313 14.3542 21.7659 Inf (1)
SSIM [38] 0.9479 (2) 0.8593 0.3019 0.2726 0.3442 0.5128 1 (1)

ENIQA [39] 0.0762 (2) 0.2004 0.5808 0.5499 0.3101 0.1900 0.0709 (1)
IL-NIQE [40] 34.3996 (3) 37.4977 71.1242 75.1293 70.9793 34.3299 (2) 30.9900 (1)

NIQE [41] 4.6251 (1) 5.5973 8.5458 7.6560 7.9087 5.1727 4.7387 (2)
SSEQ [42] 5.3654 (1) 29.0665 37.1942 19.3989 35.3465 30.2516 15.8142 (2)

Similar to the qualitative assessment, our method also exceeds most methods in quantitative
analysis. The Robust Retinex Model, JED, and LIME can achieve better effect in this degree of light at
dusk, but these methods do not work in extremely dark environments.
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Table 5. The IQA of the recovery results about the bicycle image. The first column shows the various
IQA methods. The columns (from second to seventh) show the corresponding IQA scores of the image
results by various algorithms. The last column shows the score of the ground truth. The bold font and
“(1)” indicate the value that is the best score. The underline and “(2)” represent second place.

Assessment Methods Our Method The Traditional Method Robust Retinex Model JED LIME SID Ground Truth

PSNR 30.8136 (2) 21.1950 11.9917 11.9579 13.7948 23,4298 Inf (1)
SSIM [38] 0.9535 (2) 0.8106 0.1963 0.1832 0.2072 0.8374 1 (1)

ENIQA [39] 0.1320 (2) 0.2860 0.1476 0.2346 0.2048 0.1658 0.0995 (1)
IL-NIQE [40] 25.1430(3) 25.5302 50.0900 47.2871 46.7496 23.6752 (1) 24.7926 (2)

NIQE [41] 3.6368 (1) 4.1941 7.0819 5.7749 7.0317 3.7191 (2) 3.7534
SSEQ [42] 15.6676(1) 38.2989 35.0894 28.4950 42.2645 24.2338 19.7217 (2)

Due to the lack of reference images, the NR methods do not know which image is the ground
truth. By NIQE and SSEQ (Line 5 and Line 6), the scores of our result even are a little better than that
of ground truth. The close scores of ours and ground truth calculated by NIQE mean that our restored
images are well.

Next, we analyzed the generalization performance of the network model. The generalization
performance of a learning algorithm refers to the performance on out-of-sample data of the models
learned by the algorithm. The test images in Figure 8 were shot in an environment that is as bright
as that of the training images. In this experiment, the test images were taken with different camera
parameters in an extremely low-light environment by different parameters. The camera metering
system indicated the setting (F5, 50 s, ISO 400) can achieve normal exposure. The test images with
different levels of darkness were collected by only adjusting the shutter time. For example, the exposure
time was set to 0.5 second to 100 × less exposure, as shown in the second column of Figure 7. Similarly,
the exposure times were set to 1 s, 1/4 s, 1/8 s, and 1/15 s, which means 50×, 200×, 400×, and 750× less
exposure, respectively.

The curves are smooth in the second line of Figure 9. However, some line deformation can be
found in the fourth line of Figure 9. The details of the line illustrate that our method has more powerful
capabilities to restore details than the traditional method. The sub-images from the first to third
column show that our algorithm adapts to the environments with varying degrees of darkness. Even in
extreme exposure condition (750× less exposure), our method can restore the acceptable details.
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In addition to subjective analysis, several objective IQA methods were adopted to evaluate image
quality. The quantitative analysis of the effect of different exposures is shown in Table 6. It is obvious
to see our method surpasses the traditional approach.

Table 6. The IQA of the recovery results about the image with different exposures. In line 1, the word
“n”× (“n” indicates a number) indicates n times reduction of exposure amount on the bases of normal
exposure. The first column indicates the assessment methods and restoration algorithm. The traditional
method is abbreviated as TM. Bold numbers represent the best results in this line. Underlined numbers
indicate better results in different algorithms.

Assessment Methods
(Restoration Algorithm) 50× 100× 200× 400× 750×

ENIQA [39] (Ours) 0.0694 0.0701 0.0800 0.1369 0.1856
ENIQA (TM) 0.2583 0.2318 0.2793 0.4141 0.5599

IL-NIQE [40] (Ours) 36.5769 38.7293 47.2164 58.6588 71.5074
IL-NIQE (TM) 50.1786 50.9244 62.1660 80.4942 96.9210

NIQE [41] (Ours) 6.1894 5.9605 6.0204 6.7881 7.0984
NIQE (TM) 7.5423 7.5152 8.4179 8.6997 9.1467

SSEQ [42] (Ours) 2.4008 4.0506 4.6036 9.4805 13.3380
SSEQ (TM) 21.6355 22.9971 19.5719 17.6767 15.8840

4.4. Implementation Details

In our study, the input images are the RAW images with the size H ×W × 1. H and W are the
abbreviations of the height and the width and are equal to 2832 and 4256, respectively. The input
images were packed into four channels and correspondingly cut in half in each dimension. Thus, the
size of the channels was 0.5 H × 0.5 W × 4. The packed data was fed into a neural network. Because
the U-net network has a residual connection [43,44] and supports the full-resolution image in GPU
memory, we selected a network with the architecture similar to U-net [10]. The output of the deep
learning network was a 12-channel image with the size 0.5 H × 0.5 W × 12. Lastly, the 12-channel
image was processed by a sub-pixel layer to recover the RGB image with the size H ×W × 3.

Our implementation was based on TensorFlow and python. In all of our experiments, we used L1
loss, the Adam optimizer [45], and the Leaky ReLU (LRelu) [46] activation function. We trained the
network for the Nikon D700 camera images. The initial learning rate was set to 0.0001, weight decay
to 0.00001, and dampening to 0. The initial learning rate decreased according to the cosine function.
According to the practical effect of the experiment, we set the training epoch as 4000.

5. Discussion

In this work, we shared a new collecting image method that can be used for future research on
machine learning. Our algorithm was only trained with 20 image pairs and achieved the inspiring
result in the restoration of the extremely low-light images with the help of a high-quality dataset.
The method can be used in most supervised learning tasks.

In the future, we will try to improve our work in the following points. (1) It is known that
Restricted Boltzmann Machines (RBMs) [47] can be used to preprocess the data and help the machine
learning process become more efficient. The NL2LL model based on RMB might provide even better
results. (2) Improved U-net networks can be used to improve performance. (3) The generalization
performance of the method still needs to be studied. In our study, the recovered images were poor
when the brightness of test images was magnified more than 400 times. Prior information about the
environment light can be used for the algorithm. (4) The shooting environment can be extended to
more complex scenarios, such as the condition with dark and blur and the condition with dark and
scatting, etc. (5) The method can be used for low movement data (spatiotemporal data) and 3D objects
(3D geometry).

Our research is of great significance in areas such as underwater robots and surveillance.
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6. Conclusions

To see in the extreme dark, we have proposed a new method, NL2LL (collecting a low-light dataset
in normal-light condition) to collect image pairs. The method has many potential implementations
in convolutional neural network, dilated convolutional NN, regression, and graphical models.
Our end-to-end approach is simple and highly effective. We have demonstrated its efficacy in
low-light image restoration. The experiment shows that our approach can achieve inspiring results by
only using 20 image pairs.
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