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Abstract: Psychiatric illnesses may be qualified to the cellular impairments of the function for
survival or death in neurons, which may consequently appear as abnormalities in the neuroplasticity.
The molecular mechanism has not been well understood, however, it seems that PI3K, AKT, GSK3,
and their downstream molecules have crucial roles in the pathogenesis. Through transducing cell
surviving signal, the PI3K/AKT/GSK3 pathway may organize an intracellular central network
for the action of the synaptic neuroplasticity. In addition, the pathways may also regulate cell
proliferation, cell migration, and apoptosis. Several lines of evidence have supported a role
for this signaling network underlying the development and treatment for psychiatric illnesses.
Indeed, the discovery of molecular biochemical phenotypes would represent a breakthrough in
the research for effective treatment. In this review, we summarize advances on the involvement of
the PI3K/AKT/GSK3 pathways in cell signaling of neuronal cells. This study may provide novel
insights on the mechanism of mental disorder involved in psychiatric illnesses and would open future
opportunity for contributions suggesting new targets for diagnostic and/or therapeutic procedures.
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1. Introduction

Psychiatric illnesses are conditions for which the precise underlying reason remains unknown;
however, roles of dysregulation of the signaling related to neurotransmitters, intracellular signal
transduction, and neural development have been emphasized in the pathogenesis of these illnesses [1].
For example, it has been shown that dysfunction of dopamine D1 and/or D5 receptor signaling is
implicated in schizophrenia [2], which is linked to the activation of PI3K/AKT signaling with the
subsequent inactivation of GSK3. Activation of AKT brings an increase in the phosphorylation of
GSK3. In addition, the regulation of PI3K/AKT/GSK3 signaling has also been implicated in the
etiology of mood disorders and depression [3]. In fact, molecular AKT deletion evokes a change in
behavior reflecting the psychiatric appearance reminiscent of schizophrenia, anxiety and depression [4].
Several G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are involved in
the activation of the PI3K-/AKT-mediated signaling [5,6]. Consequently, it has been indicated that
selective activation of these receptors may be efficacious in treating some neuropsychiatric disorders
(Figure 1). Therefore, PI3K/AKT/GSK3 signaling might be critical underlying psychiatric-related
behaviors. Therapeutic effects of various psychiatric drugs are also mediated in part by their
inhibition of the signaling (Figure 1). For example, the mood stabilizer lithium has been used for the
treatment of schizophrenia, depression, and other mental illnesses, which has been shown to inhibit
the GSK3 signaling [7]. However, the molecular mechanism through which lithium regulates the

Diseases 2019, 7, 22; doi:10.3390/diseases7010022 www.mdpi.com/journal/diseases

http://www.mdpi.com/journal/diseases
http://www.mdpi.com
https://orcid.org/0000-0003-4274-5345
http://www.mdpi.com/2079-9721/7/1/22?type=check_update&version=1
http://dx.doi.org/10.3390/diseases7010022
http://www.mdpi.com/journal/diseases


Diseases 2019, 7, 22 2 of 11

signaling activities has been poorly understood. Identification of key signaling pathways should be
critical to uncover novel therapeutic targets and successful clinical interventions. Moreover, a better
understanding of the intricate PI3K/AKT/GSK3 actions may allow the rational development both for
the diagnosis and treatments with enhanced efficacy.
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Figure 1. Potential antidepressants and several modulators linked to the predominant molecular 
targets on PI3K/AKT/GSK3 pathway are demonstrated. Arrowheads mean stimulation whereas 
hammerheads represent inhibition, suggesting implication of the PI3K/AKT/GSK3 modulators for 
the treatment of psychiatric illnesses. Note that some critical events have been omitted for clarity. 
SSRI: Selective Serotonin Reuptake Inhibitors, MAOi: Monoamine oxidase inhibitors, BDNF: 
Brain-derived neurotrophic factor, 5-HT: 5-hydroxytryptamine, serotonin. 
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Figure 1. Potential antidepressants and several modulators linked to the predominant molecular
targets on PI3K/AKT/GSK3 pathway are demonstrated. Arrowheads mean stimulation whereas
hammerheads represent inhibition, suggesting implication of the PI3K/AKT/GSK3 modulators for the
treatment of psychiatric illnesses. Note that some critical events have been omitted for clarity. SSRI:
Selective Serotonin Reuptake Inhibitors, MAOi: Monoamine oxidase inhibitors, BDNF: Brain-derived
neurotrophic factor, 5-HT: 5-hydroxytryptamine, serotonin.

2. Characterization of the PI3K/AKT/GSK3 Signaling Pathway in the Pathogenesis of
Psychiatric Illnesses

Neuron survival mechanisms ordinarily depend on activation of phosphatidylinositol 3′-kinase
(PI3K), which exists as a dimer comprising of a 110 kDa catalytic subunit (p110) and an 85 kDa
(p85) regulatory subunit [8]. Downstream targets of cytoplasmic PI3K seem to affect cell apoptosis,
cell metabolism, intracellular vesicles transport and so on [9]. The p110 subunit generates
phosphoinositide PIP3 at the inner surface of plasma membrane, which supports to recruit the
phosphoinositide dependent protein kinase-1 (PDK1) via its pleckstrin homology domain (PH). PDK1
phosphorylates then activate the AKT serine/threonine kinase. The production of PIP3s by PI3K at the
plasma membrane is essential for the recruitment and activation of PH domain-containing proteins.
This PI3K–PDK1–AKT signaling pathway is required for the survival of several neuronal cells [10].
The AKT kinase family is constituted by three isoforms termed AKT1, AKT2, and AKT3, which is
implicated in a variety of cellular processes such as cell growth and survival. Although they are
showing robust homologies, each isoform is encoded by a distinct gene [11]. The most abundant one is
AKT1, which is ubiquitously expressed. AKT2 is expressed in insulin-responsive tissues including
muscle, and AKT3 is considerably expressed in brain and testis [12]. Some lethality is observed in
AKT1 KO mice and the surviving mice are extensively reduced in size [13]. AKT1 is phosphorylated
by the PDK1 and by PDK2 [14]. AKT2 is important for glucose metabolism. In addition, signs of
anxiety and depressive-like behaviors have been reported in AKT2 KO mice [15]. AKT3 KO mice
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exhibit small brains [16], suggesting that AKT3 could be an important regulator of brain development.
In addition, AKT3 might also play a pivotal role in human brain pathologies such as schizophrenia.
It is remarkable that studies have identified AKT3 as a potential contributor to schizophrenia [17,18].
Actually, deletion of AKT3 increases susceptibility to develop symptoms related to the disease [18].
Therefore, all AKT signaling may contribute to the functioning of neural networks prevailing in the
symptoms associated with psychiatric diseases. AKT localize mostly to the cytoplasm, but they can
also translocate in the nucleus on an extracellular stimulation. Nuclear PIP3s may mediate a broad
range of processes including DNA damage response and cell cycle regulation [19,20].

The tumor suppressor PTEN, phosphatase and tensin homolog on chromosome 10, is a
dual-specificity phosphatase with protein phosphatase activity and lipid phosphatase activity. Cells
that lack PTEN have constitutively high levels of PIP3 and could activate downstream PI3K/AKT [21].
Conversely, overexpression of PTEN might be related to the activation of the cell apoptosis which
can be correlated with repression of PI3K/AKT signaling [21]. Accordingly, neuronal cell survival
and/or cell death may be attributed in part to the variations in PTEN expression [21]. Inhibition
of PTEN saves normal synaptic function and thereby cognition in animal models of Alzheimer’s
disease [22]. Conversely, overexpression of PTEN exhibits synaptic depression that imitates
psychological depression [23]. PTEN mutations have been described in several patients with autism
spectrum disorders (ASDs) and macrocephaly [24]. AKT activation by downregulation of PTEN might
be significant to keep its neuro-protective effects.

The GSK3 family is composed of two isoenzymes termed GSK3α and GSK3β, which have
been initially recognized for the roles in insulin receptor signaling. GSK3 is constitutively active
serine/threonine kinase in cells. The activity of GSK3 is positively regulated by phosphorylation on
tyrosine residues (Thy 279 for GSK3α and Thy 216 for GSK3β) [25] and negatively regulated by serine
phosphorylation (Ser 21 for GSK3α and Ser 9 for GSK3β) [26]. A known negative regulator of GSK3 is
a member of AKT. Phosphorylation of AKT on Thr 308 has been shown to be essential and sufficient
for the regulation of GSK3 by AKT [14]. Levels of phosphorylated GSK3 are strongly decreased in the
hippocampus of AKT3 KO mice. Circadian rhythm in phosphorylation of GSK3β, but not GSK3α,
in hippocampal neurons has been reported [27]. Overall, the effect of depletion in brain GSK3 activity
is a reduction in anxiety level that is associated with an increase in the beginning of social interaction.

3. Some Diagnostic Clues for Psychiatric Illnesses at the Molecules Involved in
PI3K/AKT/GSK3 Pathway

In general, high mortality of diseases is mostly due to a lack of effective treatments and efficient
markers for early diagnosis. The PI3K/AKT/GSK3 signaling cascade may be a center for psychiatric
illnesses. If alteration of the signaling activities in brain neurons should be also detected in peripheral
blood lymphocytes of illnesses patients, it could work for efficient diagnosis of the illnesses. In human
lymphocytes, levels of PI3K subunit p110 have been impaired in patients with schizophrenia [28].
On the other hand, SNP within the PI3K subunit p85-gene is associated with a risk of alcohol drinking
behavior [29]. It is remarkable that AKT1 has been originally identified as a possible susceptibility
gene for schizophrenia [30]. AKT2 deletion has also been associated with anxiety- and depression-like
behaviors [15,31]. In addition, injured AKT3 genes have been associated with psychiatric illnesses
including schizophrenia. In consistent with this, AKT3 KO mice have demonstrated a phenotype
reminiscent of depression and schizophrenia. In addition, characters of animals with the AKT3 deletion
have shown microcephaly [32], whereas high-AKT3 activities are associated with macrencephaly [33].
Psychiatric behaviors might be induced from the reduced brain volume brought by reduced AKT
activity. Remarkably, alteration of the GSK3 activity has also been recognized as a schizophrenia
risk factor [34]. Tissue samples from post mortem patients with schizophrenia have exhibited
considerable reductions of the phosphorylated AKT levels in neurons [35]. Furthermore, AKT activity
has also been reduced in some brain regions of major depression patients [36]. Phosphorylated
AKT levels have been shown as decreased in a depression animal model [37]. Activation of the
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dopamine receptor 2 (D2R) has been revealed to stimulate the inactivation of the AKT by the
protein phosphatase 2A [38], suggesting that GPCR activation could regulate the AKT in response
to extracellular signals. An endogenous neuro-steroid in the central nervous system, pregnenolone,
normalizes schizophrenia-like behaviors via the AKT signaling [39]. Thus, PI3K/AKT/GSK3 signaling
may play a critical role in psychiatric appearances.

GSK3 knock-in mice have revealed high susceptibility to depressive behaviors [40]. In addition,
impaired GSK3 activity has been documented to play a role in psychiatric conditions [41]. High activity
of GSK3 has been found in bipolar disorder with circadian dysregulation [42]. Some anxiety and
depressive behaviors have been revealed to be associated with lower brain levels of the phosphorylated
GSK3 [43]. In particular, GSK3β is a common target of several psychoactive drugs. On the other
hand, mutations in the PTEN are also extremely related with autism and macrocephaly. In addition,
loss of PTEN may lead to an overall loss in interneurons [44]. Some mutations of the PTEN gene
may disrupt the normally balanced nuclear-cytoplasmic localization of the PTEN phosphatase, which
causes inappropriate behavior, a profile reminiscent of ASD, in animal models [45].

Noncoding 20–25-nucleotide-long RNAs termed microRNAs (miRNAs) have biological functions
such as cellular proliferation and apoptosis, which could modulate gene expression by miRNA-induced
silencing. The potential application of miRNAs has been considered as an early detection biomarker
for illnesses. Genome studies have revealed genetic variants adjoining a miR-137 region may
contribute to schizophrenia risk [46], suggesting that dysregulation of the miR-137 may contribute to
schizophrenia pathogenesis by modifying neurodevelopmental signaling [47]. AKT signaling pathway
has been shown involved in the miR-137 pathway [48]. In addition, miR-144-3p seems to be a viable
target for posttraumatic stress disorder and related disorders [49]. Furthermore, several miRNAs
including miR-16, miR-182, miR-223, and miR-451 have shown potential biomarkers in the condition of
depression [50,51]. The miRNA-mediated modification of gene expression has been in part revealed via
the PI3K/AKT/GSK3 signaling [51]. In relation to those, miRNAs let-7b and let-7c are also potential
biomarkers of treatment-resistant depression, which regulates the expression of several genes in the
PI3K/AKT/GSK3 pathway [52].

4. Some Diets With Phytocompounds May Contribute to the Neuro-protection in the Psychiatric
Diseases via the Modulation of PI3K/AKT/GSK3 Signaling

Mood stabilizers, antidepressants and antipsychotics all may upturn the PI3K/AKT/GSK3
signaling [53], resulting in the regulation of GSK3 [53]. For example, schisandrin has an antidepressant-like
effect, which possibly mediated partly by adjusting the PI3K/AKT/GSK3 signaling [54]. Furthermore,
lithium administration repairs the phosphorylated GSK3 levels and improves anxiety-related behavior,
which regulates neuronal cell death and increases neurogenesis. So, antidepressants such as lithium
may protect the functional neuroplasticity in neurons associated with the depression. Lithium is an
inhibitor of magnesium and can competitively inhibit Mg2+-ATP-dependent catalytic activity of the
GSK3. The antipsychotic drug haloperidol has been linked to the inhibition of the AKT signaling [55].
In consistent with this, methamphetamine could induce psychosis, which is associated with highly
increased expression of AKT [56].

As the efficacy of pharmacological treatments has been imperfect and had unexpected side effects,
psychiatric illnesses represent a significant public health problem. A number of preventive factors
have been suggested by epidemiological research including lifestyle factors such as diet and physical
exercise. Among them, dietary choices could play certain roles in the neuroprotection. In addition,
some involvements of food ingredients might be promising in the prevention of brain dysfunction
by modifying the PI3K/AKT/GSK3 signaling. For example, an active ingredient derived from the
root of Curcuma longa used as culinary turmeric, curcumin, can improve synaptic plasticity and
enhance memory abilities [57]. The neuroprotection of the curcumin might be mediated through
the modification of PI3K/AKT/GSK3 signaling [58]. In addition, the curcumin prevents oxidative
stress via the regulation of the PI3K/AKT/GSK3 signaling [59]. Several plants or fruits may also be
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encouraging. A flavanone found in a variety of plants, Liquiritigenin, might be useful for the treatment
of major depression via the modification of PI3K/AKT/GSK3 signaling [60]. Kaempferol is also a
flavonol existing in several plants with grapefruit and some edible berries, which could protect some
neurons [61]. On the contrary, exposure to high fat interrupts brain dopamine networks through the
declines of striatal AKT activity [62]. Serine phosphorylation of GSK3 has been reduced in experimental
animal models fed with a diet containing abundant stearic and/or palmitic acid [63]. Fatty acids
such as DHA and EPA, omega-3 fatty acids found in fish, may also modulate neurotransmitters
and support neurogenesis [64]. Supplementation with the omega-3 fatty acids has improved
symptoms of depression patients [65]. In addition, consumption of the omega-3 fatty acids has
mood-stimulating effects in patients [66]. Fatty acids supplementation has also shown positive
effects in schizophrenia [67]. Anti-depressant effects of the omega-3 fatty acids could be induced by
upregulation of the PI3K/AKT/GSK3 pathway [68].

Neuroprotection by inhibiting PTEN tumor suppressor with food ingredients has been described
by activating the PI3K/AKT/GSK3 signaling in neuronal cells. For example, a traditional medicinal
herb ingredient, Icariin, inhibits the PTEN expression following the AKT activation [69]. In addition,
an active component isolated from Chinese traditional herb magnolia, Honokiol, may be able to
attenuate PI3K/AKT/GSK3 signaling by upregulation of the PTEN expression [70]. Generally, dietary
exposure to phytoestrogens including soy isoflavones may result in an increase of PTEN expression.
Genistein and/or quercetin have an outcome to upregulate PTEN transcription following suppression
of the PI3K/AKT/GSK3 pathway. Dietary intake of a phytochemical found in some vegetables such
as indole-3-carbinol also upregulates PTEN expression [71]. As the PTEN expression is induced
by the activated PPARs, this may also suggest a potential therapeutic quality for the management
of PI3K/AKT/GSK3-related diseases. A wide variety of compounds have been identified as PPAR
ligands including omega-3 fatty acids [72], which have a valuable effect on the risk factors for metabolic
diseases. Linoleic acid could also bind PPARδ very well [73]. Fish oil diets have significantly increased
the level of PTEN expression to reduce PI3K/AKT/GSK3 signaling [74]. These might be distinguished
as a rational basis for the development of dietary treatments for psychiatric illnesses.

5. So What Next in Perspectives?

Lifestyle interventions such as dietary education could be promising and cost-effective for people
with psychiatric illnesses. However, despite those experimental observations, the precise mechanisms
for food ingredients remain elusive for clinical uses. A number of studies have examined the association
between diet and behavioral states, but the findings have been inadequate. In addition, the relation
between nutrient intake and neuroprotection activity is intricate. Whereas many questions remain to
be answered about the roles of PI3K/AKT/GSK3 signaling in psychiatric disorders, it is possible that
the PI3K/AKT/GSK3 signaling of neuronal populations in a certain brain area could be associated
with distinct behavioral outcomes. It seems that both activation and inhibition of those molecules,
if they drive one-sidedly, may not contribute to the improvement of the neuronal disorders (Figure 2).
It seems that back-and-forth activation and/or inhibition for the appropriate balance may be very
important (Figure 3). In other words, the functional balance of the activity of kinases may be essential.
Strategies for seeking efficient therapy to determine whether it is related to the improved brain function
and the preservation of brain health should develop the observation in key pathways required for
brain homeostasis. Several nutriment and/or dietary components may contribute to the balance
via the modulation of the kinase activities (Figure 3). Future findings might be translated into new
dietary managements for the treatment of the disorders. Indeed, the PI3K/AKT/GSK3 pathway seems
to be critical for the maintenance in brain neurons. Additionally, it seems important to exploit the
potential benefits of optimal treatment and/or combination with PI3K/AKT chemical modulators.
More understanding of the precise intracellular mechanisms downstream of PI3K/AKT/GSK3
changes in psychiatric illnesses could provide novel insights into the development of new therapeutic
approaches with greater efficacy.
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6. Conclusions

In conclusion, progress in understanding molecular key targets in order to develop new
therapeutics for psychiatric illnesses would undoubtedly benefit this research field. The involvement
of PI3K/AKT/GSK3 signaling in schizophrenia and mood disorders is highly relevant. Some diets
may contribute to the neuro-protection in psychiatric illnesses via the modulation of the intracellular
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neuronal signaling. Therefore, improving treatments for human neuropsychiatric disorders by dietary
approach is particularly challenging. Further investigation on the neuronal signaling could lead to a
better understanding of the molecular basis implicated in neuropsychiatric illnesses.
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Abbreviations

ASD Autism Spectrum Disorder
DHA docosahexaenonic acids
EPA eicosopentaenoic acid
GSK3 Glycogen synthase kinase 3
5-HT 5-hydroxytryptamine, serotonin
mTOR mammalian target of rapamycin
PIP3 phosphatidylinositol 3,4,5-triphosphate
PI3K phosphatidylinositol-3 kinase
PPARγ Peroxisome Proliferator-Activated Receptor γ
PTEN Phosphatase and tensin homolog on chromosome 10
ROS reactive oxygen species
SSRIs selective serotonin reuptake inhibitors

References

1. Vriend, C. The neurobiology of impulse control disorders in Parkinson’s disease: From neurotransmitters to
neural networks. Cell Tissue Res. 2018, 373, 327–336. [CrossRef] [PubMed]

2. Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1
receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology 2004, 174, 3–16. [CrossRef]
[PubMed]

3. Beaulieu, J.M. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin
neurotransmission in mental health. J. Psychiatry Neurosci. 2012, 37, 7–16. [CrossRef] [PubMed]

4. Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 2010, 13, 1161–1169.
[CrossRef] [PubMed]

5. Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134.
[CrossRef]

6. Swift, J.L.; Godin, A.G.; Doré, K.; Freland, L.; Bouchard, N.; Nimmo, C.; Sergeev, M.; De Koninck, Y.;
Wiseman, P.W.; Beaulieu, J.M. Quantification of receptor tyrosine kinase transactivation through direct
dimerization and surface density measurements in single cells. Proc. Natl. Acad. Sci. USA 2011, 108, 7016–7021.
[CrossRef]

7. Freland, L.; Beaulieu, J.M. Inhibition of GSK3 by lithium, from single molecules to signaling networks.
Front. Mol. Neurosci. 2012, 5, 14. [CrossRef]

8. Kang, H.; Schneider, H.; Rudd, C.E. Phosphatidylinositol 3-kinase p85 adaptor function in T-cells.
Co-stimulation and regulation of cytokine transcription independent of associated p110. J. Biol. Chem.
2002, 277, 912–921. [CrossRef]

9. He, W.; Yuan, Q.H.; Zhou, Q. Histamine H3 receptor antagonist Clobenpropit protects propofol-induced
apoptosis of hippocampal neurons through PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2018,
22, 8013–8020.

10. Zhou, X.; Cordon-Barris, L.; Zurashvili, T.; Bayascas, J.R. Fine-tuning the intensity of the PKB/Akt signal
enables diverse physiological responses. Cell Cycle 2014, 13, 3164–3168. [CrossRef]

http://dx.doi.org/10.1007/s00441-017-2771-0
http://www.ncbi.nlm.nih.gov/pubmed/29383446
http://dx.doi.org/10.1007/s00213-004-1793-y
http://www.ncbi.nlm.nih.gov/pubmed/15118803
http://dx.doi.org/10.1503/jpn.110011
http://www.ncbi.nlm.nih.gov/pubmed/21711983
http://dx.doi.org/10.1038/nn.2647
http://www.ncbi.nlm.nih.gov/pubmed/20877280
http://dx.doi.org/10.1016/j.cell.2010.06.011
http://dx.doi.org/10.1073/pnas.1018280108
http://dx.doi.org/10.3389/fnmol.2012.00014
http://dx.doi.org/10.1074/jbc.M107648200
http://dx.doi.org/10.4161/15384101.2014.962954


Diseases 2019, 7, 22 8 of 11

11. Diez, H.; Garrido, J.J.; Wandosell, F. Specific roles of Akt iso forms in apoptosis and axon growth regulation
in neurons. PLoS ONE 2012, 7, e32715. [CrossRef] [PubMed]

12. Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt signalling in health and disease. Cell. Signal. 2011, 23, 1515–1527.
[CrossRef] [PubMed]

13. Yang, Z.Z.; Tschopp, O.; Hemmings-Mieszczak, M.; Feng, J.; Brodbeck, D.; Perentes, E.; Hemmings, B.A.
Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J. Biol. Chem. 2003,
278, 32124–32131. [CrossRef]

14. Jacinto, E.; Facchinetti, V.; Liu, D.; Soto, N.; Wei, S.; Jung, S.Y.; Huang, Q.; Qin, J.; Su, B. SIN1/MIP1 maintains
rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006,
127, 125–137. [CrossRef] [PubMed]

15. Leibrock, C.; Ackermann, T.F.; Hierlmeier, M.; Lang, F.; Borgwardt, S.; Lang, U.E. Akt2 deficiency is associated
with anxiety and depressive behavior in mice. Cell. Physiol. Biochem. 2013, 32, 766–777. [CrossRef] [PubMed]

16. Poduri, A.; Evrony, G.D.; Cai, X.; Elhosary, P.C.; Beroukhim, R.; Lehtinen, M.K.; Hills, L.B.; Heinzen, E.L.;
Hill, A.; Hill, R.S.; et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations.
Neuron 2012, 74, 41–48. [CrossRef] [PubMed]

17. Bergeron, Y.; Bureau, G.; Laurier-Laurin, M.É.; Asselin, E.; Massicotte, G.; Cyr, M. Genetic Deletion of Akt3
Induces an Endophenotype Reminiscent of Psychiatric Manifestations in Mice. Front. Mol. Neurosci. 2017,
10, 102. [CrossRef] [PubMed]

18. Howell, K.R.; Floyd, K.; Law, A.J. PKBγ/AKT3 loss-of-function causes learning and memory deficits and
deregulation of AKT/mTORC2 signaling: Relevance for schizophrenia. PLoS ONE 2017, 12, e0175993.
[CrossRef] [PubMed]

19. Choi, B.H.; Chen, Y.; Dai, W. Chromatin PTEN is involved in DNA damage response partly through
regulating Rad52 sumoylation. Cell Cycle 2013, 12, 3442–3447. [CrossRef] [PubMed]

20. Bassi, C.; Ho, J.; Srikumar, T.; Dowling, R.J.; Gorrini, C.; Miller, S.J.; Mak, T.W.; Neel, B.G.; Raught, B.;
Stambolic, V. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 2013,
341, 395–399. [CrossRef]

21. Matsuda, S.; Nakagawa, Y.; Tsuji, A.; Kitagishi, Y.; Nakanishi, A.; Murai, T. Implications of PI3K/AKT/PTEN
Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer’s Disease. Diseases
2018, 6, E28. [CrossRef] [PubMed]

22. Cui, W.; Wang, S.; Wang, Z.; Wang, Z.; Sun, C.; Zhang, Y. Inhibition of PTEN Attenuates Endoplasmic
Reticulum Stress and Apoptosis via Activation of PI3K/AKT Pathway in Alzheimer’s Disease.
Neurochem. Res. 2017, 42, 3052–3060. [CrossRef] [PubMed]

23. Knafo, S.; Esteban, J.A. PTEN: Local and Global Modulation of Neuronal Function in Health and Disease.
Trends Neurosci. 2017, 40, 83–91. [CrossRef]

24. Hobert, J.A.; Embacher, R.; Mester, J.L.; Frazier, T.W.; Eng, C. Biochemical screening and PTEN mutation
analysis in individuals with autism spectrum disorders and macrocephaly. Eur. J. Hum. Genet. 2014,
22, 273–276. [CrossRef] [PubMed]

25. Lochhead, P.A.; Kinstrie, R.; Sibbet, G.; Rawjee, T.; Morrice, N.; Cleghon, V. A chaperone-dependent GSK3beta
transitional intermediate mediates activation-loop autophosphorylation. Mol. Cell 2006, 24, 627–633.
[CrossRef] [PubMed]

26. Sutherland, C.; Cohen, P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is
inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett. 1994, 338, 37–42.
[CrossRef]

27. Besing, R.C.; Rogers, C.O.; Paul, J.R.; Hablitz, L.M.; Johnson, R.L.; McMahon, L.L.; Gamble, K.L. GSK3
activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 2017,
27, 890–898. [CrossRef]

28. Law, A.J.; Wang, Y.; Sei, Y.; O’Donnell, P.; Piantadosi, P.; Papaleo, F.; Straub, R.E.; Huang, W.; Thomas, C.J.;
Vakkalanka, R.; et al. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide
3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc. Natl. Acad. Sci. USA 2012, 109, 12165–12170.
[CrossRef]

29. Desrivières, S.; Krause, K.; Dyer, A.; Frank, J.; Blomeyer, D.; Lathrop, M.; Mann, K.; Banaschewski, T.;
Laucht, M.; Schumann, G. Nucleotide sequence variation within the PI3K p85 alpha gene associates with
alcohol risk drinking behaviour in adolescents. PLoS ONE 2008, 3, e1769. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0032715
http://www.ncbi.nlm.nih.gov/pubmed/22509246
http://dx.doi.org/10.1016/j.cellsig.2011.05.004
http://www.ncbi.nlm.nih.gov/pubmed/21620960
http://dx.doi.org/10.1074/jbc.M302847200
http://dx.doi.org/10.1016/j.cell.2006.08.033
http://www.ncbi.nlm.nih.gov/pubmed/16962653
http://dx.doi.org/10.1159/000354478
http://www.ncbi.nlm.nih.gov/pubmed/24080829
http://dx.doi.org/10.1016/j.neuron.2012.03.010
http://www.ncbi.nlm.nih.gov/pubmed/22500628
http://dx.doi.org/10.3389/fnmol.2017.00102
http://www.ncbi.nlm.nih.gov/pubmed/28442992
http://dx.doi.org/10.1371/journal.pone.0175993
http://www.ncbi.nlm.nih.gov/pubmed/28467426
http://dx.doi.org/10.4161/cc.26465
http://www.ncbi.nlm.nih.gov/pubmed/24047694
http://dx.doi.org/10.1126/science.1236188
http://dx.doi.org/10.3390/diseases6020028
http://www.ncbi.nlm.nih.gov/pubmed/29677102
http://dx.doi.org/10.1007/s11064-017-2338-1
http://www.ncbi.nlm.nih.gov/pubmed/28819903
http://dx.doi.org/10.1016/j.tins.2016.11.008
http://dx.doi.org/10.1038/ejhg.2013.114
http://www.ncbi.nlm.nih.gov/pubmed/23695273
http://dx.doi.org/10.1016/j.molcel.2006.10.009
http://www.ncbi.nlm.nih.gov/pubmed/17188038
http://dx.doi.org/10.1016/0014-5793(94)80112-6
http://dx.doi.org/10.1002/hipo.22739
http://dx.doi.org/10.1073/pnas.1206118109
http://dx.doi.org/10.1371/journal.pone.0001769


Diseases 2019, 7, 22 9 of 11

30. Emamian, E.S.; Hall, D.; Birnbaum, M.J.; Karayiorgou, M.; Gogos, J.A. Convergent evidence for impaired
AKT1-GSK3beta signaling in schizophrenia. Nat. Genet. 2004, 36, 131–137. [CrossRef]

31. Li, G.; Anderson, R.E.; Tomita, H.; Adler, R.; Liu, X.; Zack, D.J.; Rajala, R.V. Nonredundant role of Akt2
for neuroprotection of rod photoreceptor cells from light-induced cell death. J. Neurosci. 2007, 27, 203–211.
[CrossRef] [PubMed]

32. Boland, E.; Clayton-Smith, J.; Woo, V.G.; McKee, S.; Manson, F.D.; Medne, L.; Zackai, E.; Swanson, E.A.;
Fitzpatrick, D.; Millen, K.J.; et al. Mapping of deletion and translocation breakpoints in 1q44 implicates
the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am. J.
Hum. Genet. 2007, 81, 292–303. [CrossRef] [PubMed]

33. Rivière, J.B.; Mirzaa, G.M.; O’Roak, B.J.; Beddaoui, M.; Alcantara, D.; Conway, R.L.; St-Onge, J.
De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related
megalencephaly syndromes. Nat. Genet. 2012, 44, 934–940. [CrossRef] [PubMed]

34. Yan, P.; Qiao, X.; Wu, H.; Yin, F.; Zhang, J.; Ji, Y.; Wei, S.; Lai, J. An Association Study Between Genetic
Polymorphisms in Functional Regions of Five Genes and the Risk of Schizophrenia. J. Mol. Neurosci. 2016,
59, 366–375. [CrossRef] [PubMed]

35. Balu, D.T.; Carlson, G.C.; Talbot, K.; Kazi, H.; Hill-Smith, T.E.; Easton, R.M.; Birnbaum, M.J.; Lucki, I. Akt1
deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 2012,
22, 230–240. [CrossRef] [PubMed]

36. Karege, F.; Perroud, N.; Burkhardt, S.; Schwald, M.; Ballmann, E.; La Harpe, R.; Malafosse, A. Alteration in
kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3beta in ventral
prefrontal cortex of depressed suicide victims. Biol. Psychiatry 2007, 61, 240–245. [CrossRef] [PubMed]

37. Krishnan, V.; Han, M.H.; Mazei-Robison, M.; Iñiguez, S.D.; Ables, J.L.; Vialou, V.; Berton, O.; Ghose, S.;
Covington, H.E.; Wiley, M.D.; et al. AKT signaling within the ventral tegmental area regulates cellular and
behavioral responses to stressful stimuli. Biol. Psychiatry 2008, 64, 691–700. [CrossRef] [PubMed]

38. Beaulieu, J.M.; Sotnikova, T.D.; Marion, S.; Lefkowitz, R.J.; Gainetdinov, R.R.; Caron, M.G.
An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior.
Cell 2005, 122, 261–273. [CrossRef] [PubMed]

39. Wong, P.; Sze, Y.; Chang, C.C.; Lee, J.; Zhang, X. Pregnenolone sulfate normalizes schizophrenia-like
behaviors in dopamine transporter knockout mice through the AKT/GSK3β pathway. Transl. Psychiatry
2015, 5, e528. [CrossRef]

40. Valencia, A.; Reeves, P.B.; Sapp, E.; Li, X.; Alexander, J.; Kegel, K.B.; Chase, K.; Aronin, N.; DiFiglia, M. Mutant
huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic
knock-in mouse model of Huntington’s disease. J. Neurosci. Res. 2010, 88, 179–190. [CrossRef]

41. Li, X.; Jope, R.S. Is glycogen synthase kinase-3 a central modulator in mood regulation?
Neuropsychopharmacology 2010, 35, 2143–2154. [CrossRef] [PubMed]

42. Muneer, A. Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic Implications.
Clin. Psychopharmacol. Neurosci. 2017, 15, 100–114. [CrossRef] [PubMed]

43. Polter, A.; Beurel, E.; Yang, S.; Garner, R.; Song, L.; Miller, C.A.; Sweatt, J.D.; McMahon, L.; Bartolucci, A.A.;
Li, X.; et al. Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases
sensitivity to mood disturbances. Neuropsychopharmacology 2010, 35, 1761–1774. [CrossRef] [PubMed]

44. Vogt, D.; Cho, K.K.A.; Lee, A.T.; Sohal, V.S.; Rubenstein, J.L.R. The parvalbumin/somatostatin ratio is
increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 2015, 11, 944–956. [CrossRef]

45. Tilot, A.K.; Bebek, G.; Niazi, F.; Altemus, J.B.; Romigh, T.; Frazier, T.W.; Eng, C. Neural transcriptome of
constitutional Pten dysfunction in mice and its relevance to human idiopathic autism spectrum disorder.
Mol. Psychiatry 2016, 21, 118–125. [CrossRef] [PubMed]

46. Ou, M.L.; Liu, G.; Xiao, D.; Zhang, B.H.; Guo, C.C.; Ye, X.G.; Liu, Y.; Zhang, N.; Wang, M.; Han, Y.J.; et al.
Association between miR-137 polymorphism and risk of schizophrenia: A meta-analysis. Genet. Mol. Res.
2016, 15, 3. [CrossRef] [PubMed]

47. Thomas, K.T.; Anderson, B.R.; Shah, N.; Zimmer, S.E.; Hawkins, D.; Valdez, A.N.; Gu, Q.; Bassell, G.J.
Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1αNeurodevelopmental Signal
Transduction. Cell Rep. 2017, 20, 1–12. [CrossRef]

48. Li, H.; Zhu, Z.; Liu, J.; Wang, J.; Qu, C. MicroRNA-137 regulates hypoxia-induced retinal ganglion cell
apoptosis through Notch1. Int. J. Mol. Med. 2018, 41, 1774–1782. [CrossRef]

http://dx.doi.org/10.1038/ng1296
http://dx.doi.org/10.1523/JNEUROSCI.0445-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17202487
http://dx.doi.org/10.1086/519999
http://www.ncbi.nlm.nih.gov/pubmed/17668379
http://dx.doi.org/10.1038/ng.2331
http://www.ncbi.nlm.nih.gov/pubmed/22729224
http://dx.doi.org/10.1007/s12031-016-0751-6
http://www.ncbi.nlm.nih.gov/pubmed/27055860
http://dx.doi.org/10.1002/hipo.20887
http://www.ncbi.nlm.nih.gov/pubmed/21049487
http://dx.doi.org/10.1016/j.biopsych.2006.04.036
http://www.ncbi.nlm.nih.gov/pubmed/16876135
http://dx.doi.org/10.1016/j.biopsych.2008.06.003
http://www.ncbi.nlm.nih.gov/pubmed/18639865
http://dx.doi.org/10.1016/j.cell.2005.05.012
http://www.ncbi.nlm.nih.gov/pubmed/16051150
http://dx.doi.org/10.1038/tp.2015.21
http://dx.doi.org/10.1002/jnr.22184
http://dx.doi.org/10.1038/npp.2010.105
http://www.ncbi.nlm.nih.gov/pubmed/20668436
http://dx.doi.org/10.9758/cpn.2017.15.2.100
http://www.ncbi.nlm.nih.gov/pubmed/28449557
http://dx.doi.org/10.1038/npp.2010.43
http://www.ncbi.nlm.nih.gov/pubmed/20357757
http://dx.doi.org/10.1016/j.celrep.2015.04.019
http://dx.doi.org/10.1038/mp.2015.17
http://www.ncbi.nlm.nih.gov/pubmed/25754085
http://dx.doi.org/10.4238/gmr.15038703
http://www.ncbi.nlm.nih.gov/pubmed/27706734
http://dx.doi.org/10.1016/j.celrep.2017.06.038
http://dx.doi.org/10.3892/ijmm.2017.3319


Diseases 2019, 7, 22 10 of 11

49. Murphy, C.P.; Li, X.; Maurer, V.; Oberhauser, M.; Gstir, R.; Wearick-Silva, L.E.; Viola, T.W.; Schafferer, S.;
Grassi-Oliveira, R.; Whittle, N.; et al. MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p
in Extinction-Impaired Mice. Biol. Psychiatry 2017, 81, 979–989. [CrossRef]
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