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Abstract: Background: The objective of this study was to characterize patients with hyponatremia at
hospital admission into clusters using an unsupervised machine learning approach, and to evaluate
the short- and long-term mortality risk among these distinct clusters. Methods: We performed
consensus cluster analysis based on demographic information, principal diagnoses, comorbidities,
and laboratory data among 11,099 hospitalized adult hyponatremia patients with an admission
serum sodium below 135 mEq/L. The standardized mean difference was utilized to identify each
cluster’s key features. We assessed the association of each hyponatremia cluster with hospital and
one-year mortality using logistic and Cox proportional hazard analysis, respectively. Results: There
were three distinct clusters of hyponatremia patients: 2033 (18%) in cluster 1, 3064 (28%) in cluster 2,
and 6002 (54%) in cluster 3. Among these three distinct clusters, clusters 3 patients were the youngest,
had lowest comorbidity burden, and highest kidney function. Cluster 1 patients were more likely to
be admitted for genitourinary disease, and have diabetes and end-stage kidney disease. Cluster 1
patients had the lowest kidney function, serum bicarbonate, and hemoglobin, but highest serum
potassium and prevalence of acute kidney injury. In contrast, cluster 2 patients were the oldest and
were more likely to be admitted for respiratory disease, have coronary artery disease, congestive
heart failure, stroke, and chronic obstructive pulmonary disease. Cluster 2 patients had lowest serum
sodium and serum chloride, but highest serum bicarbonate. Cluster 1 patients had the highest hospital
mortality and one-year mortality, followed by cluster 2 and cluster 3, respectively. Conclusion: We
identified three clinically distinct phenotypes with differing mortality risks in a heterogeneous cohort
of hospitalized hyponatremic patients using an unsupervised machine learning approach.

Keywords: artificial intelligence; hyponatremia; sodium; clustering; machine learning; mortality;
hospitalization; electrolytes
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1. Introduction

Sodium is an important cation that contributes to plasma osmolality [1]. In healthy
individuals, serum sodium concentration varies by only 1–2% [2]. This process is physio-
logically regulated by osmoregulation and plasma tonicity regulation [1]. Hyponatremia is
the most common electrolyte abnormality in clinical practice associated with significant
morbidity, mortality, and healthcare expenditure. Acute hyponatremia can cause malaise,
nausea, vomiting, headache, altered mental status, seizures, and ultimately respiratory
arrest and coma. Even mild to moderate chronic hyponatremia can have detrimental
effects on cognitive function, balance, and insidious bone mineralization loss, with studies
showing increased falls, fractures, or even mortality [1–8].

The traditional algorithmic approach to hyponatremia evaluation initially classifies a
patient’s volume status as hypovolemic, euvolemic, or hypervolemic [9–11]. Investigations
to identify the causes of hyponatremia include a thorough history and physical examination
followed by laboratory serum and urine studies [3,4]. However, differentiating between
euvolemia and hypovolemia can be very clinically challenging, especially on initial hospital
admission. In addition, laboratory data including serum osmolarity, urine osmolarity,
and urine sodium are usually pending at hospital admission [2,3]. Thus, identifying the
phenotype of the hyponatremic patient on hospital admission with its associated impact
on evaluation, management, and prognosis can be challenging.

With progress in artificial intelligence, machine learning (ML) has recently been ap-
plied in clinical decision support systems [12–14]. Consensus clustering is an unsupervised
ML approach utilized to identify distinct phenotypes in heterogeneous patient popula-
tions. It can be used to assess similarities and differences in large datasets with many
variables, and subsequently distinguish patients into novel clusters with distinct pheno-
types [12,15,16]. Recent studies have demonstrated that ML consensus clustering can
identify disease subtypes that carry different clinical outcomes [17,18].

This study aims to identify distinct phenotypes of patients with hyponatremia on
admission from multidimensional data via an unsupervised machine learning approach.

2. Materials and Methods
2.1. Patient Population

Mayo Clinic Institutional Review Board approved this study. We screened hospitalized
patients from 1 January 2011 to 31 December 2013 at Mayo Clinic Hospital, Rochester,
Minnesota, USA. If patients had multiple hospital admissions during the study period,
we solely analyzed the first admission. We included patients with (1) age ≥18 years and
(2) presence of hyponatremia at hospital admission. We defined admission hyponatremia
as the first in-hospital serum sodium below 135 mEq/L. We excluded patients with (1) lack
of serum sodium measurement within 24 h of hospital admission and (2) no authorization
for research use.

2.2. Data Collection

We abstracted pertinent demographic information, principal diagnoses, comorbidities,
and laboratory data from our hospital’s electronic database, using the previously validated
method [2–4]. As we aimed to cluster hospitalized hyponatremia patients based on avail-
able clinical characteristics at hospital admission, we used only inputted data within 24 h
of hospital admission into the analysis. If there were multiple values, we selected the first
laboratory value within the 24-h time frame. We excluded variables with over 20% missing
data. We imputed missing data for cluster analysis through multiple imputation approach
using Random Forest method if variables had missing data of less than 20%.

2.3. Clustering Analysis

We applied an unsupervised ML approach to develop clinical phenotypes of hospi-
talized patients with admission hyponatremia by conducting an unsupervised consensus
clustering [19]. We used a pre-specified subsampling parameter of 80% with 100 iterations.
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The number of potential clusters (k) ranging from 2 to 10, to avoid producing an excessive
number of clusters that would not be clinical useful. The optimal number of clusters was
determined by examination of the consensus matrix (CM) heat map, cumulative distribu-
tion function (CDF), cluster-consensus plots with the within-cluster consensus scores, and
the proportion of ambiguously clustered pairs (PAC). The within-cluster consensus score,
ranging between 0 and 1, is defined as the average consensus value for all pairs of individu-
als belonging to the same cluster [20]. A value closer to one indicates better cluster stability.
PAC, ranging between 0 and 1, is calculated as the proportion of all sample pairs with con-
sensus values falling within the predetermined boundaries. A value closer to zero indicates
better cluster stability. We calculated the PAC using strict criteria with the predetermined
boundary of (0, 1), where a pair of individuals who had consensus value greater than 0 or
less than 1 was considered ambiguously clustered. Detailed consensus cluster algorithm of
this study for reproducibility is provided in the Online Supplementary Materials.

2.4. Statistical Analysis

After cluster assignment, we performed analyses to evaluate differences in clinical
characteristics and outcomes among the clusters. We compared baseline characteristics
among the clusters using an analysis of variance (ANOVA) test for continuous variables
and Chi-squared test for categorical variables. To explore the key clinical features of each
cluster, we determined the standardized mean differences of clinical characteristics between
each cluster and the whole cohort. We regarded variables with absolute standardized mean
difference of >0.3 as a key feature of the cluster. Subsequently, we compared hospital
mortality and one-year mortality among the clusters. We assessed the association of each
cluster membership with hospital mortality using logistic regression and reported odds
ratio (OR) with 95% confidence interval (95% CI). We assessed the association of each
cluster membership with one-year mortality using Cox proportional hazard regression and
reported hazard ratio (HR) with 95% CI. We selected cluster 3 as the reference group for
comparison given its lowest mortality risk as well as highest number of patients. We did
not adjust for between-group differences in clinical characteristics because these variables
were utilized to develop the clusters through unsupervised consensus clustering approach.
We performed all analyses using R, version 4.0.3 (RStudio, Inc., Boston, MA, USA. We used
the ConsensusClusterPlus package (version 1.46.0) for consensus clustering analysis and
the missForest package for missing data imputation.

3. Results

Of 76,696 hospitalized adult patients from 2011 to 2013, 11,099 (14%) patients had
hyponatremia at hospital admission. Study patients had a mean age of 65 ± 17 years.
Approximately half were male, and over 90% were white. The mean admission serum
sodium was 131 ± 4 mEq/L and baseline eGFR 73 ± 31 mL/min/1.73 m2.

The CDF plot displays the consensus distributions for each k (Figure 1A). The delta
area plot shows the relative change in area under the CDF curve (Figure 1B). The largest
changes in area occur between k = 3 and k = 4, at which point the relative increase in area
becomes noticeably smaller. As shown in the CM heatmap (Figure 1C, Supplementary
Figures S1–S9), the ML algorithm identified cluster 2 and cluster 3 with good cluster
stability over repeated iterations.

The mean cluster consensus score was comparable between the scenario of two
and three clusters (Figure 2A). Cluster 3 had more favorable low PACs by criteria than
cluster 2 (Figure 2B). In summary, using baseline variables at hospital admission, the
consensus clustering analysis identified 3 clusters that best represented the data pattern of
our hospitalized hyponatremic patients.
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Figure 2. (A) The bar plot represents the mean consensus score for different numbers of clusters (K ranges from two to ten);
(B) The PAC values assessing ambiguously clustered pairs.
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Cluster 1 had 2033 (18%) patients, cluster 2 had 3064 (28%) patients, and cluster 3 had
6002 (54%) patients. Table 1 shows the clinical characteristics of the three identified clusters.
The distribution of all clinical variables significantly differed among the three clusters.

Table 1. Clinical characteristics.

Patient Characteristics Overall Cluster 1 Cluster 2 Cluster 3 p-Value

(n = 11,099) (n = 2033) (n = 3064) (n = 6002)

Age (years) 65.0 ± 16.8 66.3 ± 15.3 74.2 ± 12.9 59.8 ± 17.0 <0.001

Male sex 5678 (51) 1095 (54) 1538 (50) 3045 (51) 0.02

Race

<0.001
White 10268 (93) 1829 (90) 2943 (96) 5496 (92)
Black 184 (2) 47 (2) 15 (0.1) 122 (2)

Others 647 (6) 157 (8) 106 (3) 384 (6)

BMI (kg/m2) 28.5 ± 7.5 30.7 ± 8.7 27.4 ± 6.7 28.3 ± 7.2 <0.001

Principal diagnosis

<0.001

Cardiovascular 1747 (16) 325 (16) 791 (26) 631 (11)
Endocrine/metabolic 628 (6) 142 (7) 300 (10) 186 (3)

Gastrointestinal 1382 (12) 247 (12) 237 (8) 898 (15)
Genitourinary 556 (5) 326 (16) 62 (2) 168 (3)

Hematology/oncology 1496 (13) 182 (9) 211 (7) 1103 (18)
Infectious disease 842 (8) 313 (15) 130 (4) 399 (7)

Respiratory 817 (7) 95 (5) 529 (17) 193 (3)
Injury/poisoning 1445 (13) 224 (11) 318 (10) 903 (15)

Other 2186 (20) 179 (9) 486 (16) 1521 (25)

Charlson Comorbidity Score 2.4 ± 2.7 3.3 ± 2.9 3.3 ± 2.8 1.6 ± 2.2 <0.001

Comorbidities
Coronary artery disease 959 (9) 257 (13) 560 (18) 142 (2) <0.001
Congestive heart failure 957 (9) 335 (16) 534 (17) 88 (1) <0.001

Peripheral vascular disease 454 (4) 116 (6) 300 (10) 38 (0.6) <0.001
Dementia 198 (2) 38 (2) 150 (5) 10 (0.2) <0.001

Stroke 971 (9) 213 (10) 626 (20) 132 (2) <0.001
COPD 1344 (12) 229 (11) 921 (30) 194 (3) <0.001

Diabetes mellitus 2896 (26) 907 (45) 1036 (34) 953 (16) <0.001
Cirrhosis 572 (5) 222 (11) 113 (4) 237 (4) <0.001

End-stage kidney disease 685 (6) 660 (32) 18 (1) 7 (0.1) <0.001

Laboratory test
eGFR (mL/min/1.73 m2) 73 ± 31 30 ± 18 71 ± 23 89 ± 23 <0.001

Sodium (mEq/L) 131 ± 4 131 ± 3 129 ± 5 132 ± 3 <0.001
Potassium (mEq/L) 4.3 ± 0.7 4.8 ± 0.9 4.3 ± 0.7 4.2 ± 0.6 <0.001
Chloride (mEq/L) 97 ± 5 98 ± 5 93 ± 6 99 ± 4 <0.001

Bicarbonate (mEq/L) 25 ± 4 21 ± 5 27 ± 4 24 ± 3 <0.001
Anion gap 9 ± 4 12 ± 5 9 ± 3 9 ± 3 <0.001

Strong ion difference 38.3 ± 4.0 37.9 ± 4.6 40.4 ± 3.9 37.3 ± 3.3 <0.001
Hemoglobin (g/dL) 11.9 ± 2.2 11.0 ± 2.3 12.1 ± 2.0 12.1 ± 2.2 <0.001

Acute kidney injury 2254 (20) 1793 (88) 308 (10) 153 (3) <0.001

The standardized mean difference plot was utilized to investigate key features of each
cluster, as displayed in Figure 3. According to absolute standardized mean difference
of >0.3, cluster 1 patients were more likely to be admitted due to genitourinary disease.
Cluster 1 patients also had higher comorbidities (especially diabetes mellitus (DM) and
end-stage kidney disease (ESKD)), serum potassium, serum anion gap, and acute kidney
injury (AKI), and lower estimated glomerular filtration (eGFR), serum bicarbonate, and
hemoglobin. Cluster 2 patients were more likely to be admitted for respiratory disease.
Cluster 2 patients were also older, had higher comorbidities (especially coronary artery
disease (CAD) congestive heart failure (CHF), stroke, and chronic obstructive pulmonary
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disease (COPD)), serum bicarbonate, and strong ion difference (SID), but lower serum
sodium and serum chloride. Cluster 3 patients were younger, had lower comorbidity
burden, and less AKI with corresponding higher eGFR.
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differences value, and the y axis shows baseline parameters. The dashed vertical lines represent the standardized differences
cutoffs of <−0.3 or >0.3. Abbreviations: AKI, acute kidney injury; DM, diabetes mellitus; COPD, chronic obstructive
pulmonary disease; CVA, cerebrovascular accident; PVD, peripheral vascular disease; CHF, congestive heart failure; MI,
myocardial infarction; BMI, body mass index; Hb, hemoglobin; SID, strong ion difference; AG, anion gap; ESKD, end stage
kidney disease; HCO3, bicarbonate; Cl, chloride; K, potassium; Na, sodium; GFR, glomerular filtration rate; RS, respiratory
system; ID, infectious disease; GI, gastrointestinal.

Cluster 1 patients had the highest hospital and one-year mortality, followed by cluster
2 and cluster 3 patients (Figure 4A,B), respectively. The OR for hospital mortality was
3.89 (95% CI 2.96–5.11) for cluster 1 and 2.31 (95% CI 1.75–3.05) for cluster 2, when com-
pared to cluster 3. The HR for one-year mortality was 2.35 (95% CI 2.11–2.62) for cluster
1 and 2.01 (95% CI 1.82–2.23) for cluster 2, when compared to cluster 3 (Table 2).

Table 2. Mortality outcomes according to clusters.

Hospital-Mortality OR (95% CI) 1-Year Mortality HR (95% CI)

Cluster 1 6.0% 3.89 (2.96–5.11) 32.0% 2.35 (2.11–2.62)
Cluster 2 3.6% 2.31 (1.75–3.05) 28.9% 2.01 (1.82–2.23)
Cluster 3 1.6% 1 (ref) 15.9% 1 (ref)
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4. Discussion

In this study, the unsupervised ML consensus clustering algorithm identified a total
of three unique patient clusters based on demographic information, principal diagnoses,
comorbidities, and laboratory data. The three clusters represented clinically distinct sub-
groups derived from multidimensional baseline data.

Cluster 1 consisted of hyponatremic patients with kidney disease (lower baseline
eGFR, AKI on hospital admission, and ESKD). These patients had higher serum potassium
and anion gap, but lower serum bicarbonate and hemoglobin, which are findings commonly
seen in patients with decreased kidney function. Compared to patients in other clusters,
cluster 1 patients also had more diabetes and more frequently admitted to the hospital for a
principal diagnosis of genitourinary disease. While the degree of hyponatremia in cluster 1
patients was less severe than cluster 2 patients, we found that cluster 1 patients had both
the highest in-hospital and one-year mortality among all three clusters. This may represent
the prevalent impact of decreased kidney function in this cluster on mortality, which has
been well-described in the literature [21–23].

The phenotypes of cluster 2 patients included older patients being admitted to the
hospital with cardiovascular and respiratory diseases. Among the three clusters, cluster 2
patients had higher CAD, CHF, stroke, and COPD comorbidities. Hyponatremia in the
cluster 2 patients was more severe compared to the other clusters. This was in the context
of typically a higher serum bicarbonate and SID, normal AGAP, and lower serum chloride.
Although cluster 2 patients had lower hospital and one-year mortality compared to cluster 1
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patients, they had a two-fold increased risk of mortality compared Cluster 3 patients (who
were younger, had lower comorbidity burden, higher eGFR, and the mildest degree of
hyponatremia). In the multivariate analysis of 98,411 hospitalized patients, hyponatremia
increased the risk in-hospital mortality (OR 1.47; 95% CI 1.33–1.62), one-year mortality
(OR 1.38; 1.32–1.46), and 5-year mortality (OR 1.25; 95% CI 1.21–1.30). Unsurprisingly, these
relationships were more pronounced in patients admitted with cardiovascular disease and
cerebrovascular disease [24].

Our study has several limitations. First, ML consensus cluster analysis utilizes a
data-driven approach in which cluster membership relies on the input of the data. This
algorithm analyzes shared clinical characteristics from the input variables of examined
patients in order to identify potential novel risk factors and phenotypes. Hence, should
the imputed variables be changed, cluster membership could be altered. We acknowledge
that the majority of our study patient population are Caucasian, and thus this study’s
results may not apply to other races or geographic areas. Thus, our study needs validation
in other patient populations and in a multicenter study. In addition, our study did not
demonstrate the outcome of hyponatremia treatment on attenuation of mortality risk.
Further investigations are currently underway. Nevertheless, our study is the first to
demonstrate that an unsupervised ML consensus clustering approach using variables that
are easy to be obtained on hospital admissions can successfully distinguish meaningful
clusters of patients with hyponatremia. In addition, these clusters have different clinical
outcomes, and future studies are needed to assess the application of this approach to
clinical practice.

5. Conclusions

In conclusion, unsupervised ML consensus clustering approach in a heterogenous
cohort of hospitalized patients admitted with hyponatremia successfully identified three
clinically distinct phenotypes with differing mortality risk. Cluster 1 hyponatremic patients
with a suggested phenotype of kidney disease carried the highest risk of hospital and
one-year mortality. Future studies are needed to assess whether incorporation of these
phenotypes of hyponatremia on admission by the consensus clustering approach can help
identify treatment and monitoring strategies to improve patient outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diseases9030054/s1, Figures S1–S9: consensus matrix heat map depicting consensus values on
a white to blue color scale of each cluster.
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