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Abstract: In visual object tracking fields, the Siamese network tracker, based on the region proposal
network (SiamRPN), has achieved promising tracking effects, both in speed and accuracy. However,
it did not consider the relationship and differences between the long-range context information
of various objects. In this paper, we add a global context block (GC block), which is lightweight
and can effectively model long-range dependency, to the Siamese network part of SiamRPN so that
the object tracker can better understand the tracking scene. At the same time, we propose a novel
convolution module, called a cropping-inside selective kernel block (CiSK block), based on selective
kernel convolution (SK convolution, a module proposed in selective kernel networks) and use it
in the region proposal network (RPN) part of SiamRPN, which can adaptively adjust the size of
the receptive field for different types of objects. We make two improvements to SK convolution in
the CiSK block. The first improvement is that in the fusion step of SK convolution, we use both
global average pooling (GAP) and global maximum pooling (GMP) to enhance global information
embedding. The second improvement is that after the selection step of SK convolution, we crop out
the outermost pixels of features to reduce the impact of padding operations. The experiment results
show that on the OTB100 benchmark, we achieved an accuracy of 0.857 and a success rate of 0.643.
On the VOT2016 and VOT2019 benchmarks, we achieved expected average overlap (EAO) scores of
0.394 and 0.240, respectively.

Keywords: visual object tracking; SiamRPN; global context; selective kernel convolution

1. Introduction

Visual object tracking is one of the most basic problems in the application of human–computer
interaction, visual analysis and auxiliary drive systems. Its purpose is to accurately estimate the
position and scale of the object in the subsequent frame, according to the bounding box given in the
first frame [1]. The appearance difference caused by illumination, deformation, occlusion, rotation
and motion is a great challenge. In addition, the tracking speed is also very important in practical
application. Generally, the real-time tracking is at least 25 Frames Per Second (FPS).

Video tracking technology has developed rapidly in the past few years. In particular, the Siamese
network, based on a region proposal network (SiamRPN) [2] proposed by Li et al., adds the idea
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of a region proposal network (RPN) [3] in object detection to the Siamese network [4] and avoids
multi-scale testing, thus greatly increasing the target tracking speed. The network can run at the speed
of 160 FPS. During tracking, the network directly outputs the scores of the foreground and background
and the coordinates of the center point of the bounding box, as well as its width and height. SiamRPN
is an important milestone in visual object tracking fields, as many works are carried out on the basis
of SiamRPN. Siamese cascaded region proposal networks (C-RPNs) [5], proposed by Heng et al.,
regress the bounding box prediction progressively by connecting multiple RPNs in cascaded form and
fusing the multi-layer features of backbone networks to improve tracking accuracy and robustness.
In DaSiamRPN [6], in order to improve the tracker’s generalization and discrimination abilities, the
authors, in the training stage, enrich the positive sample by introducing the existing detection dataset
and enrich the negative sample by introducing semantic negative pairs, consisting of labeled targets
both in the same categories and different categories. In order to deal with the problem of long-term
tracking, the authors propose a switching method between short-term tracking and failure cases in the
inference stage. Deeper and wider Siamese networks (SiamDWs) [7] proposed the cropping inside
residential (CIR) method to modify the original residual unit so that Siamese networks could take
advantage of the capability of wider and deeper backbone networks, such as ResNet [8], Inception [9]
and ResNeXt [10]. After that, Li et al. proposed SiamRPN++ [11], which greatly deepened the depth
of the network by a simple yet effective spatially aware sampling strategy. Through multi-layer
information fusion, SiamRPN++ achieved a very high tracking accuracy. Although the methods
mentioned above have achieved promising accuracy, they do not consider the relationships and
differences between the long-range context information of various objects. Their improvement of
accuracy mainly depends on the increase of model complexity, such as network depth, width and
module stack number, which inevitably leads to cumbersome models and relatively low speeds.

As a general idea of neural networks, a visual attention mechanism is widely used in computer
vision tasks such as image classification, semantic segmentation, face recognition and human pose
estimation among others. Its core idea is to find the relevance among different features in different
tasks, and then highlight some important features, such as channels, pixels, multi-level features, and
so on. SENet [12], proposed by Hu et al., collects the information of each channel by global average
pooling (GAP), remodels the relationship between channels by 1 × 1 convolution, and then reassigns
the weights to the original channels. The selective kernel network (SKNet) [13] proposes an adaptive
selection mechanism, which divides the common convolution operation into three steps: split, fuse
and select. Split operation allows different kernel size convolutions in multiple parallel branches to
extract features with different receptive fields. Fuse operation sums the features of different receptive
fields in an elementwise manner, and then applies GAP to generate channel-wise attentions for all
receptive fields. Finally, the select operation is carried out to select the appropriate receptive fields
and features [14]. SENet and SKNet introduce channel attention mechanisms; however, they do not
consider spatial attention. Convolutional Block Attention Module (CBAM) [15], proposed by Sanghyun
Woo et al., makes a further improvement of SENet, which uses both global maximum pooling (GMP)
and GAP to generate channel attention and spatial attention. However, the spatial attention in CBAM
is limited by the 7 × 7 convolution used after GAP and GMP operations, and it only can be seen as a
kind of local spatial attention. Kaiming He et al. proposed a non-local network (NLNet) [16]. For each
query position, NLNet first calculates the pairwise relationship between the query position and all
positions to form a global spatial attention map, then computes the response at a position as a weighted
sum of the features at all positions. Although NLNet can collect the global context information of an
entire feature map, its calculation is extremely large. To address this issue, a global context network
(GCNet) [17] creates a simplified network based on a query for independent formulation, which
maintains the accuracy of NLNet, but with significantly less computation. However, NLNet and
GCNet do not consider channel attention.

This paper follows the structure of SiamRPN. To solve the problem of poor adaptability of the
general object tracker to tracking scenes, the global context block (GC block) is adopted in the template
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branch of SiamRPN, which can collect the long-range context information of an object; thus, the
global spatial attention mechanism is introduced into the object tracker. In order to improve the
adaptability of the object tracker to the object scales, we design a cropping-inside selective kernel
block (CiSK block) based on SKNet and replace the 3 × 3 convolutions in the RPN part of SiamRPN
with CiSK blocks. Due to its multi-branch structure, a CiSK block can provide SiamRPN with a
dynamic receptive field ability. In addition, the GAP and GMP used in the fuse step of the CiSK block
enrich the channel attention information of SiamRPN. The source code of our method is available at
https://github.com/linjiangxiaoxian/ACSiamRPN.

2. Methods

In this section, we will describe in detail the ACSiamRPN framework that we propose for single
object tracking. As shown in Figure 1, ACSiamRPN includes a Siamese subnet for feature extraction
and an RPN subnet for bounding box prediction. There are two branches in the RPN subnet: one is
responsible for foreground and background classification, and the other is for proposal refinement.
The whole framework can be trained end to end. The ACSiamRPN framework is modified from the
original SiamRPN by using a GC block and a CiSK block. The GC block can extract global context
information and facilitate subsequent processing. The CiSK block has a dynamic receptive field, and
the cropping operation added to the CiSK can alleviate the negative impact of padding to object
localization. The four CiSK blocks in the RPN subnet have the same structure, but do not share weight.
The channel numbers of features outputted by the CiSK blocks are kept at 256. Then, the final output is
obtained through cross-correlation and 1 × 1 convolution. Details of the GC block and CiSK block will
be described in the following part of this section.
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Figure 1. The architecture of ACSiamRPN. Video frames are input to a Siamese subnet to extract 

features. The extracted features are used as input by a subsequent RPN subnet to predict the object 

bounding box. The output of classification branch of the RPN subnet has 2 k channels, representing 
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Figure 1. The architecture of ACSiamRPN. Video frames are input to a Siamese subnet to extract
features. The extracted features are used as input by a subsequent RPN subnet to predict the object
bounding box. The output of classification branch of the RPN subnet has 2 k channels, representing the
foreground and background scores of k anchors, respectively. The output of the regression branch of
the RPN subnet has 4 k channels, representing the four correction offsets for the predicted bounding
box of k anchors, which are the correction offsets for the horizontal and vertical coordinates of the
bounding box center and the correction offsets for the width and height of the bounding box.

2.1. Global Context Block

In order to model the long-range context of the template frame and deepen the network’s global
understanding of the current tracking scene, we added a GC block [17] to the template branch of
the original DaSiamRPN. Please note that long-range context here is not a temporal concept, but a
spatial one. Long-range context means the relationship between pixels that are far away from each
other in the same frame. As shown in Figure 2, the GC block is composed of two parts, namely the
context modeling part and the channel transforming part. Although the GC block is a lightweight
block, we only added it to the template branch. The reason for this is the template branch needs to

https://github.com/linjiangxiaoxian/ACSiamRPN
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be run only once at the first frame. However, the detection branch needs to be run multiple times at
all the subsequent frames, so any addition to the detection branch will affect the tracking speed. The
template branch with the GC block can provide a more stable and reliable template for subsequent
frames to match.
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of the input feature map, and r is the channel compression ratio, where

⊕
denotes broadcast and

elementwise summation, and
⊗

denotes matrix multiplication.

For the context modeling part, the main function is to establish the relationship between contexts.
Conventional convolution can only catch the local context information, and the GAP and GMP
operations are only simple statistical calculations, which cannot model global context well. The context
modeling module groups the features of all positions together via weighted averaging to obtain the
global context features [13] (it can be regarded as global attention pooling). In the context modeling
part, the Channel number, Height and Width input features (C × H ×W) are first convoluted by a 1 ×
1 kernel, and the channel number is compressed to 1 to obtain a 1 × H ×W feature map. Then, the
feature map is reshaped to HW × 1 × 1 and fed into a softmax function to obtain the attention weight
(HW × 1 × 1). Finally, matrix multiplication is performed between the reshaped original features (C ×
HW) and the attention weight (HW × 1 × 1) to get the output of the context modeling part (C × 1 × 1).

For the channel transforming part, the main function is to complete information transformation
and assign the context established by the context modeling part to the corresponding channel. Similar
to SENet, this part uses 1 × 1 convolution to model the relationship between channels. First, the
channel number is compressed to 1/r (in our experiment, we set r to 4), and then the channel number
is restored to C. In this way, a bottleneck is formed, and the calculation and parameter amounts are
reduced. Layer normalization is added to facilitate the training and optimizing process, and Rectified
Linear Unit (ReLU) activation is used to increase the model’s non-linearity.

Finally, the output C × 1 × 1 vector is broadcasted and added elementwise with the original
feature map to get the final output. To summarize, the GC block can be formulated as

zi = xi + Wv2ReLU(LN(Wv1

Np∑
j=1

eWkx j∑Np

m=1 eWkxm
x j)) (1)
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where x and z represent the input and output of the GC block and x j, xi, xm and zi are the elements of x

and z. Np is the number of elements in x. eWkx j∑Np
m=1 eWkxm

represents the softmax function. Wv1 represents

the weight used in the first convolution module of the channel transforming part, Wv2 represents the
weight used in the last convolution module of the channel transforming part. ReLU represents the
activation function, and LN represents the layer normalization operation.

2.2. Cropping-Inside Selective Kernel Block

During object tracking, the object scale is random and may vary over time so that receptive fields
have crucial influence on tracking performance. Networks such as Inception [9] have several receptive
fields due to their multiple parallel branches with different kernel sizes; however, the weight of each
branch is fixed in the fusion step, making it not adaptive to objects of different scales. SKNet [13] is
famous for its simplicity and efficiency. SKNet can adaptively assign the weights of different branches
according to the scales of different objects, making it suitable for tasks handling objects of random
sizes, such as object tracking.

The proposed CiSK block as shown in Figure 3 was inspired by SKNet, which inherits its
dynamic receptive field ability. In order to better apply it to object tracking tasks, we made two main
improvements to SKNet. Firstly, we think that besides average pooling, maximum pooling is another
important method for gathering discriminative features. Therefore, in the fuse step of SKNet, we
added an extra branch starting with GMP, forming a two-branch channel attention-generating module.
The GMP branch shares weights with the GAP branch. Secondly, a padding operation is necessary
for SKNet due to the same convolution it used to maintain feature dimensions. However, padded
values around the original feature induced potential position bias in model training [7], and thus the
prediction accuracy is expected to be degraded, especially when an object moves near the search range
boundary. To address this issue, the most padding-affected elements around the feature after the select
step were cropped out. The detailed working process of the CiSK block is as follows.
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The input feature X is convoluted by a 3 × 3 and 1 × 1 kernel respectively to obtain the top-branch
feature Ut and bottom-branch feature Ub. Ut and Ub have the same spatial dimension and channel
number. The size of Ut and Ub depends on which branch they source from. If it sources from the
template branch, the size is 6 × 6 × 256. If it sources from the search branch, it is 22 × 22 × 256. Then,
we add Ut and Ub element by element to get U:

U = Ut + Ub (2)
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The vectors s1 and s2 are obtained by GAP and GMP of U, where c is the cth channel of s1 and s2:

s1c = Fgap(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j) (3)

s2c = Fgmp(Uc) = max(Uc) (4)

Then, the channel number of s1 and s2 were reduced to one-eighth of their original values by
using a fully connected layer. z1 and z2 can be formulated as

z1 = F f c(s1) = δ(B(Ws1)) (5)

z2 = F f c(s2) = δ(B(Ws2)) (6)

where δ represents the ReLU activation function and B represents batch normalization.
After that, two fully connected layers were used with z1 to recover its original dimension so a1

and b1 were obtained, respectively. The same operation was also done to z2 to obtain a2 and b2. These
processes can be formulated as

a1 = Az1, b1 = Bz1 (7)

a2 = Az2 , b2 = Bz2 (8)

where A and B are the transformation matrices when the dimension is increased.
a and b were obtained by adding a1 and a2 and b1 and b2 together, and they were normalized by a

softmax function to get as and bs:
a = a1 + a2, b = b1 + b2, (9)

as =
ea

ea + eb
, bs =

eb

ea + eb
, (10)

Then, as and bs were multiplied by Ut and Ub with the broadcasting mechanism. The products of
multiplication are summed up to get feature map V:

Vc = ac·Ut + bc·Ub (11)

where s.t.ac + bc = 1.
Finally, the outermost pixels of each channel of V were cropped to get the final output Vout:

Vout = crop(V) (12)

where the size of V is 6 × 6 × 256 if sourced from the template branch or 22 × 22 × 256 if sourced from
the search branch. After cropping, the size of Vout becomes 4 × 4 × 256 or 20 × 20 × 256 correspondingly.

3. Experiments

3.1. Implementation Details

We took the AlexNet [18] that was pre-trained from ImageNet [19] as the backbone network for
feature extracting and trained 20 epochs in total. First, we froze the parameters of the pre-trained
AlexNet, then trained other parts for 10 epochs. After that, we unfroze the last two layers of AlexNet
and trained it together with other parts of the network for 10 epochs. The total loss is the sum of the
classification loss and the standard smooth L1 loss for regression. Stochastic gradient descent (SGD)
was used for optimizing, and the momentum parameter was set to 0.9. During training, the learning
rate was arranged as follows. For the first 5 epochs, the learning rate increased exponentially from
0.005 to 0.01. For the remaining 15 epochs, the learning rate decreased exponentially from 0.01 to
0.0005.
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During inferencing, we regarded our tracker as a local one-shot detection framework, in which
the bounding box in the first frame was the only exemplar. This exemplar was sampled through the
template branch only once, and the template branch was pruned after that to accelerate the tracking
speed [2]. Subsequent frames were sampled by searching branches and fed into the RPN subnet to get
the refined proposal. In addition, our tracker was designed for short-term object tracking, so no online
template update mechanism was used.

We used four datasets as training sets, namely ImageNet VID [19], ImageNet DET [19], COCO [20]
and YouTube-BB [21], and used OTB100 [22], VOT2016 [23] and VOT2019 [24] to evaluate the proposed
method. Before being fed into the tracker, template frame images were resized to 127 × 127, and the
search frame images were resized to 255 × 255.

Our tracker was implemented using PyTorch framework with Python on an Intel(R) Xeon(R) CPU
E5-1620 v3 @3.50GHz and two NVIDIA GTX 1080Ti GPUs with 22 GB of memory in total.

3.2. Result on OTB100

We used the standard OTB100 benchmark to evaluate the performance of our tracker, which
contained 100 fully annotated real-world sequences. These sequences had 11 challenges, namely
illumination variation (IV), deformation (DEF), motion blur (MB), out-of-plane rotation (OPR),
low resolution (LR), occlusion (OCC), fast motion (FM), in-plane rotation (IPR), out-of-view (OV),
background cluttered (BC) and scale variation (SV). There were two evaluation criteria. One was the
overlap rate of the bounding box and the other was the center positioning error of the bounding box.

We could get two graphs to demonstrate the performance of multiple models, those being precision
plots of one-pass evaluation (OPE) based on the center positioning error of the bounding box and
success plots of OPE based on the overlap rate of the bounding box. Horizontal values in these two
graphs are the thresholds of those two criteria. The precision value shows the percentage of frames
that meet the distance of the center point, and the success rate value shows the percentage of frames
that meet the overlap rate. We compared it with nine state-of-the-art methods, including SiamRPN,
MEEM [25], MUSTer [26], SiamFC [4], DSST [27], KCF [28], Struck [29], TLD [30] and CSK [31]. The
results are as follows.

The number in the precision plot of OPE in Figure 4 is the precision value when the location
error threshold is 20, which is the official evaluation metric used by Object Tracking Benchmark
(OTB) dataset. The number in the success plots of OPE in Figure 4 is the area under the curve (AUC).
As shown in Figure 4, we achieved the best results on the OTB100 benchmark, with precision 0.5
percentage points higher than the baseline (SiamRPN) and a success rate 1 percentage point higher
than the baseline.
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As shown in Figure 5, we compared ACSiamRPN with two classic trackers (SiamFC and SiamRPN)
and showed the results of six videos in OTB100, which are some frames in Skiing, MotorRolling, CarScale,
Liquor, Tiger1 and Lemming. It can be found that when an object is too small (Skiing), the object rotates
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in plane (MotorRolling), the object scale changes greatly (CarScale) or the object is occluded (Liquor,
Tiger1 and Lemming). The two classic trackers often got inaccurate tracking results or even tracking
failure. Our tracker can handle these challenges better. We think the main reasons are that, first, the GC
block can collect long-range context information and improve a network’s understanding of tracking
scenes. Second, the CiSK block can adjust the receptive field adaptively according to the variation of
object features during the tracking process, so it can better estimate the current scale of an object.
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3.3. Result on VOT2016

Visual Object Tracking (VOT) benchmarks evaluate a tracker by applying a reset-based
methodology. Whenever a tracker has no overlap with the ground truth, the tracker will be re-initialized
after five frames. The major evaluation metrics of VOT benchmarks are accuracy (A), robustness (R)
and expected average overlap (EAO). An excellent tracker should have high A and EAO scores but a
low R score.

We used the VOT2016 benchmark to test our tracker and compared it with nine advanced trackers.
The VOT2016 public dataset was used for single object short-term tracking tasks, including 60 video
sequences. We compared EAO, A and R, three criteria of the different trackers, and the details are
shown in Table 1 and Figure 6.

Table 1. Detailed information about several published state-of-the-art trackers’ performances in
VOT2016. Red, blue and green represent the 1st, 2nd and 3rd best trackers, respectively.

Trackers EAO Accuracy Robustness

Ours 0.397 0.601 0.252
SiamDW [7] 0.376 0.580 0.240
SiamRPN [2] 0.344 0.560 0.260
CCOT [32] 0.331 0.539 0.238
TCNN [33] 0.325 0.554 0.268
SSAT [23] 0.321 0.577 0.291

MLDF [34] 0.311 0.490 0.233
Staple [35] 0.295 0.544 0.378
EBT [36] 0.291 0.465 0.251

SRBT [23] 0.290 0.496 0.350
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As shown in Table 1 and Figure 6, our tracker reached 0.397 EAO, 0.601 accuracy, and 0.252
robustness. Our EAO and accuracy criteria were about 15.4% and 7.3% higher than the baseline
(SiamRPN), respectively, and the robustness (failure rate) was reduced by about 3%.

3.4. Result on VOT2019

We used the VOT2019 benchmark to test our tracker and compared it with nine advanced trackers.
Like VOT2016, the VOT2019 public dataset was also used for single object short-term tracking tasks,
and it includes 60 video sequences. Compared to VOT2018, VOT2019 replaced 20% of sequences with
more difficult ones. We compared EAO, A and R, the three criteria of different trackers, and the details
are shown in Table 2 and Figure 7.

Table 2. Detailed information about several published state-of-the-art trackers’ performances in
VOT2019. Red, blue and green represent the 1st, 2nd and 3rd best trackers, respectively.

Trackers EAO Accuracy Robustness

Ours 0.240 0.562 0.642
SSRCCOT [24] 0.234 0.495 0.507
MemDTC [24] 0.228 0.485 0.587

SiamRPNX [24] 0.224 0.517 0.552
Siamfcos [24] 0.223 0.561 0.788

TADT [37] 0.207 0.516 0.677
CSRDCF [38] 0.201 0.496 0.632
CSRpp [24] 0.187 0.468 0.662
FSC2F [24] 0.185 0.480 0.752
ALTO [24] 0.182 0.358 0.818
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As shown in Table 2 and Figure 7, our tracker was ranked first in both the EAO and accuracy
criteria, while the robustness ranking was slightly behind. Among them, EAO and accuracy are about
2.6% and 13.5% higher than the second-ranked tracker, respectively.
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In the VOT2019 ranking list, the performance of some trackers based on Siamese networks were
better than ours, such as SiamDW_ST, SiamMask and SiamRPN++. The main reason is that they
use much deeper backbone networks, such as ResNet, InceptionNet and so on, so they can extract
richer target features. The backbone network used in ACSiamRPN is a five-layer AlexNet, and thus
our network is relatively lightweight and can achieve a higher tracking speed. We compared the
performance and tracking speed of ACSiamRPN with SiamDW_ST, SiamMask and SiamRPN++. The
result is shown in Figure 8.Electronics 2020, 9, x FOR PEER REVIEW 10 of 13 
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Figure 8. Comparison of the performance and tracking speeds of ACSiamRPN, SiamDW_ST, SiamMask
and SiamRPN++.

As shown in Figure 8, the speed of our tracker is much higher than that of other siamese
network-based networks on the VOT2019 benchmark. For example, our tracker is 57 FPS faster than
SiamMask (128 vs. 71), while the EAO is only 0.042 (0.24 vs. 0.282) lower than it.

3.5. Ablation Study

The GC block and CiSK block are the two main contributions of our model. In order to study their
effectiveness, we carried out ablation experiments on VOT2016. As shown in Table 3, both the GC and
CiSK blocks played a positive role. Although only adding the GC block to the template branch made
the network no longer symmetrical, during training, the network will adaptively adjust the weight of
two branches to output features that are conductive to subsequent template matching operations. In
addition, the GC block can provide a better template for the tracker. A model with the GC block alone
obtained performance gains of 0.022 (0.366 vs. 0.344) in EAO and 0.037 (0.597 vs. 0.560) in accuracy.
The robustness criterion was basically not affected (0.265 vs. 0.260). The model with the CiSK block
alone obtained performance gains of 0.029 (0.373 vs. 0.344) in EAO and 0.039 (0.599 vs. 0.560) in
accuracy. The robustness criterion was basically not affected (0.265 vs. 0.260). The model with both
the GC and CiSK blocks obtained performance gains of 0.053 (0.397 vs. 0.344) in EAO, 0.041 (0.601 vs.
0.560) in accuracy, and 0.008 (0.252 vs. 0.260) in robustness.
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Table 3. Effectiveness study of the global context (GC) block and cropping-inside selective kernel
(CiSK) block. Red represents the best results.

Settings VOT2016

EAO Accuracy Robustness

SiamRPN 0.344 0.560 0.260
SiamRPN+GC 0.366 0.597 0.265

SiamRPN+CiSK 0.373 0.599 0.270
ACSiamRPN(Ours) 0.397 0.601 0.252

EAO is a new performance criterion introduced in VOT2015, which combines the raw values of
accuracy and robustness and forms a kind of hybrid criterion. EAO measures the expected no-reset
overlap of a tracker run on a short-term sequence [23]. EAO has a clear practical interpretation and
provides a more reasonable measure for short-term object tracking tasks, and thus it is officially
recognized as the ranking criterion by the VOT competition. As shown in Table 3, the GC block and
CiSK block both have obvious contributions for the improvement of the EAO, which demonstrates
their effectiveness.

Cropping operation, GAP branch and GMP branch are the three main modifications in CiSK. In
order to study their effectiveness, we carried out ablation experiments on VOT2016. As shown in
Table 4, when GAP and GMP branches are used at the same time, the performance of the model is
better than when only a GAP or GMP branch is used (0.370 vs. 0.369/0.367 when a cropping operation
is not adopted, 0.397 vs. 0.382/0.395 when a cropping operation is adopted). It also can be seen that
model performance gains a considerable improvement in different GAP and GMP combinations due
to the cropping operation (0.382 vs. 0.369, 0.395 vs. 0.367, 0.397 vs. 0.370).

Table 4. Effectiveness study of cropping operation, global average pooling (GAP) and global maximum
pooling (GMP) branches. Red represents the best results.

Crop GAP GMP
VOT2016

EAO Accuracy Robustness
√

0.369 0.607 0.266
√

0.367 0.601 0.308
√ √

0.370 0.605 0.294
√ √

0.382 0.601 0.266
√ √

0.395 0.604 0.256
√ √ √

0.397 0.601 0.252

4. Conclusions

In this paper, we proposed two lightweight and efficient modules, namely the GC block and CiSK
block, and integrated them into SiamRPN. The GC block can model the long-range context of template
frames better, and the CiSK block gives models the ability of dynamic receptive fields. We used four
large-scale datasets to train our model and used three mainstream benchmarks to evaluate the model’s
performance. Careful ablation study was carried out to demonstrate the positive effect of each module.
Experiment results show that the proposed ACSiamRPN model has competitive performance.
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