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Abstract: This work presents a single-stage, inverter-based, pseudo-differential amplifier that can work
with ultra-low supply voltages. A novel common-mode stabilization loop allows proper differential
operations, without impacting over the output differential performance. Electrical simulations show
the effectiveness of this amplifier for supply voltages in the range of 0.3–0.5 V. In particular, a dc
voltage gain of 25.16 dB, a gain-bandwidth product of 131.9 kHz with a capacitive load of 10 pF,
and a static current consumption of only 557 nA are estimated at VDD = 0.5 V. Moreover, the circuit
behavior with respect to process and temperature variations was verified. Finally, the proposed
amplifier is employed in a switched-capacitor integrator and in a sample-and-hold circuit to prove its
functionality in case-study applications.

Keywords: ultra-low voltage; single-stage amplifier; inverter-based; pseudo-differential; common-mode
stabilization; switched capacitor; energy harvesting

1. Introduction

In recent years, the demand for circuits capable of working with very low supply voltages has
increased. There are two main reasons: The first one is the continuous scaling of the supply voltage,
which has marked the evolution of CMOS technologies, originating mainly from reliability issues
of gate dielectrics and power dissipation limits at the maximum switching frequency. The second
reason is an increasing interest in energy harvesting (or scavenging) devices, which are capable of
providing very low supply voltages. Examples of circuits powered by that kind of devices are Wireless
Sensor Networks (WSNs) [1] and wearable/implantable biomedical devices; some of the latter may
potentially take advantage of biofuel cells, which can typically provide a supply voltage that does not
exceed a few hundred millivolts [2]. Values such as these are usually close to the threshold voltage of
regular MOSFETs: The use of particular sizing and topologies becomes mandatory in ultra-low voltage
(ULV) design.

A very popular approach to ULV design is the use of inverter-like amplifiers [3]. In these particular
architectures, each amplifier is substituted by a CMOS inverter, depicted in Figure 1a, which presents
several benefits: compact layout, rail-to-rail output range, and good performance in terms of trade-off

between speed, noise, and power consumption.
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use the cascade of two or more gain stages equal to the one in Figure 1a, realizing a multistage 
amplifier. This kind of amplifier is almost mandatory if employed with resistive loads (as in resistive 
feedback configurations), being able to maintain a sufficiently high voltage gain. Unfortunately, with 
multiple gain stages, we need at least one compensation network to avoid instability, as well as more 
area and power consumption [4]. 
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Figure 1. (a) Standard CMOS inverter and (b) its equivalent differential amplifier. 
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is grounded, or, equivalently, fixed to a constant voltage to meet input common-mode (CM) range 
requirements. The relatively small dc gain of inverter-like amplifiers can be overcome by using SC 
architectures capable of boosting the overall dc gain to the square [5] or even the cube (using two 
inverter stages) [6] of the original inverter gain. Considering this fact, as already stated, the ideal 
application of this kind of amplifiers lies just in SC circuits, such as discrete-time integrators, which 
are the main building blocks of state-variable filters and ΔΣ modulators [7]. 

Fully differential (FD) topologies are widely used in ULV systems. These architectures have 
several intrinsic benefits, such as: (i) strong rejection of CM interferences, (ii) larger output range, and 
(iii) improved linearity. To make these topologies working correctly, a proper system for the 
stabilization of the output CM voltage is necessary [8]. 
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designed with the UMC 0.18 μm CMOS process and its effectiveness has been verified by means of 
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As we can see in Figure 1, a simple inverter is equivalent to a differential amplifier with the non-
inverting input permanently connected to the constant voltage Vinv (1 + 1/Ainv). The voltage Vinv 
represents the inverter switching voltage, i.e., the input value which produces Vout = Vin = Vinv; Ainv is 
the magnitude of the amplifier gain. In the equivalent circuit shown in Figure 1b, if Ainv is large 
enough, we can consider that the non-inverting input is fixed to Vinv. A very helpful characteristic of 
this topology in ULV applications is the capability of working with supply voltages lower than the 
sum of the nMOS and pMOS threshold voltages. This can be accomplished by making the transistors 
operate in subthreshold region. 

Figure 1. (a) Standard CMOS inverter and (b) its equivalent differential amplifier.

Unfortunately, this type of circuit, when used as an amplifier, presents some drawbacks, such
as: (i) strong dependence from Process-Voltage-Temperature (PVT) variations, (ii) lack of a physical
non-inverting input, and (iii) low dc gain. A typical approach to overcome the low dc gain issue is to
use the cascade of two or more gain stages equal to the one in Figure 1a, realizing a multistage amplifier.
This kind of amplifier is almost mandatory if employed with resistive loads (as in resistive feedback
configurations), being able to maintain a sufficiently high voltage gain. Unfortunately, with multiple
gain stages, we need at least one compensation network to avoid instability, as well as more area and
power consumption [4].

These problems are mitigated if a pure capacitive load (actual load plus feedback network) is
applied, as in switched-capacitor (SC) circuits, where inverter-like amplifiers are being proposed as a
replacement of more complex operational amplifier topologies. This is possible because, despite the
absence of a non-inverting input, in most SC circuits the operational amplifier non-inverting terminal
is grounded, or, equivalently, fixed to a constant voltage to meet input common-mode (CM) range
requirements. The relatively small dc gain of inverter-like amplifiers can be overcome by using SC
architectures capable of boosting the overall dc gain to the square [5] or even the cube (using two
inverter stages) [6] of the original inverter gain. Considering this fact, as already stated, the ideal
application of this kind of amplifiers lies just in SC circuits, such as discrete-time integrators, which are
the main building blocks of state-variable filters and ∆Σ modulators [7].

Fully differential (FD) topologies are widely used in ULV systems. These architectures have
several intrinsic benefits, such as: (i) strong rejection of CM interferences, (ii) larger output range,
and (iii) improved linearity. To make these topologies working correctly, a proper system for the
stabilization of the output CM voltage is necessary [8].

In this work, we present a pseudo-differential, single-stage, inverter-based amplifier for ULV
applications with a novel common-mode stabilization loop (CMSL). The proposed circuit has been
designed with the UMC 0.18 µm CMOS process and its effectiveness has been verified by means of
electrical simulations. The rest of this paper is organized as follows. Section 2 introduces inverter-like
amplifiers and describes the proposed architecture; in Section 3, the results of detailed electrical
simulations are presented and compared with the well-known Nauta transconductor. Finally, examples
of application of the proposed amplifier in standard SC circuits are illustrated in Section 4.

2. Proposed Pseudo-Differential Inverter-Based Amplifier

2.1. The CMOS Inverter Used as an Amplifier

As we can see in Figure 1, a simple inverter is equivalent to a differential amplifier with the
non-inverting input permanently connected to the constant voltage Vinv (1 + 1/Ainv). The voltage
Vinv represents the inverter switching voltage, i.e., the input value which produces Vout = Vin = Vinv;
Ainv is the magnitude of the amplifier gain. In the equivalent circuit shown in Figure 1b, if Ainv is large
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enough, we can consider that the non-inverting input is fixed to Vinv. A very helpful characteristic of
this topology in ULV applications is the capability of working with supply voltages lower than the
sum of the nMOS and pMOS threshold voltages. This can be accomplished by making the transistors
operate in subthreshold region.

Figure 2 shows the small-signal equivalent circuit of the inverter. With simple calculations we
may find that its frequency response is equal to:

J( jω) =
Vout( jω)

Vin( jω)
= −Gmro

1− jω CY
Gm

1 + jω(CY + CZ)ro
(1)

with: 

Gm = gm,n + gm,p

ro = rd,n//rd,p
CX = Cgs,n + Cgs,p + Cgb,n + Cgb,p

CY = Cgd,n + Cgd,p
CZ = Cdb,n + Cdn,p + Cds,n + Cds,p + CL

(2)

where gm,n and gm,p are the transconductances of the nMOS and pMOS, respectively, rd,n and rd,p
their output resistances, whereas CX, CY, and CZ are the combination of their parasitic capacitances
(in CZ, a load capacitance CL is also taken into account). In a closed-loop configuration, the frequency
response is mainly determined by the gain-bandwidth product (GBW), which can be easily found from
Equation (1): It is approximately equal to Gm/2π(CY + CZ). Since in many SC circuits CL is the biggest
capacitance, the GBW is much lower than the frequency of the zero, which from Equation (1) turns out
to be Gm/2πCY. Both singularities are proportional to Gm, which, in turn, is proportional to the inverter
bias current.
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block (in grey lines) implementing a CMSL. In the absence of a CMSL, the CM to CM gain Acc is equal 
to the differential-mode (DM) to DM gain Add, which should be made large. As a result, even in the 
presence of small input CM variations, the output CM may drift as much as to impair the available 
differential output range. To overcome this problem and make the amplifier usable for SC 
applications, it is generally sufficient to reduce Acc to values close to one. Therefore, the aim of the 
CMSL is just to reduce Acc.  

Several examples of pseudo-differential, inverter-based amplifiers with different circuits for the 
stabilization of the CM output voltage have been presented in the literature. One of the most popular 
is the Nauta transconductor [9], depicted in Figure 3b. In this circuit, the main differential path is 
formed by Inv1 and Inv2, while the CMSL is implemented by Inv3–6. The purpose of the Inv3–6 network 
is to act as a low resistive load for CM variations and as a high resistive load for DM ones. A 
well-known issue [10] of this circuit is the degradation of the differential output range due to the DM 
output resistance lowering, which starts at relatively small output voltages. The presence of a large 
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2.2. Fully Differential, Inverter-Based Amplifiers: Output Common-Mode Stabilization

In Figure 3a, a pseudo-differential, inverter-based amplifier is depicted together with a generic
block (in grey lines) implementing a CMSL. In the absence of a CMSL, the CM to CM gain Acc is equal
to the differential-mode (DM) to DM gain Add, which should be made large. As a result, even in the
presence of small input CM variations, the output CM may drift as much as to impair the available
differential output range. To overcome this problem and make the amplifier usable for SC applications,
it is generally sufficient to reduce Acc to values close to one. Therefore, the aim of the CMSL is just to
reduce Acc.

Several examples of pseudo-differential, inverter-based amplifiers with different circuits for the
stabilization of the CM output voltage have been presented in the literature. One of the most popular is
the Nauta transconductor [9], depicted in Figure 3b. In this circuit, the main differential path is formed
by Inv1 and Inv2, while the CMSL is implemented by Inv3–6. The purpose of the Inv3–6 network is to
act as a low resistive load for CM variations and as a high resistive load for DM ones. A well-known
issue [10] of this circuit is the degradation of the differential output range due to the DM output
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resistance lowering, which starts at relatively small output voltages. The presence of a large output DM
unbalances the transconductances of inverters pairs Inv3–4 and Inv5–6, disrupting the compensation
mechanism that boosts the output resistance for small signals.
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(b) CMSL implementation proposed by Nauta in [9].

An alternative solution for the CM stabilization is presented in [11] in two different topologies:
feedback and feedforward fashion. Both techniques present some limitations: The feedback one
suffers from the degradation of the amplifier input impedance due to the presence of a resistance rd
directly connected to the amplifier input terminals. On the other hand, the feedforward stabilization
circuit is based on the matching properties of different inverters and could be not very robust against
PVT variations.

2.3. The Proposed Inverter-Based Fully Differential Amplifier

Figure 4 shows the proposed pseudo-differential, inverter-based amplifier. The two main inverters
(Inv1 and Inv2) process the differential input signal, while the other seven inverters (Inv3–Inv9)
implement the CMSL. Obviously, for symmetry reasons, Inv1 is nominally identical to Inv2, Inv3 to
Inv4, and Inv5 to Inv6. Inverters Inv3 and Inv4, loaded by unity-gain-connected Inv8, extract a signal
proportional to the output CM voltage. This signal is inverted by Inv7, which is loaded by Inv9. Finally,
Inv7 output signal (Vy) drives Inv5 and Inv6, which inject CM currents into the output nodes, closing
the loop. Notice that at least in the case of perfect matching between Inv5 and Inv6, the proposed
CMSL action will affect only the output signal CM components, so that degradation of Add does not
occur. In terms of small signals, the symmetry between Inv3 and Inv4 makes Vx insensitive to the
output DM voltage. On the other hand, large output differential voltages may affect Vx, due to the
non-linear behavior of Inv3 and Inv4. This affects CMSL operation, causing the output CM to depend
on the output DM. Nevertheless, the action of Inv5 and Inv6 is still symmetrical and the output DM
voltage is not significantly altered. As a result, the proposed CMSL does not introduce significant
degradation of the Add gain and of the DM range, with exception of the unavoidable reduction of the
amplifier output DM resistance due to Inv5 and Inv6 output resistances. This effect can be made small
by proper sizing of Inv5–6 MOSFETs: Choosing a higher channel length and/or a lower aspect ratio
compared to Inv1–2. The latter choice was adopted as described later in this section.

By these considerations, the small-signal Add gain is simply given by:

Add =
Vout−di f f

Vin−di f f
= Gm1(ro1//ro5) (3)

where rok, Gmk indicates inverter Invk output resistance and its equivalent Gm, respectively.
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As far as the response to CM input signals is concerned, the circuit of Figure 5 can be used.
With simple calculations, it is possible to express the CM gain Acc as:

Acc =
vout−cm

vin−cm
=

Add
1 + ACMSL

(4)

where ACMSL is the loop gain of the CM stabilization circuit, given by:

ACMSL =
2Gm3

Gm8

Gm7

Gm9
× 2Gm5(

ro5

2
//

ro1

2
) = 2

Gm3

Gm8

Gm7

Gm9

Gm5

Gm1
Add (5)

where we neglected the output inverter resistance that fall in parallel to the 1/Gm resistance of
unity-gain-connected Inv8 and Inv9 and we used the above-mentioned symmetries, Gm1 = Gm2,
ro1 = ro2 and ro5 = ro6. The target is making ACMSL larger than Add, so that Acc, given by Equation
(4), becomes smaller than one. We start by saying that Inv5–6 strength (i.e., output current capability)
cannot be much smaller than Inv1–2 one, otherwise the former cannot counteract Inv1–2 CM output for
large signals. We chose to make Inv5 MOSFET aspect ratios just half of Inv1 ones. This halved the
quiescent current of Inv5 with respect to Inv1 one, mitigating the power consumption overhead due
to the CMSL and increasing ro5, with benefits in terms of DM mode gain. Then we chose to make
Gm9 = Gm7 and Gm3 = 4Gm8. With these choices ACMSL = 4Add and Acc = 1/5, which is considerably
smaller than 1, as required.Electronics 2020, 9, x FOR PEER REVIEW 5 of 14 
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2.4. Stability of the CMSL

Considering that in the proposed CMSL circuit there is a path formed by the three inverters
cascaded Inv3,7,5 (i.e., a ring oscillator), it is important to study its stability. Inv8 presence partially
mitigates this issue, but the high voltage gain provided by the cascade of Inv5 and Inv7 could still
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make the CMSL sizing quite difficult. For this reason, Inv9 was inserted to reduce the CMSL gain,
analogously to Inv8. Moreover, thanks to its low resistance, it moves the pole associated with the
impedance at node Vy to higher frequencies. Both these features increase stability but, on the other
hand, reduce the effectiveness of the CMSL by lowering the Acc value. Notice that standard approaches
for three-stage feedback loop stabilization, such as nested Miller compensation, are hindered by the
presence of only inverting stages. Furthermore, adding capacitors across Inv3/Inv4 and/or across
Inv5/Inv6 would increase the capacitive load of Inv1/Inv2 and degrade the DM frequency response of
the amplifier.

2.5. Sizing of the Demonstrator

A FD amplifier based on the proposed topology was designed using the UMC 0.18 µm CMOS
process. In Table 1 the size of every transistor in the amplifier is reported. For all the inverters we chose
the minimum length allowed by the process (180 nm) to maximize the GBW. This choice decreases the
differential gain but, as previously mentioned, this problem can be mitigated by using the amplifier in
topologies with low sensitivity to the effect of finite gain. [5,6]. The various inverters differ for the
widths of both n and p devices. In this way, we set the Gm ratios mentioned in Section 2.3. Figure 6
shows a preliminary layout of the proposed FD inverter-based amplifier: Multi-finger arrangement
has been preferred to obtain a compact area and a good aspect ratio of the whole layout. The total
amplifier size is 20 µm × 40 µm.

Table 1. MOSFET dimensions of the amplifier inverters.

Device Ln (µm) Wn (µm) Lp (µm) Wp (µm)

Inv1,2 0.18 20 0.18 80
Inv3,4 0.18 4 0.18 16
Inv5,6 0.18 10 0.18 40

Inv7,8,9 0.18 1 0.18 4
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Figure 6. Preliminary layout of the proposed amplifier; the dashed boxes include the area of the
inverters, grouped as in Table 1. The cell is included into a ring of substrate contacts to reduce
substrate noise.

3. Results and Discussion

The complete amplifier was simulated with the Cadence SpectreTM electrical simulator to
test its dc performance, its frequency response, and the effectiveness of the proposed CMSL.
All simulations were performed with a supply voltage VDD of 0.5 V and a load capacitance CL = 10 pF,
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unless otherwise specified. The proposed amplifier behavior was then compared with the one of
the Nauta transconductor, which was sized as suggested in [10]; the sizing is visible in Table 2,
with Figure 3b as a reference.

Table 2. MOSFET dimensions of the Nauta transconductor inverters.

Device Ln (µm) Wn (µm) Lp (µm) Wp (µm)

Inv1,2 0.18 20 0.18 80
Inv3,4,5,6 0.18 10 0.18 40

First, the frequency response of the two inverter-based amplifiers with an input CM voltage equal
to VDD/2 was simulated. Figure 7 shows the simulation results of our circuit (solid line with triangle
symbols) compared with the Nauta transconductor (dashed line with circle symbols). We can see
that the proposed amplifier has a differential gain equal to 25.2 dB and it is about 2.5 dB higher than
Nauta’s circuit, while the GBWs are similar and fall around 132 kHz. The phase margin PM of the
proposed amplifier is 86◦, while the Nauta transconductor one is 87◦.
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Subsequently, a differential input was applied with the purpose of detecting the output linear
range, again with an input CM equal to VDD/2. The significantly wider output linear range of our
amplifier with respect to the Nauta transconductor is clear in Figure 8. To quantify this difference,
we considered to be “linear range” the region of differential output voltage where the small-signal gain
drop is less than 30% of the maximum value. By this definition, the output linearity range of the Nauta
transconductor is around 110 mV, while our circuit reaches 586 mV.

Using the stability analysis tool provided by the Spectre™ simulator, it was possible to also
evaluate the loop gain and phase of the CM stabilization loop, here depicted in Figure 9. The actual
stability of the CMSL is confirmed by the phase margin (PMCMSL) and the gain margin (GMCMSL),
which turned out to be 51◦ and 14.16 dB, respectively.

To further verify the correct behavior of our common-mode stabilization loop, the input CM was
swept from 0 to VDD: The output CM is plotted in Figure 10. The proposed CMSL, compared to
Nauta’s solution, provides a better attenuation of the output CM variations in the CM input range
from about 70 mV to 430 mV; the slope around the mid-point is −0.92 for Nauta’s solution, while it is
3 times lower for ours.
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The total current consumption (Is) is 558 nA, resulting in a dissipated power of 279 nW. It is
possible to evaluate the efficiency of the bandwidth vs. power consumption trade-off by using the
following Figure Of Merit (FOM) [10]:

FOM =
GBW ×CL

IS
× 100 (6)

which, for the proposed amplifier, turned out to be 237 V−1.

3.1. Temperature and Corner Variations

With ultra-low supply voltages, circuits are more prone to suffer from PVT variations. Therefore,
we verified the robustness of our proposed amplifier by means of temperature sweep and corner
analysis. Concerning supply voltage variations, the PSRR has been estimated by means of ac simulations
performed on the amplifier closed in unity-gain configuration (input port shorted to the output one).
The average PSRR low-frequency (1 Hz) value, resulting from 100 Monte Carlo runs, was 76.8 dB.

The variations of some of its most important parameters with respect to the temperature are more
significant: We reported them in Table 3. We can notice the obvious, strong dependence of the power
dissipated PD, and the GBW has the same trend as well. PMCMSL, instead, is practically constant over
the whole tested range and so the loop remains stable for all temperatures. Globally, considering the
inverter-based architecture and the ultra-low supply voltage, our circuit performs well for most of
the temperatures.

Table 3. Amplifier parameter variations versus temperature.

Parameter −20 ◦C 0 ◦C 27 ◦C 50 ◦C 80 ◦C

Add (dB) 26.11 25.7 25.16 24.72 24.15
GBW (kHz) 17.63 45.52 131.9 279.9 634.3

PMCMSL (deg) 49.6 50.19 51 51.74 52.8
PD (nW) 30.4 85.8 279 649 1650

Corner analysis was also conducted. The amplifier proved again its robustness: We may report
just a few minor flaws, which are a power consumption of 1.22 µW in the corner FF (Fast-nMOS,
Fast-pMOS) and a GBW of 27 kHz in the corner SS (Slow-nMOS, Slow-pMOS). However, it has to be
highlighted that in the first case, the GBW increased to 559 kHz, while in the latter case there was a
reduction of the power dissipated to only 60 nW.

3.2. Simulations at 0.3 V Supply Voltage

All the previous simulations were repeated with a supply voltage of 0.3 V, to assess correct
operation for ULV circuits and characterize performance degradation due to the reduced supply
voltage. A summary of performances is provided in Table 4. The most important effect caused by the
Vdd transition from 0.5 V to 0.3 V is a more than ten-fold reduction in the bias current of all inverters,
due to the subthreshold exponential dependence of the drain current on the gate-source voltage.
The consequence is a proportional degradation of the GBW, due to Gm1 and Gm2 reduction. Fortunately,
all Gm’s vary in the same way, so that the relationships between the singularities of the CMSL are not
seriously altered. This is proven by the phase margin of the loop that is even larger at 0.3 V (58 degrees).
The Add reduction observed at Vdd = 0.3 V is less than 3 dB, while the CM gain Acc is lower than one for
a quasi rail-to-rail input CM range. These figures confirm that the proposed amplifier can be used
even at such extremely low voltages with only a few nanowatt of power consumption, when very
slow-varying signals must be processed.
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Table 4. Comparison with other works.

Parameter This Work [9] * [10] [11]-CFCC [11]-VFCC [12]

N◦ of stages 1 1 1 2 2 2
VDD (V) 0.3 0.5 0.5 0.5 0.6 0.6 0.5
Add (dB) 22.6 25.2 22.68 58 74 78 62

GBW (kHz) 8 132 130 100 6.9 × 103 6.6 × 103 10 × 103

PD (nW) 10.5 279 314 380 13 × 103 14 × 103 75 × 103

Load (pF) 10 10 10 10 10 10 20
PM (deg) 86 87 86 90 45 50 60

FOM (V−1) 229 237 207 133 313 287 133

* Sized as suggested in [10] and reported in Table 2.

3.3. Comparison with the State of the Art

In Table 4 a comparison between the proposed work and other inverter-based amplifiers in the
literature is presented. All works were realized in a 0.18 µm technology. It is worth mentioning that
the low dc gain of our prototype is due to the single-stage topology and the minimum channel lengths,
introduced to maximize the trade-off between power consumption and bandwidth. The only other
single stage shown in Table 3 takes advantage of longer channel lengths, body biasing and series–parallel
MOSFET connections to increase the dc gain. Notice that the parameter PM in Table 3 is not the
CMSL phase margin PMCMSL; instead, it represents the phase margin of the whole pseudo-differential
amplifier. The CMSL phase margin has not been included in Table 4, since the papers used for
comparison do not report on this datum.

4. Case Studies: Application of the Proposed Amplifier to SC Circuits

To show how the proposed circuit performs in an actual circuit, we analyzed its behavior when
employed in a SC integrator and in a SC Sample-and-Hold (S/H) circuit. The supply voltage was set to
500 mV in both cases.

4.1. SC Integrator

As for the integrator, we chose the standard, strays-insensitive topology [13] shown in Figure 11.
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Figure 11. Standard topology of a fully differential, SC integrator [13].

Once again, we compared our amplifier with the Nauta transconductor. The FD amplifier A was
then implemented first with the circuit of Figure 4 and then with the one of Figure 3b; in addition,
we adopted ideal switches in order to highlight only the differences between the two amplifier
topologies and avoid additional non-idealities. The design of proper switches capable of working at
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very low supply voltages may be very challenging, typically requiring techniques of bootstrapping [14]
and clock boosting [15], which here will not be discussed. The two capacitors C1 and C2 were set
equal to 1 pF. Voltage VCM was set to half the supply. Figure 10 shows the DM and CM outputs of the
integrator in both cases, when the input is a square wave with a differential amplitude of 100 mV and a
CM equal to VCM. The clock signal driving the switches had a frequency of 10 kHz. The capacitive load,
not shown in Figure 11 for the sake of simplicity, was 10 pF. The resulting staircase waveforms visible
in Figure 12 prove that the proposed circuit introduces much less compression of the output signal
than the integrator based on the Nauta transconductor. A progressive compression of the steps is also
visible in the case of the proposed amplifier, but it is mainly due to the small dc gain, which make the
output voltage tend to a finite value when a constant input is applied. We may also notice that the
output CM is well stabilized for both circuits, with a maximum excursion of just a few mV. In this
respect, the Nauta’s topology provides a slightly better stabilization.
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Figure 12. Differential-(top) and common-mode (bottom) outputs of the SC integrator of Figure 9,
implemented using the proposed amplifier (red solid line) and the Nauta transconductor (blue dashed
line). The input signal is a rectangular waveform (pointed line in the upper plot).

4.2. S/H Circuit

For the S/H circuit, we chose the well-known flip-around topology [16] shown in Figure 13,
which was already employed in sub-1 V applications [17]: In this way, we characterized the amplifier
linearity performance in terms of harmonic distortion.
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As in the integrator case study, we used ideal switches to avoid non-idealities not related to the
amplifiers and the capacitive loads were set to 10 pF. The clock frequency was set to 10 kHz, while
the capacitors CH were chosen equal to 1 pF. An input signal, with sinusoidal differential mode and
common-mode voltage fixed to 250 mV, was fed to the S/H circuit. The frequency of the input stimulus
was 500 Hz, while its amplitude was swept from 50 to 500 mV. Simulations were performed using the
S/H in Figure 13 comparing the performance of the proposed amplifier and the Nauta transconductor.
The Total Harmonic Distortion (THD) was evaluated by means of the Discrete Fourier Transform
(DFT) spectrum of the output differential voltage, sampled at the end of the holding phase (phase 2).
The result of this processing is visible in Figure 14, showing the THD of the two circuits as a function of
the input signal amplitude. It is apparent that the SC S/H circuit employing our proposed amplifier is
marked by a significantly smaller distortion in the whole input range.
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The spectral content of the output signal is shown in Figure 15, for a particular value of the input
amplitude, equal to 400 mV. Due to the symmetry of the circuit, even order harmonics are not present.
The ratio of the larger harmonic component (third) with respect to the input tone magnitude is around
−47 dB for the proposed solution and −23 dB for the Nauta’s one.Electronics 2020, 9, x FOR PEER REVIEW 13 of 14 
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5. Conclusions 
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Figure 15. Output spectra of the S/H shown in Figure 13, employing the proposed amplifier (top) and
the Nauta transconductor (bottom), when the input is a 400 mV amplitude, 500 Hz sinusoid.
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5. Conclusions

Electrical simulations performed on the designed amplifier confirmed that the proposed CMSL
provides correct stabilization of the output CM voltage at both 0.3 V and 0.5 V supply voltages, with less
effect on the output differential range than the Nauta transconductor. Despite the larger number of
inverters used in the CMSL, the proposed solution requires that only two inverters (Inv5–6) match the
output current capability of the inverters in the forward path, while in Nauta’s circuit this requirement
applies to all four inverter of the CMSL. This property of the proposed circuit can be used to mitigate
the area and power requirements of all the other five inverters forming the CMSL. The simple examples
of an SC integrator and an S/H circuit shown in this paper suggested that the proposed amplifier
can be successfully used for the implementation of ULV analog discrete-time circuits, with output
signal ranges that extends across almost the full rail-to-rail span. The small gain exhibited by the
circuit is due to the adoption of minimum-length MOSFETs and could be mitigated by using integrator
topologies [5,6] with less sensitivity to the finite amplifier gain.
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