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Abstract: Recently, new therapeutics have been developed for hepatocellular carcinoma 

(HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the 

reasons for this is the high frequency of recurrence after radical treatment. Consequently, to 

improve prognosis, it will be important to develop a novel anti-tumor agent that is especially 

effective against HCC recurrence. For clinical application, long-term safety, together with 

high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 

1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-

4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; 

MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, 

resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-

positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model,  

MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects  

in vivo. The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this 

review article. 
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1. Introduction 

Intracellular levels of vitamin K and its homologs are significantly lower in most hepatocellular 

carcinomas (HCCs) as compared with background non-tumor areas [1]; vitamin K-dependent 

carboxylation reactions are impaired in HCC cells. Vitamin K can inhibit the growth of HCC cells in a 

dose-dependent manner. However, vitamin K uptake is lower in HCC cells relative to normal 

hepatocytes in vitro [2]. These findings support the hypothesis that differences in the ability to absorb 

vitamin K lead to the individual sensitivity of HCC to vitamin K. Nowadays, the vitamin K2 

(menaquinone) homolog menaquinone-4 (MK-4) is used for the treatment of osteoporosis, and its  

long-term safety has been confirmed [3–6]. There is a possibility that MK-4 can suppress the progression 

of HCC [7–12]. In some small-scale studies, MK-4 treatment has been reported to reduce the onset of 

HCC in patients with liver cirrhosis and HCC recurrence after curative surgical resection or 

radiofrequency ablation [13,14]. Indeed, MK-4 is expected to inhibit de novo carcinogenesis, HCC 

proliferation and HCC recurrence with long-term safety. However, no significant inhibiting effect was 

proven in a large-scale, double-blind and randomized control study [15]. A meta-analysis of randomized 

controlled trials, failed to confirm significantly better tumor recurrence-free survival at one year, and 

there was no beneficial effect on the overall survival [16]. 

Because the anti-HCC effect of MK-4 may be dependent on the delivery of its metabolite, 

menahydroquinone-4 (MKH), it is hypothesized that effective delivery of MKH to HCC cells leads to 

inhibition of HCC proliferation, metastasis and recurrence. However, MKH itself has easily oxidizable 

characteristics and is unsuitable for clinical use. In our previous studies, menahydroquinone-4  

1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), the ester derivative of MKH, showed 

excellent MKH delivery potential regarding the liver without the reductive activation process of MK-4 

to MKH [17,18]. To improve the prognosis of patients with HCC, an agent with high anti-tumor 

effectiveness and a good safety profile needs to be developed. Recent studies suggest that MKH-DMG 

has promising anti-HCC characteristics, such as intracellular MKH delivery and inhibition of tumor 

progression [19]. 

2. MKH Delivery System in HCC Cells 

The schema for the conversion process associated with the MKH delivery system in HCC cells is 

shown in Figure 1. Des-γ-carboxy prothrombin (DCP) also known as the protein induced by vitamin K 

absence-II (PIVKA-II), an abnormal prothrombin with incomplete carboxylation, is a HCC-specific 

tumor marker [20,21]. Additionally, DCP functions as a predictive factor for vascular invasion, 

metastasis and tumor progression; it is associated with the poor prognosis of HCC patients [22–27]. The 

vitamin K content in HCC cells has the ability to restrict DCP production [1,28–30]. MKH, a fully 

reduced form of MK-4, is a cofactor of γ-glutamyl carboxylase (GGCX) that converts glutamate residue 

into the γ-carboxyglutamate residue of vitamin K-dependent proteins such as prothrombin [31–33]. 
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Therefore, ancillary to vitamin K-dependent carboxylation, MKH is stoichiometrically converted into 

menaquinone-4 epoxide (MKO). Utilization of MKH is restricted in HCC tissue. Because MKH 

availability regulates the rate of carboxylation [34], reduction of MKH availability in HCC cells may 

result in the increase in DCP. 

 

Figure 1. Schema of MKH delivery system in HCC cells. MKH-DMG, menahydroquinone-4 1,4-

bis-N,N-dimethylglycinate hydrochloride; MK-4, menaquinone-4; MKH, menahydroquinone-4; 

MKO, menaquinone-4 epoxide; DCP, des-γ-carboxyl prothrombin; PIVKA-II, protein induced by 

vitamin K absence-II; VKORC1, vitamin K 2,3-epoxide reductase complex subunit 1; 

VKORC1L1, VKORC1 like-1; HCC, hepatocellular carcinoma. 

MKH-DMG, an MKH prodrug, is hydrolyzed into MKH by esterase after its uptake by cells. GGCX 

is required for its activity and depends upon MKH, which is generated mainly by vitamin K 2,3-epoxide 

reductase complex, subunit 1-like 1 (VKORC1L1). VKORC1L1 promotes the reduction of MK-4 to 

MKH and supports vitamin K hydroquinone-mediated intracellular antioxidation, which is critical for 

cell survival [35]. In our previous studies, MKH-DMG effectively supplied MKH to HCC cells without 

reductive activation [17,18]. 

3. Inhibition of HCC Cell Proliferation by MKH-DMG 

MKH-DMG has an inhibitory effect regarding cell proliferation in HCC cell lines in vitro. In our cell 

viability assay, MKH-DMG suppressed the proliferation of HCC cells in a time- and dose-dependent 

manner both in DCP-positive (PLC/PRF/5 and Hep3B) and DCP-negative (SK-Hep1) cell lines [19].  

A rapid and intensive suppression effect was evident at 48 h after MKH-DMG administration at a 

concentration of 20 μM (Table 1). In contrast, the effect of MK-4 was clearly weaker and the suppression 

of cell proliferation was not distinct until 72 h at a concentration of ≥40 μM (Table 1). MKH-DMG 

showed significantly lower IC50 values (14–37 μM) and exhibited 4–18 times stronger proliferation-

suppressing activity than MK-4. When cell injury was estimated by LDH release into the medium, no 

indication of injury was evident during MKH-DMG treatment. MK-4 is usually prescribed at a dose of 

45 mg/day (three times per day) with a good long-term safety profile in the treatment of osteoporosis 
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patients. At this dose, the maximum plasma concentration is 1 μM [36]; in a previous distribution study 

of oral MK-4 administration, the hepatic concentration was >10 times higher than the plasma 

concentration [37]. These results indicate that the IC50 values of MKH-DMG used in the treatment of 

HCC cell lines may be clinically reasonable levels, and that MKH-DMG is potentially a promising  

anti-HCC agent available for safe clinical use. 

Table 1. Effects for HCC cells (Reference [19]). 

Treatment 
Inhibition of Cell 

Proliferation (in vitro)

MKH Delivery  

(in vitro) 

Downregulation of 

DCP (in vitro) 

HCC inhibition  

(in vivo) * 

MKH-DMG (concentration) obvious (20 μmol/L) obvious (25 μmol/L) obvious (10 μmol/L) obvious (0.2 μmol/day)

MK-4 (concentration) weak (40 μmol/L) weak (25 μmol/L) obvious (10 μmol/L) - 

* MKH-DMG was dissolved in drinking water (40 μmol/L) and provided ad libitum. 

4. Effective MKH Delivery into HCC Cells by MKH-DMG 

Inhibition of HCC proliferation, metastasis and recurrence by MKH-DMG and MK-4 are determined 

by their ability to deliver MKH to HCC cells. It is difficult to measure MKH levels accurately in HCC 

cells because of its highly oxidative characteristics regarding MK-4. However, MKO levels can be 

substituted for MKH levels (Figure 1). MKH delivery via MKH-DMG or MK-4 (both at a concentration 

of 25 μM) to HCC cell lines has been estimated by means of intracellular MKO and MK-4 levels [19]. 

MKH-DMG treatment induced a rapid and time-dependent increase in intracellular MKO and MK-4 

levels (Table 1). In this case, MK-4 is an oxidation product of MKH (Figure 1). MKH-DMG is taken up 

by HCC cells and effectively converted into MKH. Conversely, MK-4 administration did not lead to an 

increase in MKO and MK-4 levels (Table 1), which supports the evidence that the MK-4 uptake rate 

was lower in HCC cells relative to normal hepatocytes [2]. When the AUC of the intracellular 

concentration versus time profile was determined, the AUC0-72 h values for MKH were 3.5–15 times 

higher after MKH-DMG treatment than those after MK-4 treatment, regardless of whether DCP-positive 

or DCP-negative cell lines were used. These results indicate that MKH-DMG administration is an 

effective method for the delivery of MKH to HCC cells. 

MKH-DMG as an MKH prodrug shows satisfactory cell-membrane permeability and is effectively 

hydrolyzed into MKH by esterase present in HCC cells, leading to the rapid and intensive inhibition for 

HCC proliferation. Perhaps the uptake process for MKH-DMG is different to that for MK-4. 

Investigation of MKH-DMG uptake including transporter system may be an important target for  

future research. 

5. Downregulation of DCP by MKH-DMG 

In a recent investigation, DCP/PIVKA-II was reported to act as a growth and metastasis factor for 

HCC, and to exacerbate its prognosis [27]. Therefore, depression of DCP may be a prospective target 

for developing a novel treatment against DCP-positive HCC. This therapeutic strategy is applicable to 

MKH-DMG administration, which can achieve sufficiently high MKH delivery. The effect of MKH-DMG 

regarding the DCP level in a DCP-positive PLC/PRF/5 cell line was evaluated by measuring the DCP 

concentration in culture media at 72 h after treatment [19]. DCP levels had clearly decreased after  
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MKH-DMG (10 μM) and MK-4 (10 μM) treatments (2.0 ± 0.0 mAU/mL, and 1.3 ± 0.6 mAU/mL, 

respectively) relative to untreated controls (43 ± 3.6 mAU/mL). However, as described above, cell 

proliferation was only suppressed after MKH-DMG treatment and not after MK-4 treatment. Because 

growth inhibition caused by MKH-DMG has also been demonstrated in DCP-negative HCC cells, DCP 

suppression may not be important for MKH-DMG and MKH regarding the inhibition of HCC growth. 

Other vitamin K-dependent proteins, with the exception of DCP, may be critical regarding the effect of 

MKH-DMG, and such vitamin K-dependent proteins should be explored. 

6. Induction of Cell-Cycle Arrest by MKH-DMG 

The underlying mechanism concerning the effect of MKH-DMG on HCC cell growth suppression 

should be investigated. Generally, cell-cycle arrest has been considered to be primarily associated with 

the anti-proliferative action of MK-4 [7–9,11,37,38]. Aberrant expression of NF-κB is linked to cyclin 

D1 [10], and to the onset and progression of HCC tumorigenesis [38]. Because both cyclin D1 and  

NF-κB are associated with cellular migration [39,40], downregulation of NF-κB and cyclin D1 by  

MKH-DMG treatment may contribute to the inhibition of HCC cell growth and invasion. 

In our analysis, it is suggested that G1/S arrest is one of the mechanisms involved in the inhibition of 

HCC cell proliferation induced by MKH-DMG [19]. Flow cytometric analysis of MKH-DMG-treated 

PLC/PRF/5 cells in vitro revealed an increase in G1 phase cells and a decrease in S phase cells. In 

Western blot analysis, the expression of cell cycle-related proteins (cyclin D1, cyclin D3 and CDK4) 

decreased and was completely suppressed after 48 h of MKH-DMG treatment in both DCP-positive 

(PLC/PRF/5 and Hep3B) and DCP-negative (SK-Hep-1) HCC cell lines. Conversely, similar treatment 

using MK-4 induced only a slight decrease in the levels of these proteins. Additionally, NF-κB was 

downregulated by MKH-DMG treatment in these HCC cell lines, which might have resulted from 

effective MKH delivery to the tumor cells using MKH-DMG. 

7. Anti-Proliferation Effect of MKH-DMG in Vivo 

The clinical benefit of MKH-DMG treatment has been demonstrated using xenografted human HCC 

cells in vivo [19]. In a preceding pharmacokinetic study after oral administration of MKH-DMG,  

MKH-DMG was found to be delivered to and absorbed by hepatocytes in the same esterized form, and 

then converted to MKH in vivo. Using this MKH delivery system, the effects of MKH-DMG in 

combating hepatic metastasis and the proliferation of HCC cells (PLC/PRF/5) were examined in a mouse 

spleen-liver metastasis model (nu/nu mice). Macroscopic findings of liver tumors were estimated at 50 

days after transplantation of PLC/PRF/5 cells in MKH-DMG treated and untreated groups. Increases in 

both liver weight and the percentage of cancer surface area were significantly suppressed in the MKH-

DMG treatment group as compared with the untreated group. In the MKH-DMG treatment group, 

plasma DCP, which is produced by HCC cells, was not detected, although liver metastasis could not be 

suppressed completely. These findings mean that MKH is definitely delivered to the metastasized HCC 

cells and that DCP is suppressed by MKH; they suggest the possibility that MKH-DMG could function 

as an anti-HCC agent in humans. However, subsequent investigation is required to show whether or not 

a similar effect can be demonstrated after MKH-DMG treatment of human HCC. 
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8. Conclusions 

The effects of MKH-DMG and MK-4 regarding HCC cells are summarized in Table 1. Reduced 

uptake of therapeutic agents by cancer cells is one of the important factors affecting resistance to 

chemotherapy. Consequently, the development of compounds with tumor-specific cell penetration 

properties is still a primary focus of cancer research. Effective supply of MKH, an active form of MK-4, 

is a promising approach concerning the suppression of HCC growth with low toxicity. MKH-DMG, a 

MKH prodrug in esterized form, can deliver substantial amounts of MKH to HCC cells, and can suppress 

HCC proliferation effectively both in vitro and in vivo. The anti-HCC effect of MKH-DMG may be the 

result of cell-cycle arrest with downregulation of NF-κB and cyclin D1 expression. MKH-DMG is a 

promising new candidate for suppression of the onset of HCC, its recurrence and metastasis without 

significant adverse effects. 

Acknowledgments 

We wish to thank Naoki Magario for his assistance with the DCP assay.  

Author Contributions 

All authors contributed to the submitted work. Especially, ME and JT wrote and supervised the 

review; KM prepared the figures. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Huisse, M.G.; Leclercq, M.; Belghiti, J.; Flejou, J.F.; Suttie, J.W.; Bezeaud, A.; Stafford, D.W.; 

Guillin, M.C. Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in 

human hepatocellular carcinomas. Cancer 1994, 74, 1533–1541.  

2. Li, Z.Q.; He, F.Y.; Stehle, C.J.; Wang, Z.; Kar, S.; Finn, F.M.; Carr, B.I. Vitamin K uptake in 

hepatocytes and hepatoma cells. Life Sci. 2002, 70, 2085–2100.  

3. Orimo, H.; Shiraki, M.; Tomita, A.; Morii, H.; Fujita, T.; Ohata, M. Effects of menatetrenone on the 

bone and calcium metabolism in osteoporosis: A double-blind placebo-controlled study. J. Bone 

Miner. MeTable 1998, 16, 106–112. 

4. Shiraki, M.; Shiraki, Y.; Aoki, C.; Miura, M. Vitamin K2 (menatetrenone) effectively prevents 

fractures and sustains lumbar bone mineral density in osteoporosis. J. Bone Miner. Res. 2000, 15, 

515–521. 

5. Knapen, M.H.; Schurgers, L.J.; Vermeer, C. Vitamin K2 supplementation improves hip bone 

geometry and bone strength indices in postmenopausal women. Osteoporos. Int. 2007, 18, 963–972. 

6. Inoue, T.; Fujita, T.; Kishimoto, H.; Makino, T.; Nakamura, T.; Nakamura, T.; Sato, T.; Yamazaki, K. 

Randomized controlled study on the prevention of osteoporotic fractures (OF study): A phase IV 

clinical study of 15-mg menatetrenone capsules. J. Bone Miner. MeTable 2009, 27, 66–75. 



Diseases 2015, 3 156 

 

 

7. Bouzahzah, B.; Nishikawa, Y.; Simon, D.; Carr, B.I. Growth control and gene expression in a new 

hepatocellular carcinoma cell line, Hep40: Inhibitory actions of vitamin K. J. Cell. Physiol. 1995, 

165, 459–467. 

8. Wang, Z.; Wang, M.; Finn, F.; Carr, B.I. The growth inhibitory effects of vitamins K and their 

actions on gene expression. Hepatology 1995, 22, 876–882. 

9. Otsuka, M.; Kato, N.; Shao, R.X.; Hoshida, Y.; Ijichi, H.; Koike, Y.; Taniguchi, H.; Moriyama, M.; 

Shiratori, Y.; Kawabe, T.; et al. Vitamin K2 inhibits the growth and invasiveness of hepatocellular 

carcinoma cells via protein kinase A activation. Hepatology 2004, 40, 243–251. 

10. Ozaki, I.; Zhang, H.; Mizuta, T.; Ide, Y.; Eguchi, Y.; Yasutake, T.; Sakamaki, T.; Pestell, R.G.; 

Yamamoto, K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell 

growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. 

Clin. Cancer Res. 2007, 13, 2236–2245. 

11. Kaneda, M.; Zhang, D.; Bhattacharjee, R.; Nakahama, K.; Arii, S.; Morita, I. Vitamin K2 suppresses 

malignancy of HuH7 hepatoma cells via inhibition of connexin 43. Cancer Lett. 2008, 263, 53–60. 

12. Hitomi, M.; Yokoyama, F.; Kita, Y.; Nonomura, T.; Masaki, T.; Yoshiji, H.; Inoue, H.; Kinekawa, F.; 

Kurokohchi, K.; Uchida, N.; et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular 

carcinoma in vitro and in vivo. Int. J. Oncol. 2005, 26, 713–720. 

13. Habu, D.; Shiomi, S.; Tamori, A.; Takeda, T.; Tanaka, T.; Kubo, S.; Nishiguchi, S. Role of vitamin 

K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. Jama 

2004, 292, 358–361. 

14. Mizuta, T.; Ozaki, I.; Eguchi, Y.; Yasutake, T.; Kawazoe, S.; Fujimoto, K.; Yamamoto, K. The effect 

of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with 

hepatocellular carcinoma after curative treatment: A pilot study. Cancer 2006, 106, 867–872. 

15. Yoshida, H.; Shiratori, Y.; Kudo, M.; Shiina, S.; Mizuta, T.; Kojiro, M.; Yamamoto, K.; Koike, Y.; 

Saito, K.; Koyanagi, N.; et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. 

Hepatology 2011, 54, 532–540. 

16. Riaz, I.B.; Riaz, H.; Riaz, T.; Rahman, S.; Amir, M.; Badshah, M.B.; Kazi, A.N. Role of vitamin K2 

in preventing the recurrence of hepatocellular carcinoma after curative treatment: A meta-analysis 

of randomized controlled trials. BMC Gastroenterol. 2012, 12, doi:10.1186/1471-230X-12-170. 

17. Takata, J.; Karube, Y.; Hanada, M.; Matsunaga, K.; Matsushima, Y.; Sendo, T.; Aoyama, T. Vitamin 

K prodrugs: 1. Synthesis of amino acid esters of menahydroquinone-4 and enzymatic reconversion 

to an active form. Pharm. Res. 1995, 12, 18–23. 

18. Takata, J.; Karube, Y.; Hanada, M.; Matsunaga, K.; Matsushima, Y.; Sendo, T.; Oishi, R. Vitamin K 

prodrugs: 2. water-soluble prodrugs of menahydroquinone-4 for systemic site-specific delivery. 

Pharm. Res. 1995, 12, 1973–1979. 

19. Setoguchi, S.; Watase, D.; Matsunaga, K.; Matsubara, M.; Kubo, Y.; Kusuda, M.; Nagata-Akaho, N.; 

Enjoji, M.; Nakashima, M.; Takeshita, M.; et al. Enhanced antitumor effects of novel intracellular 

delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma. 

Cancer Prev. Res. 2015, 8, 129–138. 

20. Koike, Y.; Shiratori, Y.; Sato, S.; Obi, S.; Teratani, T.; Imamura, M.; Yoshida, H.; Shiina, S.;  

Omata, M. Des-gamma-carboxy prothrombin as a useful predisposing factor for the development 

of portal venous invasion in patients with hepatocellular carcinoma: A prospective analysis of 227 



Diseases 2015, 3 157 

 

 

patients. Cancer 2001, 91, 561–569. 

21. Weitz, I.C.; Liebman, H.A. Des-gamma-carboxy (abnormal) prothrombin and hepatocellular 

carcinoma: A critical review. Hepatology 1993, 18, 990–997. 

22. Inagaki, Y.; Tang, W.; Makuuchi, M.; Hasegawa, K.; Sugawara, Y.; Kokudo, N. Clinical and 

molecular insights into the hepatocellular carcinoma tumour marker des-gamma-carboxyprothrombin. 

Liver Int. 2011, 31, 22–35. 

23. Suzuki, M.; Shiraha, H.; Fujikawa, T.; Takaoka, N.; Ueda, N.; Nakanishi, Y.; Koike, K.; Takaki, A.; 

Shiratori, Y. Des-gamma-carboxy prothrombin is a potential autologous growth factor for 

hepatocellular carcinoma. J. Biol. Chem. 2005, 280, 6409–6415. 

24. Ma, M.; Qu, X.J.; Mu, G.Y.; Chen, M.H.; Cheng, Y.N.; Kokudo, N.; Tang, W.; Cui, S.X. Vitamin 

K2 inhibits the growth of hepatocellular carcinoma via decrease of des-gamma-carboxy 

prothrombin. Chemotherapy 2009, 55, 28–35. 

25. Yue, P.; Gao, Z.H.; Xue, X.; Cui, S.X.; Zhao, C.R.; Yuan, Y.; Yin, Z.; Inagaki, Y.; Kokudo, N.;  

Tang, W.; et al. Des-gamma-carboxyl prothrombin induces matrix metalloproteinase activity in 

hepatocellular carcinoma cells by involving the ERK1/2 MAPK signalling pathway. Eur. J. Cancer 

2011, 47, 1115–1124. 

26. Matsubara, M.; Shiraha, H.; Kataoka, J.; Iwamuro, M.; Horiguchi, S.; Nishina, S.; Takaoka, N.; 

Uemura, M.; Takaki, A.; Nakamura, S.; et al. Des-gamma-carboxyl prothrombin is associated with 

tumor angiogenesis in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2012, 27, 1602–1608. 

27. Gao, J.J.; Feng, X.B.; Inagaki, Y.; Song, P.P.; Kokudo, N.; Hasegawa, K.; Sugawara, Y.; Tang, W. 

Des-gamma-carboxy prothrombin and c-Met were concurrently and extensively expressed in 

hepatocellular carcinoma and associated with tumor recurrence. Biosci. Trends 2012, 6, 153–159. 

28. Okuda, H; Obata, H.; Nakanishi, T.; Furukawa, R.; Hashimoto, E. Production of abnormal 

prothrombin (des-gamma-carboxy prothrombin) by hepatocellular carcinoma. A clinical and 

experimental study. J. Hepatol. 1987, 4, 357–363. 

29. Furukawa, M.; Nakanishi, T.; Okuda, H.; Ishida, S.; Obata, H. Changes of plasma des-gamma-carboxy 

prothrombin levels in patients with hepatocellular carcinoma in response to vitamin K. Cancer 1992, 

69, 31–38. 

30. Murata, K.; Suzuki, H.; Okano, H.; Oyamada, T.; Yasuda, Y.; Sakamoto, A. Cytoskeletal changes 

during epithelial-to-fibroblastoid conversion as a crucial mechanism of des-gamma-carboxy 

prothrombin production in hepatocellular carcinoma. Int. J. Oncol. 2009, 35, 1005–1014. 

31. Binkley, N.C.; Suttie, J.W. Vitamin K nutrition and osteoporosis. J. Nutr. 1995, 125, 1812–1821. 

32. Furie, B.; Bouchard, B.A.; Furie, B.C. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic 

acid. Blood 1999, 93, 1798–1808. 

33. Stafford, D.W. The vitamin K cycle. J. Thromb. Haemost. 2005, 3, 1873–1878. 

34. Hallgren, K.W.; Qian, W.; Yakubenko, A.V.; Runge, K.W.; Berkner, K.L. r-VKORC1 expression 

in factor IX BHK cells increases the extent of factor IX carboxylation but is limited by saturation 

of another carboxylation component or by a shift in the rate-limiting step. Biochemistry 2006, 45, 

5587–5598. 
35. Westhofen, P.; Watzka, M.; Marinova, M.; Hass, M.; Kirfel, G.; Müller, J.; Bevans, C.G.; Müller, C.R.; 

Oldenburg, J. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) 



Diseases 2015, 3 158 

 

 

mediates vitamin K-dependent intracellular antioxidant function. J. Biol. Chem. 2011, 286,  

15085–15094. 

36. Ishii, M.; Shimomura, M.; Hasegawa, J.; Asano, Y.; Yamato, T.; Yamano, Y.; Kayano, M.;  

Kanemaru, M.; Nakashima, M. Multiple Dose Pharmacokinetic Study of Soft Gelatin Capsule of 

Menatetrenone (Ea-0167) in Elderly and Young Volunteers. Jpn. Pharmacol. Ther. 1995, 23,  

2637–2642. 

37. Sano, Y.; Tadano, K.; Kaneko, K.; Kikuchi, K.; Yuzuriha, T. Metabolic Fate of Menatetrenone in 

Rats: Absorption, Distribution, Metabolism and Excretion after a Single Oral Administration.  

Jpn. Pharmacol. Ther. 1995, 23, 2659–2667. 

38. Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. 

39. Kim, H.J.; Hawke, N.; Baldwin, A.S. NF-kappaB and IKK as therapeutic targets in cancer.  

Cell Death Differ. 2006, 13, 738–47. 

40. Li, Z.; Wang, C.; Prendergast, G.C.; Pestell, R.G. Cyclin D1 functions in cell migration. Cell Cycle 

2006, 5, 2440–2442. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


