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Abstract: Background: SARS-CoV-2 causes varied gastrointestinal symptoms. Cirrhosis patients face
higher mortality rates from it, especially those with decompensated cirrhosis. This study examines
SARS-CoV-2’s impact on decompensation in previously compensated cirrhotic patients. Methods: We
analyzed the Global Collaborative Network, comprising 98 healthcare organizations across sixteen
countries, using TriNetX’s deidentified research database. Compensated cirrhosis patients were
split into two groups: one with SARS-CoV-2-positive patients and another testing negative. Using
a 1:1 propensity score matching model based on baseline characteristics and comorbidities, we
created comparable cohorts. We then assessed decompensation, mortality, and GI bleed at 1 and
3 months. Results: Out of 252,631 identified compensated cirrhosis patients, 27.3% (69,057) tested
SARS-CoV-2-positive, while 72.6% (183,574) remained negative. Post PSM, 61,963 patients were
in each group. SARS-CoV-2-positive patients showed significantly higher decompensation rates
(4.4% vs. 1.9% at 1 month; 6% vs. 2.6% overall). Rates of complications, like ascites, SBP, HE, and
HRS, increased notably. Mortality (2.5% vs. 1.7% at 1 month; 3.6% vs. 2.7% at 3 months) and GI bleed
(1.3% vs. 0.9% at 1 month; 1.9% vs. 1.2% at 3 months) were also elevated in SARS-CoV-2 patients.
Conclusions: SARS-CoV-2 increases decompensation over 2-fold in compensated cirrhosis patients
and raises mortality and increases rates of complications at 1 and 3 months.
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1. Introduction

SARS-CoV-2 infection is associated with a variety of gastrointestinal manifestations.
Patients with cirrhosis are particularly interesting, as there is emerging data that cirrhotic
patients have an increased mortality rate with SARS-CoV-2 [1]. Mortality rates have also been
noted to increase in patients with decompensated cirrhosis (when compared to compensated
disease) and increase with the rising Model for End-Stage Liver Disease (MELD) score or
Child–Pugh classification. Irrespective of the pre-existing liver disease status, SARS-CoV-2
infection with elevated liver enzymes, especially AST, on presentation, results in significantly
higher rates of mortality, intubation rates, and prolonged hospitalization [2]. Patients with
cirrhosis are effectively immunocompromised, which makes them prone to infections. This
study aims to assess if SARS-CoV-2 infection is associated with new clinical decompensations
of the liver with new onset jaundice, ascites, spontaneous bacterial peritonitis (SBP), hepatic
encephalopathy (HE), hepato-renal syndrome (HRS), and esophageal variceal bleeding (EVB).

2. Materials and Methods
2.1. Statistical Analysis

The study was approved by the Institution Board Review Committee at the Charleston
Area Medical Center. Written informed consent from patients was waived due to the
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de-identified nature of the TriNetX clinical database. The TriNetX (Cambridge, MA, USA)
database is a global federal research network that combines real-time data with electronic
medical records. Our study was conducted using the TriNetX database through the Global
Collaborative Network, which comprises 98 Healthcare Organizations (HCOs) from sixteen
countries. Adult patients aged ≥18 years with compensated cirrhosis were identified
between November 2013 and November 2023. Compensated cirrhosis was identified as
patients who had a documented diagnosis of cirrhosis, regardless of etiology, who did not
have any prior decompensation. Patients with compensated cirrhosis were identified using
the codes from the International Classification of Diseases (ICD)-10. A list of all ICD-10
codes and definitions for the study is highlighted in the Supplementary Materials. Patients
with compensated cirrhosis were divided into two groups: patients who tested positive for
SARS-CoV-2 infection and patients who tested negative for SARS-CoV-2 infection. This
was followed by the propensity score matching (PSM) of both groups to ensure successful
and effective balancing. PSM was performed using baseline patients’ characteristics and
comorbidities as highlighted in Table 1.

Table 1. Patient characteristics of cohorts.

SARS-CoV-2-Positive and SARS-CoV-2-Negative counts before and after propensity score matching

Cohort Patient count before PSM matching Patient count after PSM matching

SARS-CoV-2-Positive 8367 5092
SARS-CoV-2-Negative 8150 5092

Propensity score density function—before and after matching (SARS-CoV-2-positive—purple, SARS-CoV-2-negative—green)
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(n = 61,963)

SARS-CoV-2-
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Demographics

• Age at Index
• Mean ± SD

54.3 ± 11.2 51.4 ± 11.1 <0.001 53.6 ± 11.4 53.2 ± 11 0.08

• Female 43.9% 40.6% <0.001 43.3% 43.7% 0.14

• Not Hispanic or Latino 73.5% 51.5% <0.001 71.7% 70.3% 0.07

Comorbidities

• COPD 14.5% 4.9% <0.001 10.4% 10.6% 0.33

• CAD 15.7% 4.8% <0.001 11.1% 11.2% 0.54

• CKD 14.3% 4.7% <0.001 10.2% 10.3% 0.41

• Hypertension 55.7% 24.5% <0.001 50.7% 51.8% 0.09

• Diabetes Mellitus 33.8% 15.1% <0.001 29.2% 30.6% 0.1

SD: Standard Deviation; COPD: Chronic Obstructive Lung Disease; CAD: Coronary Artery Disease; CKD: Chronic
Kidney Disease.
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After conducting propensity score matching, an examination of the outcomes was
undertaken. Differences in all-cause mortality rates between groups were explored using
Kaplan–Meier curves and log-rank tests. For each outcome, risk ratios (RRs) along with
their corresponding 95% confidence intervals (CIs) were computed. Statistical significance
was established at a p-value < 0.05. The statistical analyses were carried out utilizing the
TriNetX platform.

2.2. Inclusion and Exclusion Criteria

Patients with compensated liver cirrhosis, regardless of etiology, were identified and
divided into two cohorts: patients who tested positive for SARS-CoV-2 and patients who
tested negative for SARS-CoV-2. SARS-CoV-2 positivity was defined as the presence of
IgG or IgM antibodies or SARS-CoV-2 RNA in serum. We excluded any patient who
had any decompensation event prior to testing. Decompensation events were identified
as the presence of esophageal varices with or without bleeding, hepatic encephalopathy
(HE), spontaneous bacterial peritonitis (SBP), jaundice, ascites, or hepatorenal syndrome
(HRS). The following outcomes were compared at 1- and 3-month intervals: mortality and
decompensation. We also compared each separate decompensation event between the
cohorts: jaundice, ascites, SBP, HE, HRS, and esophageal variceal bleeding (EVB).

3. Results
3.1. Baseline Characterestics

A total of 252,631 patients with compensated cirrhosis were identified and met our
inclusion criteria. Patients with compensated cirrhosis who tested positive for SARS-CoV-2
(27.3%%, n = 69,057) and patients with compensated cirrhosis who tested negative for
SARS-CoV-2 (72.6%, n = 183,574) were assessed. Two well-matched cohorts of patients
who tested positive for SARS-CoV-2 and those who tested negative (n = 61,963/n = 61,963)
were compared following propensity score matching using baseline patients’ demographics
and comorbidities.

Analyses of cohorts’ baseline demographics and comorbidities did not show any
significant difference after PSM. The mean age in the group that tested positive was 54 years
with a standard deviation of 11.4. Slightly more than half the cohort was comprised of males
56.1%. In the group that tested positive for SARS-CoV-2, chronic obstructive pulmonary
disease (COPD) was found in 11.3%, coronary artery disease (CAD) in 11.4%, hypertension
(HTN) in 51%, and chronic kidney disease (CKD) in 10.4%. A full comparison of cohorts’
baseline demographics and comorbidities before and after PSM is highlighted in Table 1.

3.2. Outcomes

After PSM, we compared different outcomes between the two cohorts. Patients with
compensated cirrhosis who tested positive for SARS-CoV-2 infection had a statistically
significant higher rate of decompensation when compared to those who tested negative
(4.4% vs. 1.9%, p < 0.0001 at 1 month and 6% vs. 2.6%, p < 0.0001 at 3 months with an
overall odds ratio of 2.4). Patients who tested positive for SARS-CoV-2 infection also had a
higher mortality rate (2.5% vs. 1.7%, p < 0.0001 at 1 month and 3.6% vs. 2.7%, p < 0.0001
at 3 months). GI bleed was higher in those who tested positive for SARS-CoV-2 (1.3% vs.
0.9%, p < 0.0001 at 1 month and 1.9% vs. 1.2%, p < 0.0001 at 3 months).

Subanalysis of decompensation events showed that the rates of ascites, SBP, HE, and
HRS were significantly higher in those who tested positive for SARS-CoV-2 infection
compared to those who tested negative. The rate of jaundice was not statistically different
between the two groups. A summary of the results is shown in Table 2 and graphs showing
the outcomes over time are shown in Figures 1–3.
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Table 2. Summary of results.

Outcomes at 1 Month Outcomes at 3 Months

SARS-CoV-2-
Positive
(61,963)

SARS-CoV-
2-Negative

(61,963)
OR p-Value

SARS-CoV-
2-Positive

(61,963)

SARS-CoV-
2-Negative

(61,963)
OR p-Value

Decompensation 4.4% 1.9% 2.4 <0.0001 6% 2.6% 2.4 <0.0001

Jaundice 0.7% 0.6% 1.1 0.08 0.9% 0.8% 1.1 0.03

Ascites 2.6% 0.4% 6 <0.0001 3.5% 0.7% 5.4 <0.0001

SBP 0.1% 0.02% 4.7 <0.0001 0.17% 0.03% 5 <0.0001

HE 1.9% 0.9% 2.2 <0.0001 2.5% 1.2% 2.2 <0.0001

HRS 0.2% 0.05% 4.3 <0.0001 0.27% 0.07% 4 <0.0001

GI bleed 1.3% 0.9% 1.5 <0.0001 1.9% 1.2% 1.6 <0.0001

Mortality 2.5% 1.7% 1.5 <0.0001 3.6% 2.7% 1.3 <0.0001

OR: Odds Ratio; SBP: Spontaneous Bacterial Peritonitis; HE: Hepatic Encephalopathy; HRS: Hepatorenal Syn-
drome; GI: Gastrointestinal.
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Figure 1. Graph showing a comparison between decompensation rates over time for previously com-
pensated cirrhosis patients who tested positive for SARS-CoV-2 compared to those who tested negative.
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Figure 2. Graph showing a comparison between GI bleed rates over time of previously compensated
cirrhosis patients who tested positive for SARS-CoV-2 compared to those who tested negative.
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cirrhosis patients who tested positive for SARS-CoV-2 compared to those who tested negative.

4. Discussion
4.1. Cirrhosis and Immune Dysfunction

Our immune system comprises an innate immune system and an adaptive immune
system. Both systems are impaired in patients with cirrhosis [3]. Cirrhosis affects innate
immunity by impairing the synthesis and function of various proteins that have bactericidal
properties [4]. Monocyte function is one of the cell lines responsible for chemotaxis,
phagocytosis, and the production of lysosomal enzymes [5]. Immune paralysis, which
is defined as a decreased expression of monocytes, is a known phenomenon in patients
with liver disease and it is believed to be the mechanism through which this cell line
is affected [6]. Neutrophils, which are the first line against bacterial infections, are also
affected in patients with liver disease [3] Neutrophil impairment results in the inability of
neutrophils to reach the infection site and a decreased phagocytic ability of the neutrophils
toward the infection [3] The liver is the site of clearance of many cytokines. Neutrophil
dysfunction leads to a persistent activation of neutrophils, which, in turn, leads to a
persistent elevation of cytokines [7] This elevation plays a part in the occurrence of cytokine
storm and systemic inflammatory response, which is one of the mechanisms through which
SARS-CoV-2 causes liver damage [8].

Adaptive immunity dysfunction is also common on patients with cirrhosis [3]. Pa-
tients with cirrhosis have a significant derangement of monocytes and T cells [9]. This is
secondary to the prolonged activation of T-cell lymphocytes, which hinders their ability to
proliferate after a new insult leading to immunosuppression secondary to the exhaustion
of an adaptive immune system [3]. Another affected component in patients with cirrhosis
is IgA; however, the mechanism is not fully understood [10].

The complement system plays part in both innate and adaptive immunity and is
also affected in patients with cirrhosis [3]. The liver is the synthetic site of complement
factors; therefore, low levels of C3 and C4 are seen in patients with cirrhosis [11]. This leads
to the increased susceptibility of patients with cirrhosis to bacterial infections. Another
mechanism of immunosuppression in patients with cirrhosis is bacterial translocation [12].
Bacterial translocation is the migration of bacteria or their products from intestinal lu-
men to mesenteric lymph nodes [13]. Multiple risk factors increase the risk of bacterial
translocation, which includes impaired humoral and cellular immunity, increased intestinal
permeability, and bacterial overgrowth [14]. Bacterial translocation is strongly associated
with spontaneous bacterial peritonitis and is another mechanism of how immune dysfunc-
tion can lead to hepatic decompensation [12]. A summary of cirrhosis effect on the immune
system is highlighted in Figure 4.
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4.2. Mechanism of SARS-CoV-2-Induced Liver Injury

Patients with SARS-CoV-2 infections have been known to develop a wide variety of
gastrointestinal complaints and symptoms, and studies have been performed to describe
the extent to which SARS-CoV-2 causes disease [15]. SARS-CoV-2 infection has been shown
to cause elevated bilirubin levels, creatinine levels, and decreased albumin, with the concern
regarding SARS-CoV-2’s first wave concerning direct hepatic injuries associated with the
disease; however, the evidence for a viral cause for hepatic injuries is still missing [15–17].
Additionally, elevated aminotransferase levels at the time of admission also correlate with
higher mortality [2,18]. Patients with underlying chronic liver disease were of particular
interest, as patients with cirrhosis were noted to have worse outcomes with concomitant
SARS-CoV-2 infections [1,2,16,19–21].

SARS-CoV-2 can cause abnormal liver function tests directly and indirectly in people
with a baseline impaired function [22]. The mechanism of hepatotoxicity can be related to
the nature of the virus, its consequences, or its treatment. In Wuhan, China, some studies
reported an elevation of liver function tests in up to 53% of cases [23]. The pathophysi-
ology behind the hepatotoxic effect of the SARS-CoV-2 virus is believed to be due to the
attachment of the S-spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor
leading to virus entry into hepatocytes and decreased hepatic function [24,25]. Once bound,
it breaks vasoconstrictor angiotensin II into vasodilator angiotensin I, which leads to a
drop in blood pressure. These receptors are found in cholangiocytes, hepatocytes, pancreas,
and other major organs [26,27]. SARS-CoV-2 also enters endothelial cells and destroys the
vascular endothelium. This, in turn, causes vasoconstriction and, furthermore, a procoagu-
lant state [28,29]. The procoagulant state was observed in patients with respiratory failure
and it was occurred due to hypercoagulability rather than consumption, as reported by
Spiezia [30]. He found that those patients had high fibrinogen and D-dimer levels. He also
observed a hypercoagulable platelet profile, which was confirmed by Rampotas and Pavord
when they observed platelet aggregation and increased platelet activity when they exam-
ined the blood films of patients with SARS-CoV-2 who were mechanically ventilated [31]
This was also further confirmed by a systematic review examining the risk of portal vein
thrombosis (PVT) in patients with SARS-CoV-2, which found a higher association of PVT in
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hospitalized patients with SARS-CoV-2 infection [32]. PVT is well known to cause hepatic
decompensation in patients with cirrhosis [33].

Another mechanism of SARS-CoV-2-induced liver injury is the occurrence of cytokine
storms [8]. SARS-CoV-2 is associated with a strong inflammatory response, which leads to
the activation of the pro-inflammatory cascade involving cytokines, such as interleukins
1B, 6, and 18 [34]. Their activation leads to the activation of other interleukins and tumor
necrosis factor-alpha. This eventually leads to an elevation of ferritin and c-reactive protein
levels and subsequent endothelial damage [35]. Additionally, SARS-CoV-2 is known
to cause hypoxia [36]. This leads to a decrease in hepatic perfusion and subsequent
hepatocellular hypoxia. This primary hepatic injury leads to elevations in AST and ALT
levels [37]. Secondary hepatic injury occurs as a result of an acute inflammatory response
in the settings of sepsis and multi-organ failure [37].

4.3. SARS-CoV-2 Drug-Induced Liver Injury

Furthermore, many of the drugs used for SARS-CoV-2 treatment have a hepatotoxic
effect, which further contributes to its role in decompensation [38]. A systemic review and
meta-analysis revealed a pooled incidence of drug-induced liver injury in patients with
SARS-CoV-2 of 25.4% [39].

Dexamethasone, which is used frequently for respiratory failure secondary to SARS-
CoV-2 infection, is known to cause elevated liver enzymes [40]. Its use was associated with
both liver enzyme elevation and the reactivation of chronic Hepatitis B [41] However, their
use in those patients improved their mortality rate and respiratory status [42].

Remdesivir inhibits RNA polymerase is metabolized in part by cytochrome P450 in the
liver [43]. Multiple studies reported the hepatotoxic effect of Remdesivir, which included
significant elevations of ALT and AST leading to the discontinuation of therapy [44–46].

Ritonavir is another drug used for SARS-CoV-2 infection. It is a part of the commer-
cially available drug Paxlovid, which is recommended by the Center for Diseases Control
and Prevention (CDC) for outpatient use against SARS-CoV-2 [47]. It is extensively me-
tabolized by the cytochrome P450 system [48]. A randomized, controlled, open-label trial
including patients with SARS-CoV-2 infections who were severely ill and required hospi-
talization showed that Ritonavir caused elevated ALT, AST, and total bilirubin levels [49].
Both cholestatic and hepatocellular patterns of liver injury were reported with the use of
Ritonavir [48].

Imatinib, which is also used for SARS-CoV-2 infection, is known to cause three forms
of liver injury: transient elevation of liver enzymes, acute hepatitis, and reactivation of
chronic hepatitis B [50]. There have been multiple case reports of acute liver injury with
Imatinib use, some of which resulted in death or liver transplants [51,52].

Baricitinib is used in combination with Remdesevir for SARS-CoV-2 infection. It has
been associated with the elevation of liver enzymes, but the data are still limited on the
long-term effects [53]. In many large clinical trials on patients with rheumatoid arthritis,
Baricitinib was found to cause an elevation in liver enzymes in up to 17% of the patients,
which occasionally led to the discontinuation of treatment [54].

Azithromycin is also commonly used for SARS-CoV-2 treatment due to its effect of
reducing the severity of lower respiratory tract illnesses [55]. This is thought to be via
binding to the ACE2 receptor-SARS-CoV-2 Spike protein complex, which inhibits the
initial stages of SARS-CoV-2 replication [56]. Of note, the S-spike protein of SARS-CoV-
2 independently causes a strong immune reaction activating both the innate immune
system as well as the adaptive humoral system, which further causes liver injury [57]. The
mechanism of liver injury is unknown, but the rapid onset suggests a hypersensitivity
component [58]. Azithromycin can cause liver injury in the short term and long term [59].
Short-term injury usually occurs within 2–3 days and it is highlighted by a hepatocellular
pattern of injury [60]. This hepatocellular pattern can be severe and can lead to acute
liver failure. Long-term injury occurs within 1–3 weeks and is highlighted by a cholestatic
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pattern [61]. This can be accompanied by a long duration of jaundice and the further
impairment of liver function.

Acetaminophen, a commonly used antipyretic medication, is also frequently used
for SARS-CoV-2 infection. The data for acetaminophen’s hepatotoxic effect are widely
available, and its use in patients with SARS-CoV-2 infections can cause mild hepatotoxicity
with elevations in ALT and AST levels [62]. The mechanism of hepatic injury is extensively
studied. The most well-known form is a serious hepatocellular injury after an overdose;
this is generally secondary to the direct effect of such high doses [62].

4.4. SARS-CoV-2 and Underlying Liver Disease

Underlying liver disease was observed in up to 11–17% of patients with SARS-CoV-2
infections [2,63]. Patients with an established diagnosis of cirrhosis had increased mortality
with acute SARS-CoV-2 infection compared to patients with a mortality of 32% for patients
with cirrhosis compared to 8% for those without cirrhosis [17,21]. The risk of mortality in
cirrhotic patients with SARS-CoV-2 infections has been shown to increase with the increase
in the baseline MELD or Child–Turcotte–Pugh score [15,21,64]. A study in 2020 compared
the mortality of patients with SARS-CoV-2 infections; compared to patients without a
chronic liver disease, mortality increased by 20.0% in Child–Pugh class-B cirrhosis patients
and 38.1% in patients with the Child–Pugh class-C disease [21]. The increase in mortality
of patients with SARS-CoV-2 was consistent with an increase in the mortality of patients
with decompensated cirrhosis (defined by the presence of ascites, hepatic encephalopathy,
spontaneous bacterial peritonitis, and esophageal varices) compared to patients with
compensated cirrhosis (absence of factors qualifying for a decompensated status) [64].
These findings are also in line with our study outcomes. Our study showed a 1.5-fold
increase in mortality in patients with compensated cirrhosis if tested positive for SARS-
CoV-2 infection.

4.5. Decompensation of Cirrhosis

Ascites is the most common complication in up to 60% of patients with cirrhosis [65].
In patients with a normal renal function, diuretics can be introduced [65]. However, a
large volume of ascites needs to undergo paracentesis to rule out SBP and to provide
symptomatic relief. IV albumin should be administered at the time of paracentesis to
reduce the risk of hepatorenal syndrome (HRS).

Acute kidney injury (AKI) is common in up to 20% of patients with decompensated
cirrhosis [66]. It can occur as a pre-renal AKI, a primary renal disease, or HRS. AKI in those
patients is usually multifactorial [66]. The initial treatment for AKI is the correction of
volume status with IV fluids or albumin. Diuretics and any nephrotoxic medication should
be discontinued.

Gastrointestinal bleed is another cause of decompensation, and variceal bleed accounts
for 50% of gastrointestinal bleeds in patients with cirrhosis [67]. Ensuring a patent airway,
reliable IV access, and resuscitation are key elements in the initial management of gas-
trointestinal bleeds in patients with cirrhosis. Fixing concurrent coagulopathy and blood
transfusion is recommended [68]. Endoscopy should be performed to achieve bleeding
source control [69].

Another cause of decompensation is hepatic encephalopathy, which can be precipi-
tated by infections, constipation, electrolyte abnormalities, sedatives, or gastrointestinal
bleeding [70]. Treating hepatic encephalopathy includes treating the underlying cause as
well as laxatives. Lactulose can be administered orally or rectally and should be titrated to
a goal of about three bowel movements daily [70]. Rifaximin can be added if the response
to lactulose is inadequate [70].

4.6. Prognosis of SARS-CoV-2 in Patients with Cirrhosis

A large cohort study in England showed that patients with prior liver disease on
presentation and admitted with SARS-CoV-2 infection had a higher mortality rate [71].
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Another study in China evaluated the characteristics of patients with SARS-CoV-2 infec-
tions; of 62 patients, 11% had an underlying liver disease, which was higher than any other
comorbidity [72]. Furthermore, patients with non-alcoholic fatty liver disease (NAFLD)
had a much higher incidence of liver injury [73,74]. This sheds light on how susceptible
this patient population is.

The development of decompensated cirrhosis is a concern regarding SARS-CoV-2
infections due to the increased mortality in this population. In a study from 2020, hepatic
decompensation developed in 36.9% of patients with SARS-CoV-2 infections and was
strongly associated with an increased risk of death [64]. In an additional study from 2020,
decompensation occurred in 46% of patients with cirrhosis [21]. Our study showed a
2.5-fold increase in the decompensation rate in patients with previously compensated
cirrhosis if tested positive for SARS-CoV-2 infection, with rates of 4.4% and 6% at 1 and
3 months compared to 1.9% and 2.6%, respectively. Studies since then recommend routine
testing for SARS-CoV-2 infection in patients with acute hepatic decompensation, even
without respiratory symptoms [16,18,20]. Further information is needed to confirm this
trend, with the need for more extensive studies and ongoing study populations outside
the index SARS-CoV-2 infection as new variants continue to emerge. Although the SARS-
CoV-2 infection may be associated with acute hepatic decompensation, little is known
about increased GI bleeding or the development of esophageal variceal bleeding. One
review noted GI blood loss in patients with SARS-CoV-2 to be less frequent than other GI
manifestations, with 4% of critically ill patients with SARS-CoV-2 documented to have
GI blood loss. In addition, esophageal variceal bleeding (EBV) is less common than other
events marking hepatic decompensation [64]. In a nationwide study, Gandhi et al. also
showed that the presence of SARS-CoV-2 infection in patients with bleeding varices led
to a significant delay in endoscopic interventions compared to patients testing negative,
which further resulted in increased all-cause mortality and ICU admissions [75].

4.7. Strengths and Weaknesses

One of our study strengths was the large sample of patients, which increased the power
of the study and allowed generalizability. Another major strength was the selective nature
of our inclusion and exclusion criteria. We exclusively included patients with compensated
cirrhosis and excluded any patients with a prior history of any decompensation event prior
to the study index.

Our study had a few limitations. The nature of our dataset did not allow us to
characterize the severity of liver disease, such as the MELD score; however, we attempted
to mitigate such a limitation by our selective inclusion and exclusion criteria and by using
PSM, which ensured a very similar patient population in the two groups. Another study
limitation related to the nature of our dataset was the inability to specify the SARS-CoV-2
strain included in our study.

4.8. Summary

The SARS-CoV-2 pandemic has created many challenges and changed the healthcare
landscape across the globe. The SARS-CoV-2 infection is known to have caused a wide
variety of gastrointestinal symptoms, and studies are ongoing to determine the extent and
severity. Patients with cirrhosis have an impaired immune system, which makes them more
susceptible to various infections. SARS-CoV-2 causes direct and indirect hepatic injuries.
Also, many medications that are used to treat SARS-CoV-2 infection have hepatotoxic
effects. Therefore, patients with cirrhosis who end up contracting the SARS-CoV-2 infection
have a higher risk of hepatic decompensation. Our study suggests that SARS-CoV-2
infection is an independent risk factor for the decompensation of cirrhosis in previously
compensated patients.
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5. Conclusions

The presence of SARS-CoV-2 infection, regardless of the symptoms, is associated
with more than a two-fold-higher rate of decompensation among patients with previously
compensated liver cirrhosis. It is also associated with a higher mortality rate at the 1- and
3-month marks from the date of infection. This should encourage healthcare providers to
be vigilant to diagnose SARS-CoV-2 as an acute decompensating event, even with a lack of
respiratory symptoms.
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