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Abstract: The development of tissues involves the direction of specific programs for gene expression
among distinct cell types. These programs are often established in a heritable state by virtue
of epigenetic mechanisms and corresponding pathways of cellular memory. Thus, the broad
synchronization in patterns of gene expression ultimately dictates cellular consequences. Aberrations
in these epigenetic mechanisms are known to be associated with a range of diseases. Herein, we
highlight epigenetic factors that, when aberrantly expressed, lead to a broad range of diseases. Further,
we call upon the community of biomedical researchers to share their findings related to the epigenetic
factors of disease.
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1. Introduction

The association between aberrations of epigenetic factors and disease highlights the significance
of understanding epigenetic mechanisms. Such mechanisms normally function in the global
synchronization of patterns in gene expression [1]. The basis for such gene regulation resides
in cellular pathways that guide the packaging of DNA into chromatin, thereby, regulating the scale of
accessibility to transcription complexes [2,3]. Aberrations in such epigenetic pathways are associated
with a range of pathological outcomes [4–8].

2. Discussion and Conclusions

Key pathways of epigenetic regulation include the following: DNA methylation; histone
modifications; ATP-dependent nucleosome remodeling; and non-coding RNA (Table 1).

Table 1. Key pathways of epigenetic regulation.

Pathway Mechanism of Action Examples of Impacted Conditions

DNA Methylation DNA–protein interactions
embryonic development; epigenetic inheritance;
genomic stability; allele-specific expression;
inactivation of the X chromosome;

Histone Modifications post-translational modifications of
histone tails

gene expression; cell cycle regulation; DNA
replication; DNA repair; chromatin structure

ATP-Dependent Chromatin
Modifications

chromatin remodeling complexes
containing an ATPase domain

cell differentiation; gene expression; cell cycle
regulation; DNA replication; DNA repair;
chromatin structure

Non-Coding RNA RNA-targeting of CpG islands;
small interfering RNAs gene expression

Diseases 2019, 7, 42; doi:10.3390/diseases7020042 www.mdpi.com/journal/diseases

http://www.mdpi.com/journal/diseases
http://www.mdpi.com
http://www.mdpi.com/2079-9721/7/2/42?type=check_update&version=1
http://dx.doi.org/10.3390/diseases7020042
http://www.mdpi.com/journal/diseases


Diseases 2019, 7, 42 2 of 3

DNA methylation at cytosines typically occurs in CpG-rich regions and, ultimately, affects
DNA–protein interactions. These, in turn, can affect the recruitment of chromatin-modifying complexes
and transcriptional complexes. Changes in the recruitment of these complexes are known to impact a
broad range of conditions including embryonic development, epigenetic inheritance, genomic stability,
allele-specific expression, inactivation of the X chromosome, and other biological processes [9,10].

Histone modifications are commonly manifested through post-translational events in histone
tails. Common modifications include acetylation, methylation, and phosphorylation. Such changes
to histone tails impact cellular processes such as gene expression, cell cycle progression, and DNA
replication/repair by altering chromatin structure and/or the recruitment of regulatory complexes [11,12].

ATP-dependent chromatin modifications are facilitated by ATPase-domains of nucleosome
remodeling complexes [13]. These modifications affect the level of chromatin accessibility to protein
complexes. The downstream impacts of these complexes range from cell differentiation and cell cycle
progression to gene expression and DNA replication/repair [14].

The non-coding RNA interaction with CpG islands of promoters is known to impact levels of
gene expression [15,16]. This mechanism often occurs in tandem with DNA methylation-mediated
regulation. The fact that these events often occur in a sequence-specific manner has facilitated the
analyses of gene-specific impacts of non-coding RNA on both a temporal and spatial basis [17,18].

Aberrations in epigenetic mechanisms affect a broad range of physiological processes and often
result in pathological conditions [19]. To date, a range of disease categories, such a neuropathological [5]
and oncological [8], have been associated with missteps in epigenetic regulation. Despite great progress
in our understanding of diseases related to epigenetic events, there remain major gaps in information
about the interrelatedness of epigenetic factors that ultimately preclude most proposed clinical
applications of epigenetic modulators. Thus, we call upon the community of biomedical researchers to
share their findings related to the epigenetic factors of disease in this Special Issue of Diseases titled
“Epigenetics and Disease.” For information on this Special Issue, visit https://www.mdpi.com/journal/
diseases/special_issues/Epigenetics_Disease.

Conflicts of Interest: The authors declare no conflicts of interest. Brown is a Guest Editor for the Special Issue of
Diseases, “Epigenetics and Disease” highlighted in this article and receives no remuneration for this work.
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